How ArduPlane Works

Andrew Tridgell
ArduPlane development team
ArduPlane Sensors

• Most planes have these sensors:
 • 3-axis gyroscope
 • 3-axis accelerometer
 • 3-axis magnetometer
 • barometer: relative height
 • GPS: 3D position and 3-axis velocity
 • airspeed sensor: indicated airspeed

• Key questions:
 • what is the resolution and saturation point of each sensor?
 • what is the sample rate and lag of each sensor?
 • how is each sensor affected by noise?
 • what types of errors does each sensor have?
How Attitude is Estimated

To determine attitude we need to use "sensor fusion" to combine our sensors. A single sensor won't give us accurate attitude.

- in short term (1-2 seconds) the gyroscope is used
- the roll and pitch is corrected slowly (over 15 seconds or so) using the accelerometer
- the yaw is correctly slowly (over 15 seconds or so)

Why can't we just use the gyros to get attitude?

How many axes do you need for attitude?

Let's see a demo of attitude with just gyros!
Frames of reference

It is important to know the “frame of reference” of each sensor

- “earth frame” means relative to someone standing on the ground facing north
- “body frame” means relative to the aircraft body

Which sensors are in earth frame? Which ones are in body frame?

Let's see a demo of earth and body frame gyros
Controlling the flight surfaces

• How do we control the ailerons?
 • We want the ailerons to control our “roll” in earth frame
 • We want to induce roll when we need to turn

• Basics of a controller
 • Define a “process variable” (e.g. the roll)
 • Define a “setpoint” (e.g. the target roll)
 • Calculate error as difference between variable and setpoint
 • Try to move the surface to reduce the error
A 'P' controller

- Simplest controller is a 'P' controller
 - 'P' stands for 'proportional'
 - output = P * error
- For aileron 'output' is the servo input
 - ArduPlane defines servo inputs as angles from -45 degrees to 45 degrees
- How does the value affect flight?
 - If P is too large, roll will oscillate
 - if P is too small, plane will respond slowly

Let's see a demo of a P aileron controller
A 'P' controller

- Simplest controller is a 'P' controller
 - 'P' stands for 'proportional'
 - output = P * error
- For aileron 'output' is the servo input
 - ArduPlane defines servo inputs as angles from -45 degrees to 45 degrees
- How does the value affect flight?
 - If P is too large, roll will oscillate
 - if P is too small, plane will respond slowly

Let's see a demo of a P aileron controller
A PID controller

- A 'PID' controller adds 'I' and 'D' terms
 - The 'I' term copes with long term error
 - The 'D' term tries to prevent overshoot
 - APM adds an 'IMAX' term to prevent too much 'I' buildup

Let's see what adding 'I' does to the aileron
ArduPlane PID controllers

- ArduPlane uses lots of PID controllers
 - ServoRoll
 - ServoPitch
 - ServoRudder
 - NavRoll
 - NavPitchAirspeed
 - TotalEnergyThrottle
 - NavPitchAltitude
 - WheelSteer
 - AHRS DriftCorrection (PI only)

- What process variable and setpoint would be used for each of these?
Read the code!

- If you are interested in learning more, have a look at the source code
 - http://code.google.com/p/ardupilot-mega/