

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 1

 Phil's Pretty Good Software

 presents

 ===
 PGP
 ===

 Pretty Good Privacy
 RSA Public Key Cryptography for the Masses

 Version 1.0 - 5 Jun 91

 PGP User's Guide

 (c) Copyright 1990 Philip Zimmermann
 Software and Documentation Written by Philip Zimmermann

 For information on PGP licensing, distribution, copyrights, patents,
 trademarks, liability limitations, and export controls, see the "Legal
 Issues" section later in this document.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 2

 Contents
 ========

 Quick Overview
 How it Works
 Installing PGP
 How to Use PGP
 To See a Usage Summary
 Encrypting a Message
 Signing a Message
 Signing and then Encrypting
 Using Just Conventional Encryption
 Decrypting and Checking Signatures
 Managing Keys
 RSA Key Generation
 Adding a Key to Your Key Ring
 Removing a Key from Your Key Ring
 Viewing the Contents of Your Key Ring
 Signed Public Key Certificates
 Advanced Topics
 Separating Signatures from Messages
 Sending Ciphertext Through E-mail Channels: Uuencode Format
 Leaving No Traces of Plaintext on the Disk
 Environmental Variable for Path Name
 A Peek Under the Hood
 Random Numbers
 PGP's Conventional Encryption Algorithm
 Data Compression
 Vulnerabilities
 Compromised Pass Phrase and Secret Key
 Public Key Tampering
 "Not Quite Deleted" Files
 Viruses and Trojan Horses
 Physical Security Breach
 Tempest Attacks
 Traffic Analysis
 Cryptanalysis
 Trusting Snake Oil
 Why Do You Need PGP?
 PGP Quick Reference
 Legal Issues
 Trademarks, Copyrights, and Warranties
 Patent Rights on the Algorithms
 Licensing and Distribution
 Export Controls
 Acknowledgements
 Recommended Readings
 About the Author

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 3

 Quick Overview
 ==============

 Pretty Good(tm) Privacy (PGP), from Phil's Pretty Good Software, is a
 high security cryptographic software application for MSDOS. PGP
 allows people to exchange files or messages with privacy,
 authentication, and convenience. Privacy means only those intended
 to receive a message can read it. Authentication means messages that
 appear to be from a particular person can only have originated from
 that person. Convenience means that privacy and authentication are
 provided without the hassles of managing keys associated with
 conventional cryptographic software. No secure channels are needed
 to exchange keys between users, which makes PGP much easier to use.
 This is because PGP is based on an powerful new technology called
 "public key" cryptography.

 PGP combines the convenience of the Rivest-Shamir-Adleman (RSA)
 public key cryptosystem with the speed of fast conventional
 cryptographic algorithms, fast message digest algorithms, data
 compression, and sophisticated key management. And PGP performs the
 RSA functions faster than most other software implementations. PGP is
 RSA public key cryptography for the masses.

 PGP does not provide any built-in modem communications capability.
 You must use a separate product such as TELIX or PROCOMM for that.

 This document only explains how to use PGP without explaining the
 underlying technology details and data structures and cryptographic
 algorithms. It would help if you were already familiar with the
 concept of cryptography in general and RSA public key cryptography in
 particular. Nonetheless, here are a few introductory remarks about
 public key cryptography.

 How it Works

 In conventional cryptosystems, such as the Federal Data Encryption
 Standard (DES), a single key is used for both encryption and
 decryption. This means that keys must be initially transmitted
 via secure channels so that both parties can know them before
 encrypted messages can be sent over insecure channels. This may be
 inconvenient. If you have a secure channel for exchanging keys, then
 why do you need cryptography in the first place?

 In public key cryptosystems, everyone has two related complimentary
 keys, a publicly revealed key and a secret key. Each key unlocks the
 code that the other key makes. Knowing the public key does not help
 you deduce the corresponding secret key. The public key can be
 published and widely disseminated across a communications network.
 This protocol provides privacy without the need for the same kind of
 secure channels that a conventional cryptosystem requires.

 Anyone can use a recipient's public key to encrypt a message to that
 person, and that recipient uses her own corresponding secret key to

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 4

 decrypt that message. No one but the recipient can decrypt it,
 because no one else has access to that secret key. Not even the
 person who encrypted the message can decrypt it.

 Message authentication is also provided. The sender's own secret key
 can be used to encrypt a message, thereby "signing" it. This creates
 a digital signature of a message, which the recipient (or anyone
 else) can check by using the sender's public key to decrypt it. This
 proves that the sender was the true origin of the message, and that
 the message has not been subsequently altered by anyone else, because
 the sender alone possesses the secret key that made that signature.
 Forgery of a signed message is infeasible, and the sender cannot
 later disavow his signature.

 These two processes can be combined to provide both privacy and
 authentication by first signing a message with your own secret key,
 then encrypting the signed message with the recipient's public key.
 The recipient reverses these steps by first decrypting the message
 with her own secret key, then checking the enclosed signature with
 your public key. These steps are done automatically by the
 recipient's software.

 Because the RSA public key encryption algorithm is so slow,
 encryption is better accomplished by using a high-quality fast
 conventional encryption algorithm to encipher the message. This
 original unenciphered message is called "plaintext". In a process
 invisible to the user, a temporary random key, created just for this
 one "session", is used to conventionally encipher the plaintext
 file. Then the recipient's RSA public key is used to encipher this
 temporary random conventional key. This RSA-enciphered conventional
 "session" key is sent along with the enciphered text (called
 "ciphertext") to the recipient. The recipient uses her own RSA
 secret key to recover this temporary session key, and then uses that
 key to run the fast conventional algorithm to decipher the large
 ciphertext message.

 RSA keys are kept in "key certificates" that include the key owner's
 user ID (which is that person's name), a timestamp of when the key
 pair was generated, and the actual key material. A key file, or "key
 ring" contains one or more of these key certificates. Public key
 certificates contain the public key material, while secret key
 certificates contain the secret key material. Public key rings
 contain only public keys, and secret key rings contain just secret
 keys. Secret keys are cryptographically protected by their own
 password.

 The keys are also internally referenced by a "key ID", which is an
 "abbreviation" of the public key (the least significant 64 bits of
 the large public RSA key). When this key ID is displayed, only the
 lower 24 bits are shown for further brevity. While many keys may
 share the same user ID, for all practical purposes no two keys share
 the same key ID.

 PGP uses message digests to form signatures. A message digest is a
 128-bit cryptographically strong one-way hash function of the
 message. It is somewhat analogous to a "checksum" or CRC error

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 5

 checking code, in that it compactly "represents" the message and is
 used to detect changes in the message. Unlike a CRC, however, it is
 computationally infeasible for an attacker to devise a substitute
 message that would produce an identical message digest. The message
 digest gets encrypted by the RSA secret key to form a signature. The
 message digest algorithm used here is the MD4 Message Digest
 Algorithm, placed in the public domain by RSA Data Security, Inc.

 Documents are signed by prefixing them with signature certificates,
 which contain the key ID of the key that was used to sign it, an
 RSA-signed message digest of the document, and a timestamp of when the
 signature was made. The key ID is used by the receiver to look up
 the sender's public key to check the signature. The receiver's
 software automatically looks up the sender's public key and user ID in
 the receiver's public key ring.

 Encrypted files are prefixed by the key ID of the public key used to
 encrypt them. The receiver uses this key ID message prefix to look
 up the secret key needed to decrypt the message. The receiver's
 software automatically looks up the necessary secret decryption key
 in the receiver's secret key ring.

 These two types of key rings are the principal method of storing and
 managing public and secret keys. Rather than keep individual keys in
 separate key files, they are collected in key rings to facilitate the
 automatic lookup of keys either by key ID or by user ID. Each user
 keeps his own pair of key rings. An individual public key is
 temporarily kept in a separate file long enough to send to your
 friend who will then add it to her key ring. An individual key file
 is no different from a key ring that contains only one key.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 6

 Installing PGP
 ==============

 To install PGP on your MSDOS system, you just have to copy it into a
 suitable directory on your hard disk (like C:\PGP), and use the
 shareware PKUNZIP utility to decompress it from the compressed
 archive release file. For best results, you will also modify your
 AUTOEXEC.BAT file, as described elsewhere in this manual, but you can
 do that later, after you've played with PGP a bit and read more of
 this manual.

 For further details on installation, see the separate PGP
 Installation Guide, in the MSDOS file SETUP.DOC included with this
 release. It fully describes how to set up the PGP directory and how
 to use PKUNZIP to install it, and also describes how to detect virus
 infections of PGP releases.

 How to Use PGP
 ==============

 To See a Usage Summary

 To see a quick command usage summary for PGP, just type:

 pgp

 This will display a usage summary for the most essential commands
 only. The commands described in the Advanced Topics section are not
 displayed.

 Encrypting a Message

 To encrypt a plaintext file with the recipent's public key, type:

 pgp -e textfile her_userid

 This command produces a ciphertext file called textfile.ctx. A
 specific example is:

 pgp -e letter.txt Alice_S

 This will search your public key ring file "keyring.pub" for any
 public key certificates that contain the string "Alice S" anywhere in
 the user ID field. The search is not case-sensitive. Note that
 underlines get changed to spaces. That's because you can't use real
 spaces in the user ID on the command line. If it finds a matching
 public key, it uses it to encrypt the plaintext file "letter.txt",
 producing a ciphertext file called "letter.ctx".

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 7

 PGP will attempt to compress the plaintext before encrypting it,
 thereby greatly enhancing resistance to cryptanalysis. Thus the
 ciphertext file will likely be smaller than the plaintext file.

 Signing a Message

 To sign a plaintext file with your secret key, type:

 pgp -s textfile your_userid

 This command produces a signed file called textfile.ctx. A specific
 example is:

 pgp -s letter.txt Bob

 This will search your secret key ring file "keyring.sec" for any
 secret key certificates that contain the string "Bob" anywhere in the
 user ID field. The search is not case-sensitive. Note that
 underlines get changed to spaces. If it finds a matching secret key,
 it uses it to sign the plaintext file "letter.txt", producing a
 signature file called "letter.ctx".

 Signing and then Encrypting

 To sign a plaintext file with your secret key, and then encrypt it
 with the recipent's public key:

 pgp -es textfile her_userid your_userid

 This example produces a nested ciphertext file called textfile.ctx.
 Your secret key to create the signature is automatically looked up in
 your secret key ring via your_userid. Her public encryption key is
 automatically looked up in your public keyring via her_userid. If
 you leave these user ID fields off the command line, you will be
 prompted for them.

 Note that PGP will attempt to compress the plaintext before
 encrypting it.

 Using Just Conventional Encryption

 Sometimes you just need to encrypt a file the old-fashioned way, with
 conventional single-key cryptography. This approach is useful for
 protecting archive files that will be stored but will not be sent to
 anyone else. Since the same person that encrypted the file will also
 decrypt the file, public key cryptography is not really necessary.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 8

 To encrypt a plaintext file with just conventional cryptography,
 type:

 pgp -c textfile

 This example encrypts the plaintext file called textfile, producing a
 ciphertext file called textfile.ctx, without using public key
 cryptography, key rings, user IDs, or any of that stuff. It prompts
 you for a pass phrase to use as a conventional key to encipher the
 file. Note that PGP will attempt to compress the plaintext before
 encrypting it.

 Decrypting and Checking Signatures

 To decrypt an encrypted file, or to check the signature integrity of a
 signed file:

 pgp ciphertextfile [plaintextfile]

 Note that [brackets] denote an optional field, so don't actually type
 real brackets.

 The ciphertext file name is assumed to have a default extension of
 ".ctx". The optional plaintext file name specifies where to put
 processed plaintext output. If no name is specified, the ciphertext
 filename is used, with no extension. If a signature is nested inside
 of an encrypted file, it is automatically decrypted and the signature
 integrity is checked. The full user ID of the signer is displayed.

 Note that the "unwrapping" of the ciphertext file is completely
 automatic, regardless of whether the ciphertext file is just signed,
 just encrypted, or both. PGP uses the key ID prefix in the
 ciphertext file to automatically find the appropriate secret
 decryption key on your secret key ring. If there is a nested
 signature, PGP will then use the key ID prefix in the nested
 signature to automatically find the appropriate public key on your
 public key ring to check the signature. If all the right keys are
 already present on your key rings, no user intervention is required,
 except that you will be prompted for your password for your secret
 key if necessary. If the ciphertext file was conventionally
 encrypted without public key cryptography, PGP will recognize this
 and will prompt you for the pass phrase to decrypt it.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 9

 Managing Keys
 =============

 RSA Key Generation

 To generate your own unique public/secret key pair of a specified
 size, type:

 pgp -k

 The software will prompt you for a filename for the pair of keys,
 which will be written to filename.pub and filename.sec. It will also
 give you a menu of recommended key sizes (casual grade, commercial
 grade, or military grade) and prompt you for what size key you want,
 up to around a thousand bits.

 It also asks for a user ID, which means your name. It's a good idea
 to use your full name as your user ID, because then there is less
 risk of other people using the wrong public key to encrypt messages
 to you. Spaces and punctuation are allowed in the user ID. Also, if
 you put your last name first it would facilitate producing lists of
 public keys sorted by user ID. e.g.: "Smith, Robert M."

 It will also ask for a "pass phrase" to protect your RSA secret key
 in case it falls into the wrong hands. Nobody can use your secret key
 file without this pass phrase. The pass phrase is like a password,
 except that it can be a whole phrase or sentence with many words,
 spaces, punctuation, or anything else you want in it. Don't lose
 this pass phrase, there's no way to recover it if you do lose it.
 This pass phrase will be needed later every time you use your RSA
 secret key. The pass phrase is case-sensitive, and should not be too
 short or easy to guess. It is never displayed on the screen. Don't
 leave it written down anywhere where someone else can see it. If you
 don't want a pass phrase (ill-advised), just press return (or enter)
 at the pass phrase prompt.

 The RSA key pair is derived from large truly random numbers derived
 from measuring the intervals between your keystrokes with a fast
 timer.

 Note that RSA key generation is a VERY lengthy process. It may take
 a few seconds for a small key on a fast processor, or many minutes
 for a large key, or even hours for a large key on an old IBM PC/XT.

 The public keyfile can be sent to your friends for inclusion in their
 public key rings. Naturally, you keep your secret key file to
 yourself, and you should include it on your secret key ring. Each
 secret key on a key ring is individually protected with its own pass
 phrase.

 Never give you secret key to anyone else. For the same reason, don't
 make keys for your friends. Everyone should make their own key pair.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 10

 Adding a Key to Your Key Ring

 To add a public or secret key file's contents to your public or
 secret key ring (note that [brackets] denote an optional field):

 pgp -a keyfile [keyring]

 The keyfile extension defaults to ".pub", implying a public key. The
 optional keyring file name is assumed to be literally "keyring.pub"
 or "keyring.sec", depending on whether the keyfile name had a ".pub"
 or ".sec" extension. You may specify a different key ring file
 name. The default key ring extension is ".pub".

 If the key is already on your keyring, PGP will not add it again.
 All of the keys in the keyfile will be added to the keyring. Note
 that the keyfile should only contain one key, because PGP only checks
 the first key in the keyfile for duplicates on the keyring.

 Removing a Key from Your Key Ring

 To remove a key from your public key ring:

 pgp -r userid [keyring]

 This will search for the specified user ID in your keyring, and will
 remove it if it finds a match. Remember that any fragment of the
 user ID will suffice for a match. The optional keyring file name is
 assumed to be literally "keyring.pub". It can be omitted, or you can
 specify "keyring.sec" if you want to remove a secret key. You may
 specify a different key ring file name. The default key ring
 extension is ".pub".

 Viewing the Contents of Your Key Ring

 To view the contents of your public key ring:

 pgp -v [userid] [keyring]

 This will list any keys in the key ring that match the specified user
 ID substring. If you omit the user ID, all of the keys in the key
 ring will be listed. The optional keyring file name is assumed to be
 literally "keyring.pub". It can be omitted, or you can specify
 "keyring.sec" if you want to list secret keys. If you want to
 specify a different key ring file name, you can. The default key
 ring extension is ".pub".

 If you want to specify a particular key ring file name, but want to
 see all the keys in it, try this alternative approach:

 pgp keyfile.sec

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 11

 Using this approach requires that the key ring name be fully
 qualified with the extension of ".pub" or ".sec", because if you
 don't specify a file extension, ".ctx" is assumed.

 Signed Public Key Certificates

 In a public key cryptosystem, you don't have to protect public keys
 from exposure. In fact, it's better if they are widely disseminated.
 But it is important to protect public keys from tampering, to make
 sure that a public key really belongs to whom it appears to belong.
 Let's first look at a potential disaster, then at how to safely avoid
 it with PGP.

 Suppose you wanted to send a private message to Alice. You download
 Alice's public key certificate from an electronic bulletin board
 system (BBS). You encrypt your letter to Alice with this public key
 and send it to her through the BBS's E-mail facility.

 Unfortunately, unbeknownst to you or Alice, another user named
 Charles has infiltrated the BBS and generated a public key of his own
 with Alice's user ID attached to it. He covertly substitutes his
 bogus key in place of Alice's real public key. You unwittingly use
 this bogus key belonging to Charles instead of Alice's public key.
 All looks normal because this bogus key has Alice's user ID. Now
 Charles can decipher the message intended for Alice because he has
 the matching secret key. He may even re-encrypt the deciphered
 message with Alice's real public key and send it on to her so that no
 one suspects any wrongdoing. Furthermore, he can even make
 apparantly good signatures from Alice with this secret key because
 everyone will use the bogus public key to check Alice's signatures.

 The only way to prevent this disaster is to prevent anyone from
 tampering with public keys. If you got Alice's public key directly
 from Alice, this is no problem. But that may be difficult if Alice
 is a thousand miles away, or is currently unreachable. Perhaps you
 could get Alice's public key from a mutual trusted friend David who
 knows he has a good copy of Alice's public key. David could sign
 Alice's public key, vouching for the integrity of Alice's public
 key. David would create this signature in the usual way, with
 his own secret key.

 This would create a signed public key certificate, and would show
 that Alice's key had not been tampered with. This requires you have a
 known good copy of David's public key to check his signature. Perhaps
 David could provide Alice with a signed copy of your public key also.
 David is thus serving as an "introducer" between you and Alice.

 This signed public key certificate for Alice could be uploaded by
 David or Alice to the BBS, and you could download it later. You
 could then check the signature via David's public key and thus be
 assured that this is really Alice's public key. No imposter can fool
 you into accepting his own bogus key as Alice's because no one else

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 12

 can forge signatures made by David.

 A widely trusted person could even specialize in providing this
 service of "introducing" users to each other by providing signatures
 for their public key certificates. This trusted person could be
 regarded as a "key server", or as a "Certifying Authority". Any
 public key certificates bearing the key server's signature could be
 trusted as truly belonging to whom they appear to belong to. All
 users who wanted to participate would need a known good copy of just
 the key server's public key, so that the key server's signatures
 could be verified.

 A trusted centralized key server or Certifying Authority is
 especially appropriate for large impersonal centrally-controlled
 corporate or government institutions. Some institutional
 environments use hierarchies of Certifying Authorities. For more
 decentralized grassroots "guerilla style" environments, allowing all
 users to act as a trusted introducers for their friends would probably
 work better than a centralized key server. PGP tends to emphasize
 this decentralized non-institutional approach. It better reflects
 the natural way humans interact on a personal social level, and
 allows people to better choose who they can trust for key management.

 You should add a new public key to your key ring only after you are
 sure that it is a good public key that has not been tampered with and
 actually belongs to the person it claims to. You can be sure of this
 if you got this public key certificate directly from its owner, or if
 it bears the signature of someone else that you trust, from whom you
 already have a good public key. The user ID should have the full
 name of the key's owner, not just her first name.

 If you are asked to sign someone else's public key certificate, make
 certain that it really belongs to that person named in the user ID of
 that public key certificate. This is because your signature on her
 public key certificate is a promise by you that this public key
 really belongs to her. Other people who trust you will accept her
 public key because it bears your signature. Bear in mind that your
 signature on a public key certificate does not vouch for the
 integrity of that person, but only vouches for the integrity (the
 ownership) of that person's public key.

 You may want to keep your own public key around with signatures from
 a variety of "introducers" in the hopes that most people will trust
 at least one of the introducers to vouch for your own public key's
 integrity.

 Make sure no one else can tamper with your own public key ring.
 Checking a new signed public key certificate must ultimately depend
 on the integrity of the public keys that are already on your own
 public key ring. Keep a trusted backup copy of your public key ring
 on write-protected media, and check it once in a while against the
 working copy. Back up your secret key ring, too.

 Protect your own secret key and your pass phrase carefully. Really,
 really carefully. If your secret key is ever compromised, you'd
 better get the word out quickly to all interested parties (good luck)

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 13

 before someone else uses it to make signatures in your name. For
 example, they could use it to sign bogus public key certificates,
 which could create problems for many people, especially if your
 signature is widely trusted.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 14

 Advanced Topics
 ===============

 Separating Signatures from Messages

 Normally, signature certificates are prepended (attached) to the text
 they sign. This makes it convenient in simple cases to check
 signatures. It is desirable in some circumstances to have signature
 certificates stored separately from the messages they sign. It is
 possible to generate signature certificates that are detached from
 the text they sign. To do this, combine the 'b' (break) option with
 the 's' (sign) option. For example:

 pgp -sb letter.txt your_userid

 This example produces an isolated signature certificate in a file
 called "letter.ctx". The contents of letter.txt are not appended to
 the signature certificate.

 After creating the signature certificate file (letter.ctx in the
 above example), send it along with the original text file to the
 recipient. The recipient must have both files to check the signature
 integrity. When the recipient attempts to process the signature
 file, PGP will notice that there is no text in the same file with the
 signature and will prompt the user for the filename of the text.
 Only then will PGP be able to properly check the signature
 integrity. If the recipient knows in advance that the signature is
 detached from the text file, she can specify both filenames on the
 command line:

 pgp letter.ctx letter.txt
 or: pgp letter letter.txt

 PGP will not have to prompt for the text file name in this case.

 A detached signature certificate is useful if you want to keep the
 signature certificate in a separate certificate log. A detached
 signature of an executable program is also useful for detecting a
 subsequent virus infection. It is also useful if more than one party
 must sign a document such as a legal contract, without nesting
 signatures. Each person's signature is independent.

 Sending Ciphertext Through E-mail Channels: Uuencode Format

 For all you Unix fans out there: PGP supports uuencode format for
 ciphertext messages. This special format represents binary data by
 using only printable ASCII characters, so it is useful for
 transmitting binary encrypted data through 7-bit channels or for
 sending binary encrypted data as normal E-mail text.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 15

 Uuencode format converts the plaintext by expanding groups of 3
 binary 8-bit bytes into 4 printable ASCII characters, so the file
 will grow by about 35%. But this expansion isn't so bad when you
 consider that the file probably was compressed more than that by PGP
 before it was encrypted.

 To produce a ciphertext file in uuencode format, just add the "u"
 option when encrypting or signing a message, like so:

 pgp -esu message.txt her_userid your_userid

 This example produces a ciphertext file called "message.ctx" that
 contains data in Unix uuencode format. This file can be easily
 uploaded into a text editor through 7-bit channels for transmission
 as normal E-mail on Internet or any other E-mail network.

 Decrypting the uuencode-formatted message is no different than a
 normal decrypt. For example:

 pgp message

 PGP will automatically recognize that the file "message.ctx" is in
 uuencode format and will uudecode it before processing as it normally
 does. The output file will be in normal plaintext form, just as it
 was in the original file "message.txt".

 During decryption, after PGP uudecodes the ".ctx" file, it leaves it
 in binary ciphertext form. In other words, the ".ctx" file is no
 longer in uuencode format when PGP is done processing it. PGP
 produces a decrypted plaintext file, and also produces as a by-product
 a uudecoded ciphertext file in binary form.

 If you want to send a public key or key ring to someone else in
 uuencode format, sign it with the "-su" options to create a ".ctx"
 file with the signed key in uuencode format.

 Leaving No Traces of Plaintext on the Disk
 --

 After PGP makes a ciphertext file for you, you can have PGP
 automatically overwrite the plaintext file and delete it, leaving no
 trace of plaintext on the disk so that no one can recover it later
 using a disk block scanning utility. This is useful if the plaintext
 file contains sensitive information that you don't want to keep
 around.

 To wipe out the plaintext file after producing the ciphertext file,
 just add the "w" (wipe) option when encrypting or signing a message,
 like so:

 pgp -esw message.txt her_userid your_userid

 This example will create the ciphertext file "message.ctx", and the
 plaintext file "message.txt" will be destroyed beyond recovery.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 16

 Obviously, you should be careful with this option. Also note that
 this will not wipe out any fragments of plaintext that your word
 processor might have created on the disk while you were editing the
 message before running PGP. Most word processors create backup
 files, scratch files, or both.

 Environmental Variable for Path Name

 The standard key ring files "keyring.pub" and "keyring.sec" can be kept
 in any directory, by setting the environmental variable "PGPPATH" to
 the desired pathname. For example, the MSDOS shell command:

 SET PGPPATH=C:\PGP

 will make PGP assume the key ring filenames "C:\PGP\keyring.pub" and
 "C:\PGP\keyring.sec". Assuming, of course, this directory exists.
 Use your favorite text editor to modify your MSDOS AUTOEXEC.BAT file
 to automatically set up this variable whenever you start up your
 system. If PGPPATH remains undefined, these special files are
 assumed to be in the current directory.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 17

 A Peek Under the Hood
 =====================

 Let's take a look at a few internal features of PGP.

 Random Numbers

 PGP uses a cryptographically strong pseudorandom number generator for
 creating temporary conventional session keys. The seed file for this
 is called "randseed.pgp". It too can be kept in whatever directory
 is indicated by the PGPPATH environmental variable. If this random
 seed file does not exist, it will be automatically created and seeded
 with truly random numbers derived from timing your keystroke
 latencies.

 This generator reseeds the disk file each time it is used with new
 key material partially derived with the time of day and other truly
 random sources. It uses the conventional encryption algorithm as an
 engine for the random number generator. The seed file contains both
 random seed material and random key material to key the conventional
 encryption engine for the random generator.

 If you are a security fanatic and distrust any algorithmically
 derived random number source however strong, you can defeat this
 feature by creating an empty file named "randseed.pgp". This file
 must be empty or nearly empty to turn off this pseudorandom
 generator. In that case, every encryption session key will require a
 bothersome request to the user to type some text in at the keyboard
 to measure the keystroke intervals with a high speed timer. It would
 be more convenient and not that unsafe to use the strong pseudorandom
 generator.

 PGP's Conventional Encryption Algorithm

 PGP does not use the DES as its conventional single-key algorithm to
 encrypt messages. Instead it uses a custom conventional single-key
 block encryption algorithm. It "bootstraps" into this faster
 algorithm by using RSA to encipher the conventional session key.

 For the cryptographically curious, PGP's conventional block cipher
 has a 256-byte block size for the plaintext and the ciphertext. It
 also uses a key size of up to 256 bytes. Permutation and substitution
 are used on all the bits throughout the block in each round, rapidly
 building intersymbol dependance between the ciphertext and both the
 plaintext and the key. It can be configured to run from 1 to 8
 rounds. It compares well with software implementations of the DES in
 speed. Like the DES, it can be used in cipher feedback (CFB) and
 cipher block chaining (CBC) modes. PGP uses it in CFB mode.

 PGP's conventional encryption algorithm is based in large part on
 cryptographer Charles Merritt's algorithms. Merritt's algorithm does

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 18

 have something of a track record; derivatives of it have been used
 for secure U.S. military communications. Merritt's original designs
 were refined by Zhahai Stewart and myself to improve security and to
 improve performance in a portable C implementation. The algorithm
 has not yet (in 1991) been through a formal security review and has
 had only limited peer review. It has been carefully scrutinized for
 weaknesses. A full discussion of the architecture is beyond the
 scope of this preliminary draft of this document. Interested parties
 can get design details from me or from the published source code.

 Data Compression

 PGP normally compresses the plaintext before encrypting it. It's too
 late to compress it after it has been encrypted; encrypted data is
 incompressible. Data compression saves modem transmission time and
 disk space and more importantly strengthens cryptographic security.
 Most cryptanalysis techniques exploit redundancies found in the
 plaintext to crack the cipher. Data compression reduces this
 redundancy in the plaintext, thereby greatly enhancing resistance to
 cryptanalysis. It seems to take longer to compress the plaintext
 than to encrypt it, but from a security point of view it seems worth
 the extra time, at least in my cautious opinion.

 Files that are too short to compress or just don't compress well are
 not compressed by PGP.

 If you prefer, you can use PKZIP to compress the plaintext before
 encrypting it. PKZIP is a widely-available and effective MSDOS
 shareware compression utility from PKWare, Inc (9025 N Deerwood Dr,
 Brown Deer, WI 53223). Unlike PGP's built-in compression algorithm,
 PKZIP has the nice feature of compressing multiple files into a
 single compressed file, which is reconstituted again into separate
 files when decompressed. PKZIP also compresses faster than the
 internal compression algorithm used in PGP. PGP will not try to
 compress a plaintext file that has already been compressed by PKZIP.
 After decrypting, the recipient can decompress the plaintext with
 PKUNZIP. If the decrypted plaintext is a PKZIP compressed file, PGP
 will automatically recognize this and will advise the recipient that
 the decrypted plaintext appears to be a PKZIP file.

 For the technically curious readers, PGP uses the public domain LZHuf
 compression routines written in Japan by Haruyasu Yoshizaki, based on
 the original LZSS compression routines by Haruhiko Okumura. The
 adaptive Huffman algorithm was added by Yoshizaki to increase speed
 and compression, and he used the LZHuf routines to develop the LHarc
 archiver. Allan Hoeltje added a run-length encoding layer for better
 speed. This compression software was selected for PGP because of its
 public domain portable C source code availability, and because it has
 a good compression ratio.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 19

 Vulnerabilities
 ===============

 No data security system is inpenetrable. PGP can be circumvented in
 a variety of ways. In any data security system, you have to ask
 yourself if the information you are trying to protect is valuable
 enough to your attacker that the cost of the attack is less than the
 value of the information. This should lead you to protecting
 yourself from the cheapest attacks, while not worrying about the more
 expensive attacks. Some of the discussion that follows may seem
 unduly paranoid, but such an attitude is appropriate for a reasonable
 discussion of vulnerability issues.

 Compromised Pass Phrase and Secret Key

 Probably the simplest attack is if you leave your pass phrase
 for your secret key written down somewhere. If someone gets it and
 gets your secret key file, they can read your messages and make
 signatures in your name. Also, don't use obvious passwords that can
 be easily guessed, such as the names of your kids or spouse.

 Public Key Tampering

 Another vulnerability exists if public keys are tampered with. This
 attack and appropriate hygienic countermeasures are detailed in this
 document in the section "Signed Public Key Certificates". When you
 use someone's public key, make certain it has not been tampered with.
 Also make sure no one else can tamper with your own public key ring.

 "Not Quite Deleted" Files

 Another potential security problem is caused by how most operating
 systems delete files. When you encrypt a file and then delete the
 original plaintext file, the operating system doesn't actually
 physically erase the data. It merely marks those disk blocks as
 deleted, allowing the space to be reused later. It's sort of like
 discarding sensitive paper documents in the paper recycling bin
 instead of the paper shredder. The disk blocks still contain the
 original sensitive data you wanted to erase, and will probably
 eventually be overwritten by new data at some point in the future.
 If an attacker reads these deleted disk blocks soon after they have
 been deallocated, he could recover your plaintext.

 In fact this could even happen accidentally, if for some reason
 something went wrong with the disk and some files were accidentally
 deleted or corrupted. A disk recovery program may be run to recover
 the damaged files, but this often means some previously deleted files
 are resurrected along with everything else. Your confidential files
 that you thought were gone forever could then reappear and be

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 20

 inspected by whomever is attempting to recover your damaged disk.
 Even while you are creating the original message with a word
 processor or text editor, the editor may be creating multiple
 temporary copies of your text on the disk, just because of its
 internal workings. These temporary copies of your text are deleted
 by the word processor when it's done, but these sensitive fragments
 are still on your disk somewhere. The only way to prevent all this
 from happening is to somehow cause the sensitive deleted plaintext
 files to be overwritten. There are disk utilities available that can
 overwrite all of the unused blocks on a disk. For example, I think
 the Norton Utilities for MSDOS can do this.

 Viruses and Trojan Horses

 Another attack could involve a specially-tailored hostile computer
 virus or worm that might infect PGP or your operating system. This
 hypothetical virus could be designed to capture your pass phrase or
 secret key or deciphered messages, and covertly write the captured
 information to a file or send it through a network to the virus's
 owner. Or it might alter PGP's behavior so that signatures are not
 properly checked. This attack is cheaper than cryptanalytic attacks.

 Defending against this falls under the catagory of defending against
 viral infection generally. There are some moderately capable
 anti-viral products commercially available, and there are hygienic
 procedures to follow that can greatly reduce the chances of viral
 infection. A complete treatment of anti-viral and anti-worm
 countermeasures is beyond the scope of this document. PGP has no
 defenses against viruses, and assumes your own personal computer is a
 trustworthy execution environment. If such a virus or worm actually
 appeared, hopefully word would soon get around warning everyone.

 Another similar attack involves someone creating a clever imitation
 of PGP that behaves like PGP in most respects, but doesn't work the
 way it's supposed to. For example, it might be deliberately crippled
 to not check signatures properly, allowing bogus key certificates to
 be accepted. This "Trojan horse" version of PGP is not hard for an
 attacker to create, because PGP source code is widely available, so
 anyone could modify the source code and produce a lobotomized zombie
 imitation PGP that looks real but does the bidding of its diabolical
 master. This Trojan horse version of PGP could then be widely
 circulated, claiming to be from me. How insidious.

 To help protect against viral infection of PGP or later Trojan horse
 copies of PGP, I included a signature certificate file called PGP.CTX
 in the MSDOS release of PGP. It bears my signature for the MSDOS
 executable file PGP.EXE, to assure that PGP.EXE has not been
 subsequently infected with a virus. To run this self-test of PGP
 to check its own integrity with my signature certificate, type:

 pgp pgp.ctx pgp.exe

 PGP should report a good signature from Philip R. Zimmermann on the
 PGP.EXE executable program file, which, in theory, indicates your copy

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 21

 of PGP software has no virus infection and has not been tampered
 with. This will not help at all if your operating system is infected,
 nor will it detect if your original copy of PGP.EXE has been
 maliciously altered in such a way as to compromise its own ability to
 check signatures.

 You should try to get at least your first copy of PGP from a trusted
 reliable source, so that you can use it to check my signature on
 subsequent releases of PGP. You can keep the older trusted version
 of PGP around on a write-protected backup floppy, along with a
 trusted copy of my public key to check signatures on future PGP
 releases. You'd also have to somehow make sure that my public key
 (also included in the PGP release) actually belongs to me, so it can
 be trusted to verify my signature. Make sure that you use this
 trusted copy of my public key, and not rely on a public key included
 with a newer release of PGP that may be suspect.

 Just for good measure, I also included a signature certificate for
 this document, called PGPGUIDE.CTX. I also included a signature
 certificate for the all PGP source files in the source release.

 Physical Security Breach

 A physical security breach may allow someone to physically acquire
 your plaintext files or printed messages. A determined opponent
 might accomplish this through burglery, trash-picking, unreasonable
 search and seizure, or coercion or infiltration of your staff. Some
 of these attacks may be especially feasible against grassroots
 political organizations that depend on a largely volunteer staff. It
 has been widely reported in the press that the FBI's COINTELPRO
 program used burglery, infiltration, and illegal bugging against
 antiwar and civil rights groups. And look what happened at the
 Watergate Hotel. Don't be lulled into a false sense of security just
 because you have a cryptographic tool. Cryptographic techniques
 protect data only while it's encrypted-- direct physical security
 violations can still compromise plaintext data or written or spoken
 information. This kind of attack is cheaper than cryptanalytic
 attacks.

 Tempest Attacks

 Another kind of attack that has been used by well-equipped opponents
 involves the remote detection of the electromagnetic signals from
 your computer. This expensive and somewhat labor-intensive attack is
 probably still cheaper than direct cryptanalytic attacks. An
 appropriately instrumented van can park near your office and remotely
 pick up all of your keystrokes and messages displayed on your
 computer video screen. This would compromise all of your passwords,
 messages, etc. This attack can be thwarted by properly shielding all
 of your computer equipment and network cabling so that it does not
 emit these signals. This shielding technology is known as "Tempest",
 and is used by some Government agencies and defense contractors.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 22

 There are hardware vendors who supply Tempest shielding commercially,
 although it may be subject to some kind of Government licensing.

 Traffic Analysis

 Even if the attacker cannot read the contents of your encrypted
 messages, he may be able to infer at least some useful information by
 observing where the messages come from and where they are going, the
 size of the messages, and the time of day the messages are sent.
 This is analogous to the attacker looking at your long distance phone
 bill to see who you called and when and for how long, even though the
 actual content of your calls is unknown to the attacker. This is
 called traffic analysis. PGP alone does not protect against traffic
 analysis. Solving this problem would require specialized
 communication protocols designed to reduce exposure to traffic
 analysis in your communication environment, possibly with some
 cryptographic assistance.

 Cryptanalysis

 An expensive and formidible cryptanalytic attack could possibly be
 mounted by someone with vast supercomputer resources, such as a
 Government intelligence agency. They might crack your RSA key by
 using some new secret factoring breakthrough. Perhaps so, but it is
 noteworthy that the US Government trusts the RSA algorithm enough in
 some cases to use it to protect its own nuclear weapons, according to
 Ron Rivest.

 Perhaps the Government has some classified methods of cracking the
 conventional encryption algorithm used in PGP. This is every
 cryptographer's worst nightmare. There can be no absolute security
 guarantees in practical cryptographic implementations. Still, some
 optimism seems justified. Widely accepted cryptographic design
 principles were followed in the design of this algorithm. Since the
 source code and design are publicly available, other cryptographers
 will have a chance to review it. Even if this algorithm has some
 subtle unknown weaknesses, the data compression of the plaintext
 before encryption should greatly reduce those weaknesses.

 If your situation justifies worrying about very formidible attacks of
 this caliber, then perhaps you should contact a data security
 consultant for some customized data security approaches tailored to
 your special needs. Boulder Software Engineering, whose address and
 phone are given at the end of this document, can provide such
 services.

 Without good cryptographic protection of your data communications, it
 may have been practically effortless and perhaps even routine for an
 opponent to intercept your messages, especially those sent through a
 modem or E-mail system. If you use PGP and follow reasonable

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 23

 precautions, the attacker will have to expend far more effort and
 expense to violate your privacy.

 If you protect yourself against the simplest attacks, and you feel
 confident that your privacy is not going to be violated by a
 determined and highly resourceful attacker, then you'll probably be
 safe using PGP. PGP gives you Pretty Good Privacy.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 24

 Trusting Snake Oil
 ==================

 When examining a cryptographic software package, the question always
 remains, why should you trust this product? Even if you examined the
 source code yourself, not everyone has the cryptographic experience
 to judge the security. Even if you are an experienced cryptographer,
 subtle weaknesses in the algorithms could still elude you.

 When I was in college in the early seventies, I devised what I
 believed was a brilliant encryption scheme. A simple pseudorandom
 number stream was added to the plaintext stream to create
 ciphertext. This would seemingly thwart any frequency analysis of
 the ciphertext, and would be uncrackable even to the most resourceful
 Government intelligence agencies. I felt so smug about my
 achievement. So cock-sure.

 Years later, I discovered this same scheme in several introductory
 cryptography texts and tutorial papers. How nice. Other
 cryptographers had thought of the same scheme. Unfortunately, the
 scheme was presented as a simple homework assignment on how to use
 elementary cryptanalytic techniques to trivially crack it. So much
 for my brilliant scheme.

 From this humbling experience I learned how easy it is to fall into a
 false sense of security when devising an encryption algorithm. Many
 mainstream software engineers have developed equally naive encryption
 schemes (often even the very same encryption scheme), and some of
 them have been incorporated into commercial encryption software
 packages and sold for good money to thousands of unsuspecting users.

 This is like selling automotive seat belts that look good and feel
 good, but snap open in even the slowest crash test. Depending on
 them may be worse than not wearing seat belts at all. No one
 suspects they are bad until a real crash. Depending on weak
 cryptographic software may cause you to unknowingly place sensitive
 information at risk. You might not otherwise have done so if you had
 no cryptographic software at all. Perhaps you may never even
 discover your data has been compromised.

 Sometimes commercial packages use the Federal Data Encryption
 Standard (DES), a good conventional algorithm recommended by the
 Government for commercial use (but not for classified information,
 oddly enough-- Hmmm). There are several "modes of operation" the
 DES can use, some of them better than others. The Government
 specifically recommends not using the weakest simplest mode for
 messages, the Electronic Codebook (ECB) mode. But they do recommend
 the stronger and more complex Cipher Feedback (CFB) or Cipher Block
 Chaining (CBC) modes.

 Unfortunately, most of the commercial encryption packages I've looked
 at use ECB mode. When I've talked to the authors of a number of
 these implementations, they say they've never heard of CBC or CFB
 modes, and didn't know anything about the weaknesses of ECB mode.
 The very fact that they haven't even learned enough cryptography to

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 25

 know these elementary concepts is not reassuring. These same
 software packages often include a second faster encryption algorithm
 that can be used instead of the slower DES. The author of the
 package often thinks his proprietary faster algorithm is as secure as
 the DES, but after questioning him I usually discover that it's just
 a variation of my own brilliant scheme from college days. Or maybe
 he won't even reveal how his proprietary encryption scheme works, but
 assures me it's a brilliant scheme and I should trust it. I'm sure
 he believes that his algorithm is brilliant, but how can I know that
 without seeing it?

 In all fairness I must point out that these products do not come from
 companies that specialize in cryptographic technology.

 In some ways, cryptography is like pharmaceuticals. Its integrity
 may be absolutely crucial. Bad penicillin looks the same as good
 penicillin. You can tell if your spreadsheet software is wrong, but
 how do you tell if your cryptography package is weak? The ciphertext
 produced by a weak encryption algorithm looks as good as ciphertext
 produced by a strong encryption algorithm. There's a lot of snake
 oil out there. A lot of quack cures. Unlike the patent medicine
 hucksters of old, these software implementors usually don't even know
 their stuff is snake oil. They usually haven't even read any of the
 academic literature in cryptography. But they think they can write
 good cryptographic software. And why not? After all, it seems
 intuitively easy to do so. And their software seems to work okay.

 The Government has peddled snake oil too. After World War II, the US
 sold German Enigma ciphering machines to third world governments.
 But they didn't tell them that the Allies cracked the Enigma code
 during the war, a fact that remained classified for many years. Even
 today many Unix systems worldwide use the Enigma cipher for file
 encryption, in part because the Government has created legal
 obstacles against using better algorithms. They even tried to
 prevent the initial publication of the RSA algorithm in 1977. And
 they have squashed essentially all commercial efforts to develop
 effective secure telephones for the general public.

 The principle job of the US Government's National Security Agency
 (NSA) is to gather intelligence, principally by covertly tapping into
 people's private communications (see James Bamford's book, "The
 Puzzle Palace"). They have amassed considerable skill and resources
 for cracking codes. When people can't get good cryptography to
 protect themselves, it makes NSA's job much easier. NSA also has the
 responsibility of approving and recommending encryption algorithms.
 Some critics charge that this is a conflict of interest, like putting
 the fox in charge of guarding the henhouse. NSA has been pushing a
 new encryption algorithm that they designed, and they won't tell
 anybody how it works because that's classified. They want others to
 trust it and use it. But any cryptographer can tell you that a
 well-designed encryption algorithm does not have to be classified to
 remain secure. Only the keys should need protection. How does
 anyone else really know if NSA's classified algorithm is secure?
 It's not that hard for NSA to design an encryption algorithm that
 only they can crack, if no one else can review the algorithm. Are
 they deliberately selling snake oil?

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 26

 I'm not as cock-sure about the security of PGP as I once was about my
 brilliant encryption software from college. If I were, that would be
 a bad sign. But I'm pretty sure that PGP does not contain any snake
 oil. Source code is available, so other cryptographers are welcome
 to review its design. It's reasonably well researched. It's based
 on the work of a number of reputable cryptographers. It's been years
 in the making. And I don't work for the NSA. I hope it doesn't
 require a large "leap of faith" to trust the security of PGP.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 27

 Why Do You Need PGP?
 ====================

 It's personal. It's private. And it's no one's business but yours.
 You may be planning a political campaign, discussing your taxes, or
 having an illicit affair. Or you may be doing something that you
 feel shouldn't be illegal, but is. Whatever it is, you don't want
 your private electronic mail (E-mail) or confidential documents read
 by anyone else. There's nothing wrong with asserting your privacy.
 Privacy is as apple-pie as the Constitution.

 Perhaps you think your E-mail is legitimate enough that encryption is
 unwarranted. If you really are a law-abiding citizen with nothing to
 hide, then why don't you always send your paper mail on postcards?
 Why not submit to drug testing on demand? Why require a warrant for
 police searches of your house? Are you trying to hide something?
 You must be a subversive or a drug dealer if you hide your mail
 inside envelopes. Or maybe a paranoid nut. Do law-abiding citizens
 have any need to encrypt their E-mail?

 What if everyone believed that law-abiding citizens should use
 postcards for their mail? If some brave soul tried to assert his
 privacy by using an envelope for his mail, it would draw suspicion.
 Perhaps the authorities would open his mail to see what he's hiding.
 Fortunately, we don't live in that kind of world. Because everyone
 protects most of their mail with envelopes, no one draws suspicion by
 asserting their privacy with an envelope. There's safety in numbers.
 Analogously, it would be nice if everyone routinely used encryption
 for all their E-mail, innocent or not, so that no one drew suspicion
 by asserting their E-mail privacy with encryption. Think of it as a
 form of solidarity.

 If the Government wants to violate the privacy of ordinary citizens,
 it has to expend a certain amount of expense and labor to intercept
 and steam open and read paper mail, and listen to and possibly
 transcribe spoken telephone conversation. This kind of labor-
 intensive monitoring is not practical on a large scale. This is only
 done in important cases when it seems worthwhile.

 More and more of our private communications are going to be routed
 through electronic channels. Electronic mail will gradually replace
 conventional paper mail. E-mail messages are just too easy to
 intercept and scan for interesting keywords. This can be done easily,
 routinely, automatically, and undetectably on a grand scale.
 International cablegrams are already scanned this way on a large
 scale by the NSA.

 We are moving toward a future when the nation will be crisscrossed
 with high capacity fiber optic data networks linking together all our
 increasingly ubiquitous personal computers. E-mail will be the norm
 for everyone, not the novelty it is today. Perhaps the Government
 will protect our E-mail with Government-designed encryption
 algorithms. Probably most people will trust that. But perhaps some
 people will prefer their own protective measures.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 28

 The 17 Apr 1991 New York Times reports on an unsettling US Senate
 proposal that is part of a counterterrorism bill. If this nonbinding
 resolution became real law, it would force manufacturers of secure
 communications equipment to insert special "trap doors" in their
 products, so that the Government can read anyone's encrypted messages.
 It reads: "It is the sense of Congress that providers of electronic
 communications services and manufacturers of electronic communications
 service equipment shall insure that communications systems permit the
 Government to obtain the plain text contents of voice, data, and
 other communications when appropriately authorized by law."

 If privacy is outlawed, only outlaws will have privacy. Intelligence
 agencies have access to good cryptographic technology. So do the big
 arms and drug traffickers. So do defense contractors, oil companies,
 and other corporate giants. But ordinary people and grassroots
 political organizations mostly do not have access to affordable
 "military grade" public-key cryptographic technology.

 PGP enables people to take their privacy into their own hands.
 There's a growing social need for it. That's why I wrote it.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 29

 PGP Quick Reference
 ===================

 Here's a quick summary of PGP commands.

 To encrypt a plaintext file with the recipent's public key:
 pgp -e textfile her_userid

 To sign a plaintext file with your secret key:
 pgp -s textfile your_userid

 To sign a plaintext file with your secret key, and then encrypt it
 with the recipent's public key:
 pgp -es textfile her_userid your_userid

 To encrypt a plaintext file with just conventional cryptography, type:
 pgp -c textfile

 To decrypt an encrypted file, or to check the signature integrity of a
 signed file:
 pgp ciphertextfile [plaintextfile]

 To generate your own unique public/secret key pair:
 pgp -k

 To add a public or secret key file's contents to your public or
 secret key ring:
 pgp -a keyfile [keyring]

 To remove a key from your public key ring:
 pgp -r userid [keyring]

 To view the contents of your public key ring:
 pgp -v [userid] [keyring]

 To create a signature certificate that is detached from the document:
 pgp -sb textfile your_userid

 To produce a ciphertext file in Unix uuencode format, just add the
 "u" option when encrypting or signing a message:
 pgp -esu textfile her_userid your_userid

 To wipe out the plaintext file after producing the ciphertext file,
 just add the "w" (wipe) option when encrypting or signing a message:
 pgp -esw message.txt her_userid your_userid

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 30

 Legal Issues
 ============

 Trademarks, Copyrights, and Warranties

 "Pretty Good Privacy", "Phil's Pretty Good Software", and the "Pretty
 Good" label for computer software and hardware products are all
 trademarks of Philip Zimmermann and Phil's Pretty Good Software. PGP
 is (c) Copyright Philip R. Zimmermann, 1990.

 The author assumes no liability for damages resulting from the use of
 this software, even if the damage results from defects in this
 software, and makes no representations concerning the merchantability
 of this software or its suitability for any specific purpose. It is
 provided "as is" without express or implied warranty of any kind.

 Patent Rights on the Algorithms

 The RSA public key cryptosystem was developed at MIT with Federal
 funding from grants from the National Science Foundation and the
 Navy. It is patented by MIT (U.S. patent #4,405,829, issued 20 Sep
 1983). A company called Public Key Partners (PKP) holds the exclusive
 commercial license to sell and sub-license the RSA public key
 cryptosystem. For licensing details on the RSA algorithm, you can
 contact Robert Fougner at PKP, at 408/735-6779. The author of this
 software implementation of the RSA algorithm is providing this
 implementation for educational use only. Licensing this algorithm
 from PKP is the responsibility of you, the user, not Philip
 Zimmermann, the author of this software implementation. The author
 assumes no liability for any breach of patent law resulting from the
 unlicensed use by the user of the underlying RSA algorithm used in
 this software.

 The LZHuf compression routines in PGP come from public domain source
 code. I'm not aware of any patents on the LZHuf algorithm, but I've
 heard that a related compression algorithm, LZW, has some patent
 claims from Unisys Corporation. LZHuf is different from LZW, and
 might not be affected by this patent. If you're interested, you're
 welcome to look into this murky issue yourself. If there are any
 patent claims that apply to LZHuf, then well, sorry, you'll have to
 take care of the patent licensing, not me.

 It seems like the patent office has been issuing patents on ideas to
 anyone who applies for one. A software engineer may create a
 software package and unknowingly infringe on any number of patents.
 Perhaps there is a patent somewhere on using a computer to do any
 kind of cryptography at all. I once saw a Peanuts cartoon in the
 newspaper where Lucy showed Charlie Brown a fallen autumn leaf and
 said "This is the first leaf to fall this year." Charlie Brown said,
 "How do you know that? Leaves have been falling for weeks." Lucy
 replied, "I had this one notarized."

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 31

 Licensing and Distribution

 PKP controls licensing of the underlying RSA algorithm, but not on
 the PGP software that uses their RSA algorithm. As far as I'm
 concerned, anyone may freely use or distribute PGP, without payment
 of fees to me (except as provided below). You must keep the
 copyright notices on PGP and keep this documentation with it.
 However, this may not satisfy any legal obligations you may have to
 PKP for using the RSA algorithm as mentioned above. You may choose
 to pay PKP a licensing fee on the RSA algorithm.

 PGP is not shareware, it's freeware. Published as a community
 service. If I sold PGP for money, then I would have to pay a license
 fee to PKP for using their RSA algorithm. More importantly, giving
 PGP away for free will encourage far more people to use it, which
 hopefully will have a greater social impact. This could lead to
 widespread awareness and use of the RSA public key cryptosystem,
 which will probably make more money for PKP in the long run.

 All the source code for PGP is available for free under the "Copyleft"
 General Public License from the Free Software Foundation (FSF). A
 copy of the FSF General Public License is included in the source
 release package of PGP.

 Regardless of and perhaps contrary to some provisions of the FSF
 General Public License, the following terms apply:

 1) Written discussions of PGP in magazines or books may include
 fragments of PGP source code and documentation, without
 restrictions.

 2) If you are able and willing to pay PKP a license fee for the RSA
 algorithm, then I guess that sort of makes PGP not exactly free,
 doesn't it? If you decide to do that, then I'm asking for a $50
 donation from each user that pays PKP a license fee.

 3) Although the FSF General Public License allows non-proprietary
 derivative products, it prohibits proprietary derivative products.
 Despite this, I may grant you a special license if you want to
 derive a proprietary commercial product from some of PGP's parts.
 There may or may not be a fee depending on what kind of a deal you
 plan to pursue with PKP. Retaining my copyright notice and
 attribution might suffice in some cases. Give me a call and we'll
 discuss it. I'm real easy to please.

 Please disseminate the complete PGP release package as widely as
 possible. Give it to all your friends. If you have access to any
 electronic Bulletin Boards Systems, please upload the complete PGP
 executable object release package to as many BBS's as possible. You
 may disseminate the PGP source release package too, if you've got
 it. The PGP version 1.0 executable object release package for MSDOS
 contains the PGP executable software, documentation, sample keyrings
 including my own public key, and signatures for the software and this

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 32

 manual, all in one PKZIP compressed file called PGP10.ZIP. The PGP
 source release package for MSDOS contains all the C source files in
 one PKZIP compressed file called PGP10SRC.ZIP.

 You may obtain free updates to PGP from BBS's or other public
 sources. If you must have an update directly from me, send me a $50
 handling charge (made out to Philip Zimmermann). This fee is NOT a
 charge for PGP, which you can get for free anywhere else. This
 outrageous fee is just to get me to overcome my procrastination and
 interrupt my bread-and-butter work and prepare a release disk for you
 and maybe drive down to the post office to buy some stamps, since I
 don't have a secretary to handle these matters. If you want much
 faster service, include a stamped self-addressed floppy disk mailer
 and a blank floppy disk. If you want even faster service, include
 your Federal Express account number (or better yet, one of your own
 Fedex airbill forms already filled out addressed to you) and I will
 Fedex it to you overnight at your expense. I will send you a disk
 with my latest and greatest source and executable object release
 packages of PGP. Assuming that no one tampers with the disk before
 it reaches you, you can trust that my public key is good and that the
 software is free of viruses. There's no guarantee that my version of
 PGP is more up-to-date than the one you have already.

 After all this work I have to admit I wouldn't mind getting some fan
 mail for PGP, to gauge its popularity. Let me know where you heard
 about it and what you think and how many of your friends use it. Bug
 reports and suggestions for enhancing PGP are welcome, too. Perhaps
 a future PGP release will reflect your suggestions. But please don't
 count on a reply, because this project has not been funded. Technical
 support is cheerfully provided for an hourly fee.

 If anyone wants to volunteer to improve PGP, please let me know. It
 could certainly use some more work. Some features were deferred to
 get it out the door. Perhaps you can help port it to some new
 machine environments, such as the Apple Macintosh or MS Windows or X
 Windows or XVT.

 This is the first release of PGP. Future versions of PGP may have to
 change the data formats for messages, signatures, keys and key rings,
 in order to provide important new features. This may cause backward
 compatibility problems with this version of PGP. Future releases may
 provide conversion utilities to convert old keys if this is practical,
 but you may have to generate new keys and dispose of old messages
 created with the old PGP. Such a conversion effort will probably
 only have to be done once, if at all.

 Export Controls

 The Government has made it illegal in many cases to export good
 cryptographic technology, and that may include PGP. This is
 determined by volatile State Department policies, not fixed laws.
 Many foreign governments impose serious penalties on anyone inside
 their country using encrypted communications. In some countries they
 might even shoot you for that. I will not export this software in

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 33

 cases when it is illegal to do so under US State Department policies,
 and I assume no responsibility for other people exporting it without
 my permission.

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 34

 Acknowledgements
 ================

 I'd like to thank the following people for their contributions to the
 creation of PGP. Charlie Merritt designed the prototypic
 conventional encryption algorithm and taught me how to do decent
 multiprecision arithmetic. Zhahai Stewart wrote some 8086 assembly
 primitives and gave many helpful suggestions on PGP file formats and
 on the conventional encryption algorithm improvements. Allan Hoeltje
 integrated the LZHuf compression routines into PGP. These were
 developed and placed in the public domain by Haruyasu Yoshizaki and
 Haruhiko Okumura. The MD4 routines were developed and placed in the
 public domain by Ron Rivest.

 Charlie Merritt can be reached at PO Box 317, West Fork, AR 72774.
 Zhahai Stewart can be reached at 6521 Old Stage Rd, Boulder, CO 80302.
 Allan Hoeltje can be reached at PO Box 18045, Boulder, CO 80308.

 Recommended Readings
 ====================

 1) Dorothy Denning, "Cryptography and Data Security", Addison-Wesley,
 Reading, MA 1982
 2) Dorothy Denning, "Protecting Public Keys and Signature Keys",
 IEEE Computer, Feb 1983
 3) Philip Zimmermann, "A Proposed Standard Format for RSA
 Cryptosystems", IEEE Computer, Sep 1986
 4) Ronald Rivest, "The MD4 Message Digest Algorithm", MIT Laboratory
 for Computer Science, 1990

 About the Author
 ================

 Philip Zimmermann is a software engineer consultant with 17 years
 experience, specializing in embedded real-time systems, cryptography,
 authentication, and data communications. Experience includes design
 and implementation of authentication systems for financial
 information networks, network data security, key management
 protocols, embedded real-time multitasking executives, operating
 systems, and local area networks.

 Faster versions of RSA implementations are available from Zimmermann,
 as well as other cryptography and authentication products and custom
 product development services.

 His consulting firm's address is:

 Boulder Software Engineering
 3021 Eleventh Street
 Boulder, Colorado 80304 USA
 Phone 303-444-4541 (10:00am - 7:00pm Mountain Time)
 FAX 303-444-4541 ext 10
 Internet: prz@sage.cgd.ucar.edu

 PGPGUIDE.DOC Wednesday, June 5, 1991 2:28 pm Page 35

