
Noname manuscript No.
(will be inserted by the editor)

PIXHAWK: A Micro Aerial Vehicle Design for
Autonomous Flight using Onboard Computer Vision

Lorenz Meier · Petri Tanskanen ·
Lionel Heng · Gim Hee Lee · Friedrich
Fraundorfer · Marc Pollefeys

Received: date / Accepted: date

Abstract We describe a novel quadrotor micro air vehicle (MAV) system that
is designed to use computer vision algorithms within the flight control loop.
One main contribution is the integration of a powerful onboard computer which
is a necessity for running state-of-the-art computer vision algorithms with
real-time constraints. The system also features IMU-Vision synchronization
by hardware time stamping which allows tight integration of IMU measure-
ments into the computer vision pipeline. We describe visual pose estimation
from artificial markers and stereo vision integration for obstacle detection. The
control architecture is tested in autonomous flights using onboard computed
visual position estimates. In experiments and measurements, we show the ben-
efits of our IMU-Vision synchronization for egomotion estimation, demonstrate
autonomous flight and stereo vision obstacle detection.

Keywords Micro Aerial Vehicles · Quadrotor · Computer Vision · Stereo
vision

L. Meier · P. Tanskanen · L. Heng · G. H. Lee · F. Fraundorfer · M. Pollefeys
ETH Zurich, CAB G 86.3, Universitaetstr. 6, 8092 Zurich
E-mail: lm@inf.ethz.ch
This work was supported in part by the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant #231855 (sFly) and by the Swiss National Science
Foundation (SNF) under grant #200021-125017.



2 Lorenz Meier et al.

1 INTRODUCTION

We introduce a novel quadrotor MAV design, the Pixhawk MAV, which is
specifically designed to be a research platform for computer vision based flight
control and autonomous flight using computer vision.

One of our main contributions is the integration of a computing board that
is powerful enough to handle all image processing and flight control processes
onboard on a small scale quadrotor MAV. With the possibility of performing
all computational processes onboard without the requirement for a constant
data link to a ground station, our design brings the vision of having a fully
autonomous quadrotor MAV significantly closer. Another major contribution
is the hardware IMU-camera synchronization of our system. This allows us to
be able to measure the USB image transmission delays in our system precisely.
As a result, we are able to do visual pose estimation with the synchronized
IMU measurements with improved efficiency and robustness. This algorithm
is evaluated and compared to a vision only marker based pose estimation al-
gorithm. In addition, we further advance the state-of-the-art by integrating
a vision based obstacle detection system onto the MAV system. The stereo
computer vision system produces a high detailed depth map, that gives more
detailed information about the obstacle compared to basic sensors as infrared
or sonar. The capabilities of the system are furthermore demonstrated by vi-
sion only autonomous waypoint based flights. The flight accuracy is compared
to Vicon groundtruth.

Finally, all the hardware and software designs are made open-source and
are published on our web page 1 with the goal to create an open research
platform for the community.

Fig. 1 PIXHAWK Cheetah Quadrotor

1 www.pixhawk.ethz.ch



Title Suppressed Due to Excessive Length 3

1.1 State-of-the-Art

This paper extends our previous work described in [21]. It extends it by a
more detailed description and evaluation of the system, i.e. the analysis of the
USB image transmission delays. We also add a comparison of a combined IMU-
vision pose estimation algorithm to vision only pose estimation. In addition, we
show fully autonomous, onboard computer vision based waypoint navigation
using visual markers and demonstrate the integrated vision based obstacle
avoidance system.

Much of the previous research in autonomous unmanned aerial vehicles
(UAV’s) has been based on quite large UAV’s in the weight range of 10-20kg.
UAV’s of this size are able to carry an extensive sensor suite, e.g. LIDAR,
Radar, camera system and also powerful onboard computers. Impressive re-
sults have been shown in terms of autonomous take-off, landing and navigation
as well as obstacle avoidance [7,28,16,5,29,25,17,14]. To apply these results
to small scale MAV’s of under 1.5kg needs specific adaptations to the algo-
rithms and sensor hardware. Recent works successfully demonstrated the use of
small LIDAR sensors on such small scale MAV’s for mapping and autonomous
flight [13,27,8,30,2,11].

Purely vision based autonomous flight control and mapping for small scale
MAV’s did not yet reach the same level of maturity as with LIDAR sensors.

One of the first works in visual MAV control was done by Kemp [18].
He uses an a-priori generated 3D model of the flight area and 2D-3D edge
matching to compute the MAV pose. He demonstrates on-spot hovering of
an MAV. The MAV only carries a small analog camera with wireless image
transmission. All the processing is done off-board.

More recently, Blösch et al. [4] describe visual autonomous flight using
an Asctec Hummingbird and a downward looking camera. A visual SLAM
algorithm is running off-board on a standard PC. The images of the on-board
camera are streamed to the PC using a USB cable connection (the MAV is
actually cable connected, thus limiting the autonomy). Control input is sent
back to the MAV via a radio link. In their paper they demonstrate on-spot
hovering and waypoint following over a 10m trajectory. To ensure enough
visual features for SLAM their testbed is covered with textured posters. The
off-board visual SLAM computes positions at varying frame rates between
15-30Hz.

An extension of this work is described by Achtelik et al. [1]. They replace
the Asctec Hummingbird with a bigger model, the Asctec Pelican, and equip
it with an Intel Atom onboard computer. This allows them to run a modified
version of the visual SLAM of [4] on-board with a frame rate of 10Hz. In the
paper, they demonstrate on-spot hovering in an indoor and outdoor setting.

Williams et al. [35] use line and point features for visual flight control of
a MAV. They describe three types of flight patterns; traversing, hovering and
ingress. In their experiments, they compute the MAV trajectory offline (from
previously captured images) on a desktop PC for the different flight patterns.



4 Lorenz Meier et al.

An approach for higher level navigation implemented on a Parrot ARDrone
is described by Bills et al. [3]. The Parrot ARDrone comes with a forward
and downward looking camera and the feature of onboard on-spot hovering.
This makes it an easy to use system. However, the system is closed and has no
payload capability. It is only possible to stream the images of the camera using
Wi-Fi and control it with Wi-Fi. In their work, Bills et al. control the direction
of movement of the MAV from perspective cues they get from images and from
classification of the environment. This allows the MAV to follow corridors and
even make turns. However, there is no notion of a metric map, and the image
processing is completely done off-board on a desktop PC.

The image processing can greatly be simplified with the use of artificial
markers. Artificial markers are used by Eberli et al. [10] for hovering, take-off,
and landing. They describe the use of one circular marker to compute the
position and pose of the MAV. In their experiments, the MAV is connected
via USB cable to a ground station, and the image processing is done off-board
on a desktop PC.

A different approach by Li et al. [33] shows hovering, take-off, and landing
of an Asctec Hummingbird equipped with an Intel Atom onboard computer.
They describe the use of an active LED marker pattern. In their approach,
the flight control is done on-board. They demonstrate hovering over a marker
pattern which is mounted on top of a ground robot; the MAV follows this
ground robot.

A similar approach is described by Wenzel et al. [34]. They demonstrate
hovering, take-off, and landing of an Asctec Hummingbird using a marker
platform mounted on top of a ground robot. The marker pattern is made of
IR LED’s and the MAV’s position is computed from a Wii-mote sensor fitted
to the MAV. The Wii-mote sensor performs hardware image processing, and
outputs directly the point coordinates of the detected pattern. The final pose
computation is then directly done on the MAV’s low-level controller.

Substantial existing research relies on outside-in-tracking of the MAV (e.g.
by means of a Vicon motion capture system) to measure the vehicle posi-
tion [12,22,23,9]. These works mainly focus on low-level control problems or
higher-level tasks assuming given MAV positions and are using off-board con-
trol.

The Pixhawk MAV system design itself is an alternative to other commer-
cially available MAV’s, like Asctec MAV’s 2, MicroKopter 3, MicroDrones 4

or Parrot ArDrone 5. The hardware design is quite similar to commercially
available MAV’s. However, while most of the systems have a closed control
architecture, our system is primarily designed as a research platform, and
therefore, has an open control architecture that provides easy access to all the
low level measurements and readily accepts control inputs from higher-level

2 www.asctec.de
3 www.mikrokopter.de
4 www.microdrones.com
5 ardrone.parrot.com



Title Suppressed Due to Excessive Length 5

on-board computers. Together with the software architecture, the ground con-
trol and operator software, and the easy to use marker based localization, the
Pixhawk system is a great testbed for MAV research.

1.1.1 Comparison of PIXHAWK Quadrotor Platform (mid 2011)

System PIXHAWK Asct. Pelican ARDrone Mikrokopt. Arducopt.
CPU CORE 2 Duo Intel Atom ARM9 ARM9 -

CPU Cores 2 1 1 1 -
CPU MHz. 1.86 GHz 1.2 GHz 468 MHz 90 MHz -

RAM 2 GB 1 GB 128 MB 96 KB -
USB ports 7 7 1 1 -
PCIe ports 0 1 0 0 -

S-ATA ports 1 0 0 0 -
UARTs 4 2 0 2 -

Autopilot ARM7 ARM7 PIC24 ATMega ATMega
AP MHz 60 MHz 60 MHz 24 MHz 16 MHz 16 MHz

AP RAM 32 KB 32 KB 8 KB 96 KB 8 KB
3D Gyro x x x x x

Accelerometer x x x x x
Compass x x - x x

Typ. Max. Weight 1.5 kg 1.5 kg 0.6 kg 1.5 kg 1.5 kg
Typ. Prop. Diam. 10” 10” 7” 10” 10”

Table 1.1.1 shows the difference between different quadrotor platforms.
While the autopilot capabilities of the PIXHAWK quadrotor are similar to
another competitive systems, the onboard computational speed, RAM and
solid-state disk interfaces are unmatched in the MAV domain.

1.1.2 Comparison of MAVCONN middleware

Software MAVCONN LCM ROS
Message format x - x

Ground Control Station avail. x - -
Radio modem support x - -

Serial comm support x - -
UDP support x x x

UDP Transport Layer LCM LCM ROS
UDP Latency 100-1100 us 100-1100 us 500-1100 us

Stereo triggering x - -
IMU sync x - -

Table 1.1.2 compares different middlewares. As MAVCONN uses internally
LCM as transport layer, all features available in LCM are retained in MAV-
CONN. Our middleware adds a layer on top of LCM, providing the MAVLink
message format and interfaces to peripherals such as radio modems or USB



6 Lorenz Meier et al.

machine vision cameras. The main difference to ROS is the distributed commu-
nication model without central server and the capability to fully communicate
over radio links when needed. No message rewriting is necessary to communi-
cate with MAVLink-enabled IMUs or a ground control station.



Title Suppressed Due to Excessive Length 7

2 System Design

The PIXHAWK design includes a powerful onboard computer which makes it
possible to run high-level task, in particular visual localization, onboard the
MAV. The system design is depicted in Fig. 2. Visual localization, obstacle
detection and planning are implemented on the onboard high-level flight com-
puter, an Intel Core2Duo. The visual localization module computes the full
6DOF pose of the MAV (see details in section 3). The stereo obstacle detec-
tion module computes real-time stereo from the front looking stereo pair (see
section 4). The output of the stereo module can be used for obstacle avoidance
by the planning module. The planning module currently implements waypoint
following. Attitude and position controller are implemented on a low-level re-
altime controller (see section 5 for state estimation). The position controller
takes as input the poses from visual localization and the setpoints generated
from the planner. For MAV control the attitude measurements and the vision
pose estimates need to be synchronized. In our system the synchronization is
solved by hardware triggering the cameras by the IMU and timestamping the
measurements.

IMU
200 Hz

Camera
30 Hz

Obstacle
Detection

15 Hz

Visual
Localization

30 Hz

Planner

Attitude
Observer
200 Hz

Position
DKF

50 Hz

Position
Control
50 Hz

Attitude
Control
200 Hz

Ground
Control
Station

Trigger

High-Level Linux Flight Computer
(Intel Core 2 1.86 GHz)

Camera
30 Hz

Camera
30 Hz

Low-Level Realtime Controller
(ARM7)

Fig. 2 The PIXHAWK quadrotor system design. The powerful onboard computer enables
high-level tasks as visual localization, obstacle detection and planning run onboard. Position
and attitude estimation are implemented on a low-level realtime controller.

2.1 Vision-IMU Synchronization

Data from different sensors (in particular from multiple digital cameras) is
synchronized by an electronic shutter signal and put together into a times-
tamped sensor message. IMU sensor data (e.g. absolute attitude and angular



8 Lorenz Meier et al.

rates) is available as part of the image metadata then. Images are transmit-
ted over USB to the camera process, while the IMU measurements and the
shutter timestamp are delivered through a serial interface. Image transmis-
sion from camera to main memory via USB takes approximately 16-19 ms
(where the time differs sligthly for each image), while the transmission of the
shutter timestamp from IMU to main memory via serial/MAVLink takes ap-
proximately 0.1–2 ms. As it is guaranteed that the IMU data arrives earlier
than the image, the camera process can always deliver the full vision-IMU
dataset to the software middleware. Fig. 3 shows the contributions of indi-
vidual processing steps to the overall system delay. The transfer time of the
image content from the camera module over USB 2.0 is substantial where fast
localization techniques are concerned.

USB transfer (19 ms)

IMU
trigger

IMU
estimation and control

5-1000 ms image processing

image hub (0.5 ms)

measured in hardware measured in software

Fig. 3 System delays. Overall delay varies between 25 and >1000 ms. USB and UART
transfer delays are only observable with hardware triggering, else they remain unknown.



Title Suppressed Due to Excessive Length 9

3 Visual Position Estimation

As the PIXHAWK middleware provides a precise time base, a standard text-
book estimation and control pipeline was proven to perform well for au-
tonomous flight. Fig. 2 shows the localization and control architecture. Images
are read from the camera at 30 Hz and the position is estimated at the full
camera rate, using additional inertial information. The current position is then
used by the onboard mission planner to determine the desired position. The
current and the desired position is fed back to the position estimation and
control software module running on the ARM7 autopilot controller.

3.1 ARTK+ Localization

A localization test bed was created that uses markers with an adapted imple-
mentation of ARToolkit+ [32] for the localization. The marker positions are
encoded in a global world map with the 6D position and orientation of each
marker. By extracting the marker quadrangle, the global marker position can
be estimated. The correct orientation on the quadrangle plane and the marker
ID are encoded by a 2D binary code inside each marker. An example of a larger
marker setup is shown in Fig. 4. However, the system itself is not dependent on
this particular approach – any kind of localization algorithm can be used. The
main benefit of using ARToolkit+ in the test bed setup is its relatively low
delay (5-10 ms), its robustness with respect to suboptimal lighting conditions
and the high robustness to motion blur. It is therefore very suitable for system
testing and validation.

3.2 Vision-IMU fusion

The presence of the inertial measurement unit can be exploited to increase
the robustness and accuracy of the vision-based localization. There are clas-
sical IMU-Vision fusion methods but they all expect some kind of covariance
estimate of the vision position data. This is not possible in a clean way, as vi-
sion based localization typically works on 2D image features that are matched
between two images. Since this matching is not perfect outlier removal is nec-
essary which again cannot be made error free and the remaining outliers in the
feature correspondences will disturb the position estimate. The covariance re-
sulting from a non-linear optimization of the vision algorithm cannot correctly
capture these misestimates due to outliers in the feature correspondences. The
more promising method is to include the IMU data directly in to the vision
estimation to be able to use the information during the outlier filtering and
position estimation.

If the accuracy of the IMU estimated vertical direction is higher than the
pure vision estimate then it can be included into the vision algorithm to im-
prove the localization accuracy. Fig 15 shows that the localization accuracy



10 Lorenz Meier et al.

Fig. 4 Flight environment with the ARToolkit markerboard on the floor

increases when using two points and the known vertical (from the inertial
data) instead of four points. In case of the 2-point algorithm [19], the calcula-
tion steps for the pose estimation are significantly simplified when substituting
parts of the calculation with the IMU roll and pitch (see Fig. 5 for the geomet-
ric relation where the image plane is aligned with the surface normal formed
by the gravity vector). This speeds up RANSAC which is typically used as
outlier filter for image features, so the benefits of directly combining IMU and
vision are, depending on the methods used, improved accuracy and computa-
tion time.

Since the roll and pitch angle of the camera are known through the in-
ertial measurement unit, the lines connecting the camera center and the 3D
points seen by the camera can be rotated to compensate for roll and pitch. The
equation for projecting image points into the homogeneous camera space and
rotating the rays is given in equation 1, the same operation is also depicted
in Fig. 5. The pixel coordinate u is projected with the inverse camera matrix
K−1 into the normalized homogenous coordinate space. This ray is then ro-
tated by roll and pitch with the rotation matrix formed by multiplying the
rotation matrices around roll and pitch Rφθ. The resulting ray in homogenous
coordinates is now fronto-parallel with respect to the ground plane.

u′ = RφθK
−1u (1)

The resulting fronto-parallel view has only x, y and ψ as free parameters.
Kukelova et al. provided a closed-form solution to localize from two points
and known vertical direction by solving for x, y, z and ψ. By applying this



Title Suppressed Due to Excessive Length 11

pitch

gravity vector

roll

gravity vector

Fig. 5 Relation of gravity vector and camera angles. The right-fronto parallel view is ob-
tained by rotating the image plane by the roll and pitch angles.

algorithm in a least squares sense on the ARToolkit correspondences, we obtain
the final position output, since φ and θ were already known. Fig. 15 shows
that the solution of the vision-IMU 2-point algorithm outperforms the 4-point
algorithm used in ARToolkit+ in accuracy. Both algorithms operated on the
same set of visual correspondences based on the ARToolkit+ corners.

In addition, for any non-global vision based localization approach, the IMU
information can provide the gravity vector and heading as the global reference.
This is especially important for loop closure in SLAM where a global attitude
information can faciliate loop detection and reduces convergence into local
minimas. This also explains the advantage of storing the absolute attitude as
meta data along the images rather than the relative to the last frame. From
the absolute attitude it is always possible to extract the relative orientation
between any pair of images.

3.3 Outlier Removal

The obtained position vector x, y, z and ψ is filtered with a block 4x1D Kalman
filters in the next step, which implies that the filters are parameterized with
an error model of the computer vision approach. As IMU and vision both
estimate the 3 degree of freedom attitude of the helicopter, this redundant
data can be used to detect and remove position outliers produced by the
localization step. Any erroneous vision measurement will not only contain
a wrong position estimate, but also wrong attitude estimate because of the
projective dependency of position and attitude. Position outliers can therefore
be rejected based on the comparison of roll and pitch estimates from the IMU
and from the visual localization. Notice the effect on position outliers when
including the IMU data already into the vision estimation in Fig 15. The
variance on the position is reduced by a significant amount such that there is
no need for subsequent outlier removal anymore.



12 Lorenz Meier et al.

4 Stereo Obstacle Detection

The front looking stereo camera allows us to get depth information in both
indoor and outdoor environments, and with depth information, we can reliably
detect obstacles in the MAV’s vicinity, and compute their locations. In our
stereo processing pipeline, we compute disparity data from stereo image pairs,
and subsequently, compute a point cloud which is used for obstacle avoidance.
If there is a cluster of points with a minimum density that is observed to be
within the safety clearance of the MAV, an alert message is published. Any
planning module that receives this alert can either perform an emergency stop
or take evasive maneuvers.

4.1 Point Clouds from Stereo

With each stereo image pair, we rectify both images, and use a block-matching
stereo correspondence algorithm to build a dense 640 x 480 disparity map.
Subsequently, we compute the depth to the points in the scene relative to the
camera coordinate system:

z =
bf

d
(2)

where d is the disparity. Differentiation of Equation 2 with respect to d
yields:

∆z =
bf

d2
∆d (3)

∆z denotes the resolution of the range measurement corresponding to d.
To avoid spurious range measurements due to small disparities, we set the
minimum disparity:

dmin =

⌈√
bf∆d

∆z

⌉
(4)

In our case, we choose conservative values of ∆z = 0.25 and ∆d = 0.5.
With these values, the maximum range of our stereo camera with a baseline
of 5 cm and a focal length of 645 pixels is 4 m.

We compute the 3D coordinates of each pixel relative to the camera coor-
dinate system: xcamycam

zcam

 =
z

f

1 0 −cx
0 1 −cy
0 0 f

ij
1

 (5)

where z is the depth associated with the pixel, (cx, cy) are the coordinates
of the principal point of the camera, f is the focal length, and (i, j) are the



Title Suppressed Due to Excessive Length 13

image coordinates of the pixel. The values of cx, cy, and f , together with the
stereo baseline b are obtained from an one-time calibration.

We then find the world coordinates of each point:xworldyworld
zworld

 = imu
worldH

cam
imuH

xcamycam
zcam

 (6)

where imu
worldH is the homogeneous transform from the world frame to the

IMU frame and is estimated by the visual odometry, and cam
imuH is the homo-

geneous transform from the IMU frame to the camera frame and is estimated
using the InerVis calibration toolbox [20].



14 Lorenz Meier et al.

5 State Estimation and Control

The state estimation is run on the low-level controller to satisfy the realtime
requirements of the system. In addition this allows to compensate visual lo-
calization loss or the loss of the complete onboard computer connection. In
such an event the system performs an open-loop safety landing maneuver. To
synchronize inertial data and vision estimations, the IMU keeps a buffer of
attitude measurements for the last n image frames. Once it receives a vision
position estimate, it reads out the buffered sensor values and performs a state
estimator update.

5.1 Discrete Kalman Estimation

After the outlier rejection, the remaining positions are more conformant to
the normal distribution, and allow the use of a simple discrete Kalman filter.
As the dynamics of a quadrotor are only loosely coupled in the x, y and z
directions [6], the dynamics can be modeled as three independent dimensions.
As the yaw angle is of much better accuracy and resolution in indoor settings
from computer vision than from a magnetometer (due to iron structures in
the building), the yaw angle is taken as the fourth independent dimension for
filtering. Given this quadrotor dynamic model, the Kalman filter is designed
as a block of 4 x 1D Kalman filters with position and speed as states. The
Kalman filter assumes a constant speed model, and takes position as input.
The estimated velocity is critical to damp the system, as the only physical
damping is the air resistance on the horizontal plane, which is not significant
at the hovering or low-speed conditions the system is typically operating in.
The states of the four Kalman filters are:

xk =

[
x
ẋ

]
yk =

[
y
ẏ

]
zk =

[
z
ż

]
ψk =

[
ψ

ψ̇

]
We estimate the current state of the vehicle xk, which is modeled by

xk = A · xk−1 + wk−1.

Where the dynamics matrix A models the law of motion, xk−1 is the pre-
vious state and wk−1 the process noise.

A =

[
1 ∆t
0 1

]
This motion is measured at certain time steps, where the measurements

are expressed as the gain H times the current state plus the measurement
noise v.

zk = H · xk + vk



Title Suppressed Due to Excessive Length 15

The speed in the model will therefore only be changed by measurements,
and then again, assumed constant during prediction. From this formulation,
it is already obvious that varying time steps can be handled by the filter as
long as they are precisely measured. As this filter does not include the control
input matrix B, the filter is assuming a constant speed model, which is a valid
approximation if the filter update frequency is fast enough with respect to
the change of speed of the physical object. Because the PIXHAWK system
provides a precise timebase, the filter uses the measured inter-frame interval
as time difference input δt. If measurements are rejected as outliers, the filter
only predicts for this iteration and compensates in the next update step for
the then longer time interval. This allows the system to estimate its egomotion
for up to about 500 ms and recover from several dropped camera frames.

5.2 Position and Attitude Control

The current and the desired position is fed back to the position estimation
and control software module running on the ARM7 autopilot controller. The
autopilot calculates the desired attitude and controls the attitude using its
onboard inertial sensor suite. The x- and y-positions are controlled with the
angle of attack of the collective thrust vector by setting the desired pitch angle
for x and the desired roll angle for y. The z-position can be controlled with
the component of the collective thrust collinear to the gravity vector. The yaw
angle finally can be controlled by the difference of rotor drag of the clockwise
(CW) and counter-clockwise (CCW) rotor pairs. As the discrete Kalman filter
contributes a smoothened position and speed estimate with little phase delay,
the controller can be designed as a standard PID controller implemented as
four independent SISO PID controllers for x, y, z, and yaw. Attitude control
was implemented following the standard PID based attitude control approach
for quadrotors using one PID controller for roll, pitch and yaw each. The craft
is actuated by directly mixing the attitude control output onto the four motors.



16 Lorenz Meier et al.

6 Micro Air Vehicle and Middleware

Off-board processing effectively makes the MAV dependent on the external
processing unit, and severely limits the safety and operation range of the vehi-
cle. Our system brings the multi-process architecture and onboard processing
capabilities from the 20-100 kg class to vehicles with around 1.2 kg liftoff
weight. In contrast to systems using local stabilization approaches on special-
ized microcontroller hardware (Parrot ARDrone), the system is geared towards
global localization and autonomous exploration of unknown environments us-
ing stereo vision. The presented initial results show that with a 30 Hz frame
rate, our system consumes 10 % of the maximum CPU load (5 ms processing
time per frame) for autonomous marker based flight and 40-60 % load (20 ms
processing time per frame) for stereo-based obstacle avoidance, which leaves
enough capacity for future work. Since the onboard computer offers two CPU
cores, onboard parallel localization and mapping is within reach. GPS and, to
a large extent, laser based systems can offer a deterministic processing time
to fuse the sensor data into the localization. Computer vision in contrast has
varying, and in comparison, often longer processing times, depending on the
image content. Therefore, the estimation and control steps cannot assume a
fixed interval length ∆t and a fixed processing delay ∆p. Instead, they must
use the actual timestamp of all measurements to calculate the correct latency.
Thus, all data in our system is timestamped with a resolution in the order of
microseconds. This data includes images from multiple cameras, the system
attitude, acceleration data, and barometric data.

6.1 Stereo Head

For the stereo head, the middleware supports 2 Point Grey Firefly MV or
MatrixVision Bluefox cameras that capture 640 x 480 or 752 x 480 grayscale
images at up to 60 Hz. The camera interface is open to support additional
camera models. However, since there is no standard for trigger-support used
by different camera module manufacturers it is necessary to implement a small
interface class in the middleware for every new camera type. The camera pair is
rigidly mounted with a baseline of 5cm on a carbon composite frame as shown
in Figure 6. The hardware trigger provided by the IMU enables synchronous
capture of images from both cameras; this synchronous capture is crucial for
accurate estimation of stereo disparity.

6.2 Mechanical Structure and Flight Time

Our custom mechanical design (Fig. 6) effectively protects the onboard pro-
cessing module in case of a system crash, and the fixed mounting of the four
cameras allows inter-camera and camera-IMU calibration. Our system comes
in two sizes, one optimized for very small indoor environments, and one stan-
dard size. As the processing board and up to four cameras represent a relatively



Title Suppressed Due to Excessive Length 17

large payload of 400-800g for the small diameter of 0.55 m (0.70 m for the larger
version) of the quadrotor, the overall system structure has been optimized for
low weight. It consists of lightweight sandwich material with composite plates
and an inner layer made of Kevlar. Each of the four motors with 8” or 10”
propeller contributes a maximum of 450-600g thrust, enabling the system to
lift a 400g payload at a total system weight of 1.0-1.2 kg, including the bat-
tery. This allows a continuous flight time of 7-9 minutes with 8” propellers and
14 - 16 minutes with 10” propellers. The propulsion consumes 150-180W for
hovering, while the onboard computer consumes only 27 W peak. Therefore,
flight time is governed by the weight of the system.

Fig. 6 Quadrotor Overview

6.3 Flight and Processing Electronics

The PIXHAWK Cheetah quadrotor design was built from scratch for onboard
computer vision. With the exception of the commercial-off-the-shelf (COTS)
motor controllers and cameras, all electronics and the mechanical frame are
custom-designed. First, the payload consisting of the pxCOMEx processing
module and up to four machine vision cameras (PointGrey Firefly MV USB
2.0 or MatrixVision Bluefox), was selected. The system design then followed
the requirements of onboard computer vision. The onboard electronics consists
of an inertial measurement unit and autopilot unit, pxIMU, and the onboard
computer vision processing unit, pxCOMEx.



18 Lorenz Meier et al.

1x-4x Point Grey
FireFly MV

Image Processing Unit
Intel Core 2 / i7

1.86- 2.00 GHz, 2-8 GB RAM
pxCOMex Module

Ubuntu Linux

Autopilot and IMU Module
ARM7

60 MHz
pxIMU Module

USB

Trigger

UART + USB

4x Brushless
Motor

Controller
I2C

XBee
Radio Modem

UART

USB Wifi
802.11n StickUSB

Harddisk
S-ATA II

solid-state
S-ATA

Fig. 7 Onboard sensors and avionics with electronic buses.

6.3.1 Autopilot Unit

The pxIMU inertial measurement unit/autopilot board (Fig. 8, left part) pro-
vides 3D linear acceleration (accelerometer, ±6g), 3D angular velocity (±500
deg/s), 3D magnetic field (± milligauss), barometric pressure (130-1030 Hec-
topascal (hPa)) and temperature. The onboard MCU for sensor readout and
sensor fusion as well as position and attitude control is a 60 MHz ARM7 mi-
crocontroller. It can be flashed via an USB bootloader and stores settings such
as PID parameters in its onboard EEPROM. It provides the required I2C bus
to the motor controllers and additional GPIOs, ADC input and other periph-
erals. It is interfaced via UART to the computer vision processing unit, and
it operates at a maximum update rate of 200-500 Hz.

Fig. 8 From left to right: pxIMU Autopilot, pxCOMex image processing module, mi-
croETXExpress Core 2 DUO 1.86 GHz module



Title Suppressed Due to Excessive Length 19

6.3.2 Image Processing Unit

The processing unit is the core piece of the system and consists of a two-
board stack. The pxCOMEx base board (Fig. 8, middle) provides the USB
and UART peripherals to interface machine vision cameras, communication
equipment and the pxIMU module. It can accept any micro COM express
industry standard module. Currently, a Kontron etxExpress module with Intel
Core 2 DUO 1.86GHz and 2 GB DDR3 RAM is used (Fig. 8, right), but
future upgrade options include Intel i7 CPUs. It has 4x UART, 7x USB 2.0
and 1x S-ATA 2.0 peripheral options. The typical onboard setup consists of
4x PointGrey Firefly MV monochrome, 1x USB 2.0 802.11n WiFi adapter and
1x S-ATA 128 GB SSD with more than 100 MB/s write speed. The pxIMU
unit, the GPS module and the XBee radio modem are connected via UART
to the processing unit. With a weight of 230 g including cooling and only 27
W peak power consumption, the processing unit can be easily lifted by a wide
range of aerial systems, and not limited to the quadrotor presented here.

6.4 Aerial Middleware and Message Format

Existing middleware solutions for ground robotics include ROS [26], CAR-
MEN [24] and CLARAty [31]. CARMEN and CLARAty have paved the way
for standardized robotics toolkits, but their use has declined with the wide
adoption of ROS. Although ROS has been used on MAVs, all of these toolkits
assume an Ethernet network to all connected nodes. However, MAV onboard-
networks typically include no onboard Ethernet networks, but several devices
connected via serial links and USB. As these toolkits do not scale down to
this link type, every packet has to be transcoded by bridge processes. There-
fore, we propose a new communication protocol and architecture that can
be transparently used on different hardware links and minimizes the system
complexity.

As shown in Figure 9, the PIXHAWK Linux middleware consists of sev-
eral layered software components. This architecture allows to use the different
base communication layers (ROS and LCM) and provides a convenient high-
level programming interface (API) to the image distribution server. MAVLink
messages from the IMU and the ground control station can also be directly
received in any process. We rely on the Lightweight Communication Mar-
shalling library (LCM) as the base middleware, as it was shown in [15] that
LCM outperforms ROS in low-latency applications. Another benefit is the in-
creased robustness of the overall software architecture when using LCM, as no
central server exists and our communication over MAVLink is mostly state-
less. This eliminates a single point of failure (the ROS central node), and also
eliminates possible protocol lockups in stateful implementations (as in many
ROS nodes). Our system can however still benefit from ROS software pack-
ages, such as the ROS Kinect interface, by using our ROS-MAVCONN bridge
process that routes between the two software packages.



20 Lorenz Meier et al.

MAVLink broadcast
(topic-filtered)

XBee
Radio (Air)

UART

pxIMU
Autopilot

UART

Linux Vision
Process

Linux Control 
Process

Image Bus
(shared mem.)

Memory LCM/ROS LCM/ROS

USB 2.0
Camera USB XBee

Radio (Ground)

MAVLink

MAVCONN MIDDLEWARE

QGroundControl
GCS

UARTWIFI/UDP

Fig. 9 MAVCONN Network showing different physical links using the MAVLink protocol.

The mission and control architecture of the presented robotics toolkit is
based on a lightweight protocol called MAVLink, which scales from serial to
UDP links. It serves also as a communication protocol between the flight com-
puter (pxIMU) and the onboard main computer (pxCOMex/pxOvero). As
MAVLink is used on all communication links including the downlink to the
operator control unit, it is particularly important that this protocol scales
down to very low bandwidth links and allows the use of several links in par-
allel. In turn, this parallel use allows several redundant links, which in our
case, are long-range XBee radio modems and 802.11n Wifi (UDP). MAVLink
has a small 8 bytes overhead per packet, allows routing on an inter-system or
intra-system level, and has an inbuilt packet-drop detection. Due to the low
overhead, it is both suitable for UDP and UART/radio modem transport lay-
ers. The efficient encoding also allows protocol execution on microcontrollers.
These properties allowed the building of a homogenous communication archi-
tecture across the PIXHAWK system. The MAVLink sentences are generated
based on an XML protocol specification file in the MAVLink format. The code
generator ensures well-formed messages and generates C89-compatible C-code
for the message packing and unpacking. This allows fast and safe extensions
and changes to the communication protocol and ensures that no implementa-
tion errors will occur for new messages. Our current implementation supports
the use of the lightweight communication marshalling library (LCM) and the
Robot Operating System (ROS) as transport layers.

While we use MAVLink to send system states and control commands, we
do rely on a separate shared memory implementation of an image hub. This
component allows sharing of images of all cameras with an arbitrary number
of Linux processes with the least overhead possible.



Title Suppressed Due to Excessive Length 21

6.5 Mission Management

A core part of the autonomous flight is the onboard mission management logic,
which allows the system to autonomously follow a flightplan or to perform
simple tasks, such as sweeping a region of interest. The user can specify these
missions in the open-source QGroundControl operator control unit. It is a
C++ application using the Nokia Qt toolkit. Communication with the MAV
is based on the MAVLink protocol and transported either via UART / radio
modem or via Wifi / UDP. QGroundControl covers the whole operational
spectrum of an autonomous MAV: It can graph and log system data in realtime
and it provides 2D and 3D moving maps for the flight operation.

Fig. 10 QGroundControl displaying the current waypoints and trajectory of the system

Fig. 10 shows a typical operator setup: a 3D moving map displaying the
waypoint locations, the safety / home location and the MAV trail (red ellipsoid,
simulated for visualization). By interfacing to Google Earth, up-to-date data
and building 3D models are available to QGroundControl. The bottom part of
the window shows the waypoint list. The operator can either edit the waypoint
list or drag the waypoint icons in the 3D interface. The instrument on the
top right displays the MAV list with one system being active. The circular
instrument below shows the controller state (no information available, thus



22 Lorenz Meier et al.

crossed out) and nearby obstacles (no close obstacles present). The gauge
instruments can be configured freely by the user to any sensor value received
by the GCS.



Title Suppressed Due to Excessive Length 23

7 Experiments and Results

We conduct experiments to evaluate the image transmission delays in the
MAV system, the visual localization without and with the vision-IMU 2-point
algorithm, and the stereo obstacle detection, and discuss the results.

7.1 Image transmission delays

Computer vision algorithms can exploit synchronized attitude and vision data
to increase accuracy and robustness. Since machine vision cameras have a
delay in the tens of milliseconds range due to USB / Firewire transfer time
and operating system scheduling delays, it is the best solution to synchronize
the camera to the inertial measurement unit with a hardware shutter. Fig.
11 shows the USB transfer delays (red, bottom curve), the USB and shared
memory interface delay (green, middle curve) and the total camera shutter
to control output delay (blue, top). The measurements show that the overall
delay is in the same range as the interval between two captured images (36 ms
for the presented localization). This leads to a large phase shift of the control
output, and therefore, has to be properly measured and compensated. Besides
the static delay, the plot also shows that the vision algorithm increases the
delay time to between 24 ms and 35 ms; the increase is double its average
processing time of about 5 ms.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

Flight time (s)

P
ro

c
e
s
s
in

g
 t
im

e
 (

m
s
)

 

 

USB Transfer to onboard Computer

USB Transfer incl. shared memory

Trigger to Control output total (incl. ARTK+)

Fig. 11 Delay of USB and vision processes - note the non-static delay of the overall position
output.



24 Lorenz Meier et al.

7.2 Visual localization

We perform two experiments to determine the localization accuracy of our
ARToolkit+ localization without and with the vision-IMU 2-point algorithm
described in Section 3.2. In our experiments, we use ground truth data from a
Vicon motion tracking system; the ground truth data is provided at a rate of
50 Hz and is very precise with < 1mm error. The objective of the experiments
is two-fold: to quantitatively measure the ARToolkit+ localization error rela-
tive to the Vicon groundtruth, and to examine whether the 2-point algorithm
improves the localization accuracy by using vision-IMU fusion. To be able to
localize the helicopter with the described vision system during the whole flight,
ARToolkit+ markers were laid out on the floor in the flight area as shown in
Fig. 4.

In each experiment, we use our operator control software, QGroundControl,
as shown in Fig. 12 to set relevant parameters for MAV software components,
monitor the MAV’s status, send commands to the MAV, and preset waypoints
for autonomous flight.

Furthermore, in each experiment, the MAV executes an autonomous flight;
at the beginning and end of the flight, open-loop takeoff and landing are per-
formed respectively, using in the control loop only the estimated state of the
MAV without any external position or attitude reference. During the flight,
the MAV uses the localization output to follow the preset waypoints.

Fig. 12 QGroundControl view with live image streaming from the helicopter using
MAVLink over UDP. The live view on the left shows the rectified and depth images from
the stereo camera setup.



Title Suppressed Due to Excessive Length 25

7.2.1 Experiment 1 - Autonomous waypoint following

In the first experiment, Fig. 13 shows the localization results using the AR-
Toolkit+ localization without the 2-point algorithm. The plot shows a flight
around a rectangular path and two crossings. The solid black line shows the
planned flight path; the vertical line in the top left corner of the figure indi-
cates takeoff while the vertical line in the bottom left corner indicates landing.
The grey spheres indicate the waypoints; the radius of each sphere equals the
acceptance radius within which the waypoint is marked as reached. The blue
asterisks represent the position estimates computed by the unfiltered visual
localization, and the red crosses represent the Vicon ground truth.

It is observed in Fig. 13 that the ARToolkit+ localization output without
the 2-point algorithm closely follows the Vicon ground truth, but is subject
to frequent large errors. This is because the localization output is computed
purely based on vision, hence making it extremely sensitive to errors from
the extracted image features. A small error in the position of the extracted
image feature would translate into a large error in the localization output, thus
explaining the frequent large errors.

Fig. 13 Trajectory of an autonomous flight using unfiltered ARToolkit+ localization (blue
asterisks) including takeoff and landing plotted together with the Vicon groundtruth (red
crosses) and planned path (solid line and spheres are the planned waypoints).



26 Lorenz Meier et al.

Fig. 14 An example of image features (black circles) extracted from the 4 corners of AR-
ToolKit+ markers.

7.2.2 Experiment 2 - Comparison of IMU-aided localization

The quadrotor autonomously flies a similar trajectory as in Fig. 13. In our
vision-IMU 2-point algorithm, we first compute the 2D image features that
correspond to the 4 corners of each ARTK marker in full view in the image;
example 2D image features are shown as black circles in Fig. 14. We then
establish 2D-3D correspondences through identification of the marker IDs and
retrieval of the 3D coordinates of the identified markers from the ARToolKit+
configuration file. We use the same set of 2D-3D correspondences to compute
the pose estimates for the ARToolKit+ localization without and with the 2-
point algorithm.

Fig. 15 shows a comparison of the localization output from the ARToolkit+
localization without and with our 2-point algorithm as shown in red and blue
respectively; the Vicon readings are shown as groundtruth in green. It is ob-
served from Fig. 15 that the localization output with our 2-point algorithm
is significantly smoother and more accurate than that without the 2-point al-
gorithm; the 2-point localization output coincides more closely to the Vicon
ground truth and is not subject to large jumps which occur for the local-
ization without the 2-point algorithm. This is due to the additional roll and
pitch information from the IMU which helps to reduce the sensitivity of the
localization process to errors arising from the extracted image features.

In both experiments, the helicopter hovered shortly above the landing po-
sition until it reached a steady hovering state, and then landed. It can be
observed that there are significant cross-track errors between the actual and
planned flight paths. As our focus is not on precise path following, our MAV
system is equipped with basic PID position and attitude controllers which are
not optimally tuned. Furthermore, the localization output does not reflect the
actual position of the MAV, and therefore, deviations from the planned flight
path are expected.



Title Suppressed Due to Excessive Length 27

0.5

1

1.5

2

2.5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

0.2

0.4

0.6

0.8

1

x/m
y/m

z/
m

Fig. 15 Position estimates from ARToolKit+ localization without (in red) and with (in
blue) the 2-point algorithm. The Vicon groundtruth is shown in green.

7.3 Stereo Obstacle Detection

We carry out an experiment in which the MAV flies autonomously along preset
waypoints. We show a visualization of the stereo processing at one point of
time; figure 16 shows an image from the left camera of the stereo rig, the
resulting 3D point cloud computed from the corresponding stereo frame, and
the same point cloud colored by distance from the MAV. In the latter two
images, the MAV is shown in green.

Fig. 16 Left: Left stereo image. Middle: Colorized point cloud. Right: Same point cloud
colored by distance from the MAV.

The MAV publishes alert messages if it detects obstacles within a safety
clearance of 0.75m. To test this functionality we put obstacles (plant, person,



28 Lorenz Meier et al.

Table 1 Breakdown of computational time for on-board stereo processing using 640 x 480
stereo images. (1.86 GHz Intel R©CoreTM2 Duo)

Process Average Computational Time

Image rectification 5 ms
Disparity mapping 29 ms

Point cloud generation 1 ms
Total 35 ms

cardboard) along one side of the flight path and closer than the pre-set safety
clearance. Figure 17 shows the outcome of the test flight. The flight trajectory
is shown in blue. The locations where the MAV published alert messages are
marked with red circles. These alert messages could be used by a planning
algorithm to change the flight plan.

The breakdown of computational time for the stereo processing on-board
the MAV is described in Table 1.

0.5

1

1.5

2

−4

−3.5

−3

−2.5

−2

−1.5

−1

0

0.2

0.4

0.6

0.8

x/m
y/m

z/
m

Fig. 17 Autonomous test flight with obstacles. Red circles mark the locations where the
MAV published alert messages (when obstacles are detected within the MAV’s safety clear-
ance of 0.75m). The flight trajectory is in blue.



Title Suppressed Due to Excessive Length 29

8 CONCLUSIONS AND FUTURE WORKS

The PIXHAWK system is a flexible and computationally strong research plat-
form for autonomous micro air vehicles. Especially if a fast onboard computer
is needed this system design is currently unmatched in the class of small scale
MAV’s. The hardware IMU-Vision synchronization and precise timestamping
allows the fusion of IMU and vision information without the need to estimate
and take assumptions about the delays. Our results show that fusing vision
and IMU information in the proposed way can improve the accuracy of the
camera pose estimation, and thus, the overall flight performance. Our platform
provides a basic setup for autonomous flight using ARTK+ markers. At the
same time, the system can interface the stereo cameras and provide a depth
map for obstacle detection.

Our overall system design proved useful as a research platform, and is
intensively used in our group and in several other international research labs.

Future work will be to exploit the powerful onboard computer to do com-
putationally more demanding visual localization with natural features and
autonomous exploration and mapping. Our communication architecture, in
particular the MAVLink protocol, supports MAV-to-MAV communication. We
aslo want to exploit this in the direction of distributed localization and dis-
tributed mapping of swarms of MAVs.

Acknowledgements We would like to thank our students (in alphabetical order) Bas-
tian Bücheler, Andi Cortinovis, Christian Dobler, Fabian Landau, Laurens Mackay, Tobias
Nägeli, Philippe Petit, Martin Rutschmann, Amirehsan Sarabadani, Christian Schluchter
and Oliver Scheuss for their contributions to the current system and the students of the pre-
vious semesters for the foundations they provided. Raffaello d’Andrea and Sergei Lupashin
(ETH IDSC) provided constant and valuable feedback.

References

1. Achtelik, M., Achtelik, M., Weiss, S., Siegwart, R.: Onboard imu and monocular vision
based control for mavs in unknown in- and outdoor environments. In: Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pp. 3056–3063 (2011)

2. Bachrach, A., de Winter, A., He, R., Hemann, G., Prentice, S., Roy, N.: Range - ro-
bust autonomous navigation in gps-denied environments. In: Robotics and Automa-
tion (ICRA), 2010 IEEE International Conference on, pp. 1096 –1097 (2010). DOI
10.1109/ROBOT.2010.5509990

3. Bills, C., Chen, J., Saxena, A.: Autonomous mav flight in indoor environments using
single image perspective cues. In: Robotics and Automation (ICRA), 2011 IEEE Inter-
national Conference on, pp. 5776–5783 (2011)

4. Blösch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based mav navigation in
unknown and unstructured environments. In: Robotics and Automation (ICRA), 2010
IEEE International Conference on, pp. 21 –28 (2010). DOI 10.1109/ROBOT.2010.
5509920

5. Bosch, S., Lacroix, S., Caballero, F.: Autonomous detection of safe landing areas for
an uav from monocular images. In: Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on, pp. 5522 –5527 (2006). DOI 10.1109/IROS.2006.282188

6. Bouabdallah, S., Siegwart, R.: Full control of a quadrotor. In: Intelligent Robots and
Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pp. 153 –158 (2007).
DOI 10.1109/IROS.2007.4399042



30 Lorenz Meier et al.

7. Conte, G., Doherty, P.: An integrated uav navigation system based on aerial
image matching. Proceedings of the IEEE Aerospace Conference (2008).
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.3963&rep=

rep1&type=pdf

8. Dryanovski, I., Morris, W., Xiao, J.: An open-source pose estimation system for micro-
air vehicles. In: Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pp. 4449–4454 (2011)

9. Ducard, G., D’Andrea, R.: Autonomous quadrotor flight using a vision system and
accommodating frames misalignment. In: Industrial Embedded Systems, 2009. SIES
’09. IEEE International Symposium on, pp. 261 –264 (2009). DOI 10.1109/SIES.2009.
5196224

10. Eberli, D., Scaramuzza, D., Weiss, S., Siegwart, R.: Vision based position control for
mavs using one single circular landmark. Journal of Intelligent and Robotic Systems
61(1-4), 495–512 (2011)

11. Fowers, S., Lee, D.J., Tippetts, B., Lillywhite, K., Dennis, A., Archibald, J.: Vision aided
stabilization and the development of a quad-rotor micro uav. International Symposium
on Computational Intelligence in Robotics and Automation, 2007. CIRA 2007. pp. 143
–148 (2007). DOI 10.1109/CIRA.2007.382886

12. Heng, L., Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: Autonomous obstacle
avoidance and maneuvering on a vision-guided mav using on-board processing. In:
Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp. 2472–
2477 (2011)

13. Hofiann, G., Rajnarqan, D., Waslander, S.: The stanford testbed of autonomous rotor-
craft for multi agent control (starmac). Proceedings of Digital Avionics Systems Con-
ference (DASC04) URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=

1390847

14. Hrabar, S., Sukhatme, G.: Vision-based navigation through urban canyons. Journal of
Field Robotics 26(5), 431–452 (2009). DOI 10.1002/rob.20284. URL http://dx.doi.

org/10.1002/rob.20284

15. Huang, A., Olson, E., Moore, D.: LCM: Lightweight Communications and Marshalling.
In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on, pp. 4057–4062 (2010)

16. Johnson, A., Montgomery, J., Matthies, L.: Vision guided landing of an autonomous
helicopter in hazardous terrain. In: Robotics and Automation, 2005. ICRA 2005. Pro-
ceedings of the 2005 IEEE International Conference on, pp. 3966 – 3971 (2005). DOI
10.1109/ROBOT.2005.1570727

17. Kanade, T., Amidi, O., Ke, Q.: Real-time and 3d vision for autonomous small and micro
air vehicles. In: Decision and Control, 2004. CDC. 43rd IEEE Conference on, vol. 2, pp.
1655 – 1662 Vol.2 (2004). DOI 10.1109/CDC.2004.1430282

18. Kemp, C.: Visual control of a miniature quad-rotor helicopter. Ph.D. thesis, Churchill
College, University of Cambridge (2006)

19. Kukelova, Z., Bujnak, M., Pajdla, T.: Closed-form solutions to minimal absolute pose
problems with known vertical direction. Computer Vision–ACCV 2010 (2011). URL
http://www.springerlink.com/index/M012M78244081306.pdf

20. Lobo, J., Dias, J.: Relative pose calibration between visual and inertial sensors. Inter-
national Journal of Robotics Research 26(6), 561–575 (2007)

21. Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: Pixhawk: A system for au-
tonomous flight using onboard computer vision. In: Robotics and Automation (ICRA),
2011 IEEE International Conference on, pp. 2992–2997 (2011)



Title Suppressed Due to Excessive Length 31

22. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadro-
tors. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA) (2011)

23. Mellinger, D., Shomin, M., Michael, N., Kumar, V.: Cooperative grasping and trans-
port using multiple quadrotors. In: Proceedings of the International Symposium on
Distributed Autonomous Robotic Systems (2010)

24. Montemerlo, M., Roy, N., Thrun, S.: Perspectives on standardization in mobile robot
programming: the carnegie mellon navigation (carmen) toolkit. In: Intelligent Robots
and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference
on, vol. 3, pp. 2436 – 2441 vol.3 (2003). DOI 10.1109/IROS.2003.1249235

25. Proctor, A.A., Johnson, E.N., Apker, T.B.: Vision-only control and guidance for aircraft.
Journal of Field Robotics 23(10), 863–890 (2006). DOI 10.1002/rob.20155. URL http:

//dx.doi.org/10.1002/rob.20155

26. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler,
R., Ng, A.: Ros: An open-source robot operating system (2009)

27. Roy, N., He, R., Bachrach, A., Achtelik, M.: On the design and use of a micro air vehicle
to track and avoid adversaries. International Journal of Robotics Research (2010). URL
http://ijr.sagepub.com/cgi/content/abstract/29/5/529

28. Saripalli, S., Montgomery, J., Sukhatme, G.: Vision-based autonomous landing of an
unmanned aerial vehicle. In: Robotics and Automation, 2002. Proceedings. ICRA ’02.
IEEE International Conference on, vol. 3, pp. 2799 –2804 (2002). DOI 10.1109/ROBOT.
2002.1013656

29. Scherer, S., Singh, S., Chamberlain, L., Elgersma, M.: Flying fast and low among ob-
stacles: Methodology and experiments. The International Journal of Robotics Research
27(5), 549–574 (2008). DOI 10.1177/0278364908090949. URL http://ijr.sagepub.

com/content/27/5/549.abstract

30. Shen, S., Michael, N., , Kumar, V.: Autonomous multi-floor indoor navigation with a
computationally constrained mav. In: Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pp. 20–25 (2011)

31. Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., Das, H.: The claraty architecture
for robotic autonomy. In: Aerospace Conference, 2001, IEEE Proceedings., vol. 1, pp.
1/121 –1/132 vol.1 (2001). DOI 10.1109/AERO.2001.931701

32. Wagner, D., Schmalstieg, D.: Artoolkitplus for pose tracking on mobile devices. Pro-
ceedings of 12th Computer Vision Winter Workshop (2007). URL http://www.icg.

tu-graz.ac.at/Members/daniel/ARToolKitPlusMobilePoseTracking

33. Wei Li Tianguang Zhang, K.K.: A vision-guided autonomous quadrotor in an air-ground
multi-robot system. In: Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pp. 2980–2985 (2011)

34. Wenzel, K., Masselli, A., Zell, A.: Automatic take off, tracking and landing of a miniature
uav on a moving carrier vehicle. Journal of Intelligent Robotic Systems 61, 221–238
(2011). URL http://dx.doi.org/10.1007/s10846-010-9473-0. 10.1007/s10846-010-
9473-0

35. Williams, B., Hudson, N., Tweddle, B., Brockers, R., Matthies, L.: Feature and pose
constrained visual aided inertial navigation for computationally constrained aerial ve-
hicles. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on,
pp. 431–438 (2011)


