
Java TV™ API Technical Overview:

TheJavaTVAPIWhitepaper

Version1.0
November14,2000

Authors: BartCalder,JonCourtney,BillFoote,LindaKyrnitszke,
DavidRivas,ChihiroSaito,JamesVanLoo,TaoYe

Sun Microsystems, Inc.
Copyright © 1998, 1999, 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA
All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any
form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Sun, Sun
Microsystems, the Sun Logo, Java, Java TV, JavaPhone, PersonalJava and all Java-based marks, are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open
Company, Ltd.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its
users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the
concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license
from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Govt is subject to restrictions of FAR
52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-
3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE DOCUMENT. SUN MICRO-
SYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

For further information on Intellectual Property matters, contact Sun's Legal Department:
E-Mail: trademarks@sun.com
Phone: 650.960.1300

Please send any comments on theJava TV API Technical Overviewto javatv-comments@sun.com.

Contents

1. Introduction 1

1.1 Television Receivers 2

1.2 Television-Specific Applications 3

1.2.1 Electronic Program Guides 4

1.2.2 Program-Specific Applications 4

1.2.3 Stand-alone Applications 4

1.2.4 Advertisements 4

1.3 Features of the Java TV API 5

2. Environment 7

2.1 Hardware Environment 7

2.2 Software Environment 8

2.3 Application Environment 9

2.3.1 Storage and Input/Output 10

2.3.2 Return Channel and Non-Broadcast Network Access 10

2.3.3 Security 11

2.3.4 Abstract Window Toolkit 12

3. Services and Service Information 13

3.1 Services and Service Information Definitions 14
Contents i

3.2 SI Packages 14

3.2.1 Service Package 16

3.2.2 Navigation Package 16

3.2.3 Guide Package 17

3.2.4 Transport Package 18

4. Service Selection 19

4.1Service Selection Definitions 19

4.2 Service Selection API Overview 20

4.3 Service Context State Model 20

5. JMF and the Broadcast Pipeline 23

5.1 JMF Controls 23

5.2 JMF Synchronization 24

5.3 Player Architecture and the Broadcast Pipeline 25

6. Broadcast Data APIs 27

6.1 Broadcast Data API Definitions 27

6.2 Broadcast File Systems 28

6.2.1 DSM-CC Object Carousels 28

6.2.2 DSM-CC Data Carousels 31

6.2.3 Reducing the Effects of Carousel Latency 31

6.3 IP Datagrams 32

6.4 Streaming Data 33

7. Application Lifecycle 35

7.1 Xlet Application Lifecycle Definitions 35

7.2 Application Manager Requirements 36

7.3 Xlet States 37

7.3.1 Xlet State Machine 37
ii Java TV API Technical Overview, Version 1.0, 11/14/00

7.3.2 Xlet Lifecycle Model 38

7.4 Xlet Package 39

7.4.1 Xlet Interface 40

7.4.2 XletContext Interface 42

7.5 Xlet Lifecycle Example 42

8. Appendix I: Related Documents 45

9. Index 47
Contents iii

iv Java TV API Technical Overview, Version 1.0, 11/14/00

 TV

 to

ic
es
 to

of

s are

t-top

 and
Introduction

This document describes the Java TVTM API, an extension of the JavaTM platform designed
for developers who are producing Java-based interactive television content. The Java
API gives programs written in the Java programming language control of broadcast
television receivers and set-top boxes.

A key purpose of the Java TV API is to provide application developers with the ability
easily build applications that are independent of the underlying broadcast network
technology on which they will be deployed. For example, many applications need bas
information from a service information database, such as a list of the names of servic
currently available. The Java TV API provides an abstraction that permits applications
obtain this information in a manner independent of the service information protocol
currently in use. This allows an application to be written and then reused in a variety
network environments. The Java TV API is designed throughout with a high level of
abstraction from hardware and over-wire protocols.

Wherever possible, the Java TV API relies on an application environment to provide
general purpose APIs. For example, file storage APIs and network communication API
provided by the application environment. In some cases, functionality that might be
available on a set-top box is exposed with another Java extension. For example, in se
boxes that provide telephone service, the JavaPhoneTM API may be used.

FIGURE 1 shows the Java TV API and application environment as they are typically
implemented on digital receivers. Programmers write applications to the Java TV API
application environment APIs, allowing their applications to be largely unaware of the
underlying RTOS and hardware details.
Introduction 1

d is
Java

s are
gnal
al
o,
y and
und

eful
n a
 multi-

e, as

ision
uage-
FIGURE 1 A Typical Television Receiver Implementation

This document is a description of the API elements that comprise the Java TV API an
intended to be viewed along with the actual APIs in javadoc or other form. Because the
TV API is designed to scale across a wide variety of possible implementations, this
document does not describe minimal or performance-related hardware and software
requirements.

1.1 Television Receivers

A television receiver may process either analog signals, digital signals, or both. Signal
usually broadcast to receivers over terrestrial, cable, or satellite networks. A digital si
permits a wider variety of content to be broadcast than does an analog signal. A digit
broadcast might contain other types of information along with the digitized audio-vide
such as a Java application. Television receivers come in a broad range of functionalit
capabilities. The Java TV API provides access to the functionality that is commonly fo
on these receivers and scales across different receiver implementations.

While there are a wide variety of television receivers with different capabilities, it is us
to categorize receivers into three major types based on the kind of network connectio
receiver supports: enhanced broadcast receivers, interactive broadcast receivers, and
network receivers. Each type of receiver builds on the capabilities of the previous typ
described below:

1. Enhanced Broadcast Receivers
Enhanced broadcast receivers are capable of providing traditional broadcast telev
that is enhanced with graphics, images, text and can be controlled by a Java lang
2 Java TV API Technical Overview, Version 1.0, 11/14/00

viewer

t
m a

ot

vides
g
n.
ast

turn

an be
sing.
t

n that
cast

udio,
PI

es,
based program provided as a part of the broadcast. Such receivers support local
interactions, including input from a remote control, on-screen graphical elements,
selection among multiple audio-video streams, and switching among displays tha
augment audio-video presentation. Enhanced broadcast receivers receive data fro
head-end or server, often carried via a broadcast file system. However, enhanced
broadcast receivers have no return channel to the broadcaster, and therefore do n
imply interaction with a head-end or server.

2. Interactive Broadcast Receivers
Interactive broadcast receivers include a return channel to the broadcaster that pro
communication with a head-end or server. Such receivers are capable of providin
electronic commerce, video-on-demand, email, and local chat-style communicatio
Interactive broadcast receivers include the capabilities found on enhanced broadc
receivers.

3. Multi-Network Receivers
Multi-network receivers provide access to more than a broadcast network and a re
channel. Multi-network receivers include Internet capable receivers and receivers
providing other communication services, such as local telephony. Such receivers c
home telecommunication hubs and provide diverse services, such as Internet brow
Multi-network receivers include the capabilities found on both enhanced broadcas
receivers and interactive broadcast receivers.

1.2 Television-Specific Applications

The Java TV API characterizes television programs as services. This is an abstractio
provides a common way to refer to a wide variety of content that may appear in a broad
environment. For example, a service can refer to a regular TV program with its
synchronized audio and video or to an enhanced television broadcast that contains a
video, and a Java application that is synchronized with the broadcast. The Java TV A
provides a means for selecting services, accessing a database containing service
information, controlling a television-specific media player, and accessing data that is
broadcast along with a television signal.

Content developers can write many types of television-specific applications, or servic
including electronic program guides, program-specific applications, stand-alone
Introduction 3

ations

 on
n
s the
and

e
ow

s. For
 when

. An
ying
t

a

t

applications, and advertisements. Some of the characteristics of these kinds of applic
are described below.

1.2.1 Electronic Program Guides

Electronic program guides (EPGs) are some of the more common applications found
today's television receivers. An EPG's primary function is to provide the viewer with a
overview of current and upcoming television programs. Usually, an EPG also change
channel to the viewer’s selection. With this type of application, interactive performance
short start-up times are critical to a positive user experience.

1.2.2 Program-Specific Applications

Program-specific applications are created for and deployed along with specific servic
audio-video programming. Examples include an application deployed with a game sh
that allows viewers to play along at home, and an application that provides interactive
information about a sporting event. These applications have several key requirement
instance, the receiver hosting the application must be able to suspend the application
the viewer changes the channel.

1.2.3 Stand-alone Applications

Stand-alone applications appear to run unattached to normal television programming
example is a stock ticker application that obtains data from a secondary network, displa
prices on screen. The user may be able to lock this application to the screen so that i
remains as they change to another channel.

1.2.4 Advertisements

Advertisement applications are applications that augment the audio/visual content of
commercial. Such applications typically run for only the duration of the commercial,
therefore, they are extremely short-lived. The actual downloading of the advertisemen
application may actually take place before the commercial starts. The application is
typically stopped and discarded at the end of the commercial.
4 Java TV API Technical Overview, Version 1.0, 11/14/00

ision
. The

e, as
ing

 are
an
ring
n

cs of
n
pter

t
he

ases
s).
1.3 Features of the Java TV API

The Java TV API is a programming interface targeted at developers of interactive telev
services and other types of software applications that run on digital broadcast receivers
major capabilities provided by the Java TV API for various types of applications are
described below.

• Accessing Services and Service Information
The Java TV API represents television programming, both traditional and interactiv
a set of individual services. The service information APIs provide support for obtain
service information (SI), which can be used to select a service.

The SI database provides applications access to information about what services
available during runtime. Access to the SI database is through the SI manager. If
application is not interested in every service available, the SI manager permits filte
operations to find services of interest. The views of the SI database that have bee
defined are for controlling navigation, EPGs, and MPEG-2 delivery. For more
information, see Chapter 3, “Services and Service Information”.

Selecting Services
Service selection APIs are used to select a service for presentation. The mechani
selection are determined by the components of the service, and include starting a
application if an application is a part of the service. For more information, see Cha
4, “Service Selection”.

• Controlling the Broadcast Pipeline
The Java TV API uses the JavaTM Media Framework (JMF) to represent the broadcas
pipeline of a receiver. The JMF defines sources of data and handlers of content. T
Java TV API makes a similar distinction for a broadcast pipeline. A tuner-
demultiplexer-conditional access (C/A) subsystem is the source of data in the JMF
sense, while the decoder-framebuffer-audio output is the content handler; seeFIGURE 2.
For more information, see Chapter 5, “JMF and the Broadcast Pipeline”.

• Accessing Broadcast Data
A service is modeled as a multiplex of analog and digital data streams. In many c
these streams are not directly available to an application (e.g., audio/video stream
However, the multiplex may have streams of digital data that are available to an
Introduction 5

pter 6,

ate
cle.

iver
a dig-
man-
nager

text
pli-
application. The broadcast data APIs provide support for access to broadcast file
systems, streaming data and encapsulated IP data. For more information, see Cha
“Broadcast Data APIs”.

• Managing Application Lifecycle
The sequence of steps by which an application is initialized, undergoes various st
changes and is eventually destroyed is collectively known as the application lifecy
The Java TV API defines a lifecycle for applications that run on digital broadcast
receivers.

Such applications are called Xlet applications. An Xlet is either resident on the rece
or can be downloaded and controlled by an application manager, which is part of
ital television receiver's software operating environment. The application manager
ages an Xlet's lifecycle state changes. Each receiver has a resident application ma
capable of providing an Xlet access to its environment through an application con
passed to the Xlet during its initialization. For more information, see Chapter 7, “Ap
cation Lifecycle”.
6 Java TV API Technical Overview, Version 1.0, 11/14/00

ions
ut

ation

e
 TV

cesses
data in
cific to

dcast
ulti-

sub-

system
the
envi-
ort of
Environment

The following sections, Hardware Environment and Software Environment, provide a
model describing features provided by the environment in which the Java TV applicat
run. This model is not intended to be inclusive of all aspects of a television receiver, b
simply to describe the pieces of the receiver to which the Java TV API and Java applic
environment provide access.

2.1 Hardware Environment

This section describes elements that make up a broadcast receiver. It is intended to b
explanatory and provide context and definitions for concepts that are part of the Java
API. This section is not intended to specify hardware requirements for the API.
The television receiver gets video, audio, and data from the broadcast stream and pro
them through a broadcast media and data pipeline. The receiver gets the media and
specific formats, called protocols, and decodes them using a variety of decoders spe
these protocols.

A distinguishing characteristic of a television receiver, relative to typical computing
devices, is that the receiver is designed around a broadcast media pipeline. The broa
media pipeline typically consists of a set of subsystems, such as a digital tuner, a dem
plexer, a conditional access module, a collection of media decoders and a rendering
system, through which the media flow. The Java TV API does not require that all
subsystems be present. For instance, a receiver may have no conditional access sub
or may not have a digital tuner. The Java TV API provides an abstraction that allows
application programmer to remain unaware of the details of the underlying hardware
ronment. However, the Java TV API assumes that the broadcast receiver has some s
broadcast pipeline.
Environment 7

s an

line

sport

eams

,

 into

envi-
ron-
To illustrate, the following are the elements of a typical pipeline and the steps taken a
RF signal passes through it and is processed in a digital broadcast receiver (seeFIGURE 2.)
(This diagram is an example of one particular pipeline that could exist. Many other pipe
configurations are possible.)

1. An RF signal is tuned.
2. The tuned RF signal is demodulated into a digital signal, carrying an MPEG-2 tran
stream.
3. The transport stream is passed through a demultiplexer and broken into multiple str
(e.g., audio, video, and data).
4. The video and audio streams are fed through a conditional access (C/A) subsystem
which determines access privileges and may decrypt data.
5. The decrypted audio and video streams are fed to a decoder, which converts them
signals appropriate for the video and audio output devices.

FIGURE 2 Typical Enhanced Broadcast Digital TV Broadcast Pipeline

2.2 Software Environment

The software environment on a digital receiver typically consists of a Java application
ronment, the Java TV API, and supporting applications. In addition, the software envi
ment typically includes a Real-Time Operating System (RTOS).
8 Java TV API Technical Overview, Version 1.0, 11/14/00

elow,
's vir-
vel

gy

ation
s the
nvi-

d
h
ation
As shown inFIGURE 3, at the highest layer of the software environment, the Application
Layer, an application can use the Java TV API and the Java packages from the layer b
the Java Technology Layer. Java applications execute in the application environment
tual machine (VM). The Java TV API abstracts the functionality exposed by the lower-le
libraries to control the hardware operations of the receiver.

The RTOS provides the system-level support needed to implement the Java technolo
layer. In addition, the RTOS and related device-specific libraries control the receiver
through a collection of device drivers.

FIGURE 3 Typical Software Stack on a Digital TV Receiver

2.3 Application Environment

Applications designed to run on a broadcast receiver may take advantage of the applic
environment APIs, as well as the features built into the Java VM. This section describe
major aspects of broadcast receiver capabilities that are provided by the application e
ronment and VM, apart from the Java TV API.

The APIs of a Java application environment are organized into functional groups calle
“packages”. The PersonalJavaTM application environment is typically used for devices wit
constrained memory footprints, such as television receivers. The PersonalJava applic
environment specification includes several useful packages:
Environment 9

s

a-

eful

,

rators

TP

encap-
• I/O
The java.io package provides data input/output facilities using the classes
java.io.InputStream andjava.io.OutputStream and their subclasses.

• Networking
The java.net package provides access to network functions using such classes a
java.net.URL , java.net.InetAddress , andjava.net.Socket .

• Graphics toolkit
The java.awt package provides graphics rendering and window services to applic
tions using such classes asjava.awt.Canvas , java.awt.Font , and
java.awt.Scrollbar .

• System functions
Classes such asjava.lang.Thread andjava.util.EventObject provide applica-
tions with system-level functionality. The application environment also includes us
utility classes, such asjava.util.Hashtable andjava.util.Calendar .

2.3.1 Storage and Input/Output

The application environment packagejava.io provides abstractions for stream-based I/O
file-based I/O, and a wide variety of buffering options. Flash ROM systems, local hard
drives, and server-based remote storage systems can all be accessed withjava.io . Some
environments may support the use of a system error stream for providing service ope
with information on the status of receivers and their usage; such streams also usejava.io .

Additionally, broadcast data streams and file systems require the use ofjava.io . For more
information, see the section on broadcast data APIs.

2.3.2 Return Channel and Non-Broadcast Network Access

The packagejava.net provides an environment for accessing network sockets and HT
connections, and for parsing URLs. In conjunction withjava.io , this package provides the
required functionality to access and manage an IP return channel or to access IP data
sulated in MPEG transport streams.
10 Java TV API Technical Overview, Version 1.0, 11/14/00

nd
TV
ity
on-

efine
te leg-

ome
t pro-

enti-
e Java
tion
aces,

/A
more

e

s

nnec-
aking

ns in

on
isms
2.3.3 Security

The application environment provides the foundation upon which network operators a
standards organizations can define their own security models and policies. The Java
API does not dictate a particular security model or policy, but uses the JDK 1.2 secur
architecture to express the security policies that are provided by the application envir
ment.

This solution gives network operators and standards organizations the freedom to red
their security models as future needs change. It also allows broadcasters to incorpora
acy security mechanisms into the platform. The remainder of this section describes s
important security concerns associated with interactive television and the API suppor
vided for each.

• Conditional Access
The conditional access (C/A) subsystem controls the management of a set of auth
cation keys used to descramble or decrypt downstream video or data streams. Th
TV API does not define a mechanism for acquiring or managing C/A keys or decryp
algorithms. There are a wide variety of deployed systems and a few standard interf
including APIs, defining C/A architectures.

Rather than provide a high-level C/A subsystem API, the Java TV APIs express C
subsystem interaction through the service selection APIs and the SI database. For
details, see Chapter 3, “Services and Service Information” and Chapter 4, “Servic
Selection”.

• Secure Communication
Secure communication is important for protecting confidential information, such a
financial data or electronic mail. Secure bi-directional TCP/IP connections can be
achieved using SSL (secure sockets layer) and TLS (Transport Level Security) co
tions. The Java Secure Socket Extension (JSSE) is a Java standard extension for m
SSL and TLS connections. The JSSE includes classes in thejavax.net and
javax.net.ssl packages that enable applications to access secure communicatio
a way that builds on the services present injava.io andjava.net .

• Virtual Machine
The Java VM is designed to provide secure execution of code. Bytecode verificati
insures the validity of the instructions that the VM executes. Class loading mechan
Environment 11

ode's
age
ow
viron-

ch
tion
receiv-
g a
the
protect how code is loaded into the machine and can guarantee the validity of the c
source. The absence of direct memory-pointer manipulations from the Java langu
eliminates the risk of corruption due to code masquerading as data or stack-overfl
based attacks. These techniques combine to provide a uniquely safe execution en
ment and augment the other security mechanisms.

2.3.4 Abstract Window Toolkit

The Java Abstract Window Toolkit (AWT) provides a collection of basic tools with whi
to build user interface (UI) components, or widgets. AWT also provides a large collec
of native widgets. Vendors, consortia, and standards can define widgets to reside on
ers. Applications may also use the AWT to bundle special-purpose widgets supportin
particular look and feel. Such application-specific widgets are usually downloaded with
application.
12 Java TV API Technical Overview, Version 1.0, 11/14/00

dled
n
ision
nsist

se. SI

ndent
 for

VB-
used
able

of the

TE-
Services and Service Information

A service is a collection of content for presentation on a receiver. This collection is han
as a unit within the Java TV API. Services can be selected for presentation. Televisio
viewers often refer to this concept as a “television channel.” On today’s advanced telev
receivers, a service might not just consist of a single audio and video stream, it may co
of multiple audio and video streams as well as data.

Services have characteristic service information (SI), which is stored in the SI databa
describes the layout and content of an audio/video/data stream, such as the MPEG-2
transport stream.

The Java TV API uses Locator objects to reference SI elements. A given locator may
represent a network-independent object and have multiple mappings to network-depe
locators. The Java TV API provides methods for discovery of such circumstances and
transformation to network-dependent locators.

Various protocols for transmitting SI are used and standardized today. For example, D
SI is used in various satellite, cable, and terrestrial systems; the ATSC A56 standard is
on both satellite and cable; and the new ATSC PSIP (A65) is used on terrestrial and c
DTV. There are also a wide variety of private protocols. The Java TV API provides an
abstraction of SI protocols, therefore a Java TV application does not have to be aware
SI protocol that delivers information to the receiver. As a result, the application is not
required to have special code to run in various environments, such as DVB-based, SC
based or ATSC-based systems.
Services and Service Information 13

ned
 it,
ne of

s.
erent

am,
g extra

l

ger
ervice

eeds.
 are

 con-
t inter-

rvices
3.1 Services and Service Information Definitions

• service- a collection of service components intended to be provided together as defi
by the content provider. Each service has service information (SI) associated with
and every service must have its SI made available to the receiver. An SI entry is o
the defining properties of a service.

• service information (SI) - information describing the content of a service or service
This includes basic information to present the components of the service as a coh
whole, as well as meta information such as the maturity rating of the service.

• service component- a "mono-media" element such as a video stream, an audio stre
a Java application, or some other data type that can be presented without needin
information. A service will contain one or more service components, and a service
component may be shared by more than one service.

• service locator - the information about a service needed to resolve it into a physica
address for presentation.

• SI database - a database that stores service information accessible by television
applications.

• SI manager - the primary access point to the underlying SI database. The SI mana
reports changes related to the available SI elements and is capable of resolving a s
locator into the meta data associated with the service.

• SI element - an object that represents a piece of service information.

3.2 SI Packages

The SI database object model allows various views of SI, based on an application's n
Each view is represented as a package in the Java TV SI APIs. The SI API packages
Service, Navigation, Guide, and Transport.

• service package: javax.tv.service
The service package provides the primary point of access to the SI database and
tains classes common to the other SI packages, such as the Service and SIElemen
faces.

• navigation package: javax.tv.service.navigation
The navigation package contains classes that are used to navigate the existing se
(which are called Services in DVB and Virtual Channels in ATSC).
14 Java TV API Technical Overview, Version 1.0, 11/14/00

,

ncies

ver
 it

am.
I APIs

 the
• guide package: javax.tv.service.guide
The guide package contains classes useful for electronic program guides (EPGs)
including program schedules, individual program events, and program ratings.

• transport package: javax.tv.service.transport
The transport package represents the MPEG-2 delivery mechanism.

FIGURE 4 depicts the SI API packages. The arrows in the diagram indicate the depende
among the packages.

FIGURE 4 SI API Package Dependencies

Most digital TV receivers will be unable to cache all the SI data in memory. The recei
will cache a subset of the SI data, consisting of the most useful information, but when
needs to retrieve data not stored in memory, the receiver will parse the transport stre
Because access to the transport stream may take a significant amount of time, the S
provide asynchronous access to information that is not cached.

The SI APIs also provide a flexible mechanism for future extension of the API through
extension of SIElement, which would allow access to additional information.
Services and Service Information 15

ort

oes not

ge in
the
:

nition
d the

 once
or an
sts if
3.2.1 Service Package

The service package provides several features used by the other SI packages:

• Base classes extended by the other SI packages.
• The event notification mechanisms for SI element changes detected in the transp

stream and events delivering asynchronous requests.
• Exceptions.

Because most of the SI elements are interfaces rather than classes, an application d
have a way to directly instantiate an object that implements the specified interface.

Applications can register with the various objects to be notified when SI elements chan
the broadcast. The SIChangeListener object and the SIChangeEvent object support
standard Java event model. The types of objects that support change notification are

• The ServiceDetails object, which reports changes related to its associated
ServiceComponent objects.

• The Transport object, which reports changes to carried services and network-defi
related tables represented by the TransportStream object, the Network object, an
Bouquet object.

• The ProgramSchedule object, which reports changes detected in any one of the
ProgramEvent objects in the schedule.

The service package also provides a mechanism to deliver data asynchronously. This
functionality is provided by the SIRequestor, and SIRequest interfaces. A caller of an
asynchronous method registers as an SIRequestor in order to later receive a callback
the requested data is available. The SIRequestor object receives the requested data
indication of a failure. The SIRequest object is provided to cancel asynchronous reque
they are no longer needed by the caller.

3.2.2 Navigation Package

The navigation package provides two types of functionality:

• Mechanisms to request more detailed information about services and their service
components.
16 Java TV API Technical Overview, Version 1.0, 11/14/00

e
rvice
Filter
nel
e used
ices

nel

n
n the

ciated

he

Gs
ating

, the

e and

 of
ating

vent
• A mechanism to group Service objects into collections based on various grouping
criteria.

The main navigation function is represented by several objects. The SI manager is th
primary access point to the underlying SI database. It can generate a collection of Se
objects, called a ServiceList, based on the selection criteria represented by the Service
object. The collection can then be used to sort, either by channel numbers or by chan
names, and navigate through the Service objects. The base class ServiceFilter can b
to generate the default collection (using no filtering criteria), which represents all serv
installed on the receiver.

The Service object itself contains only the minimal information (such as locator, chan
name and number) needed for navigation. Additional information about the service is
contained in the ServiceDetails object. The ServiceDetails object provides informatio
related to conditional access, the delivery mechanism of the service, and the time whe
information about the service was last updated.

A set of channel components is associated with a Service object. It can also be asso
with a specific ProgramEvent object, if such information is available. The current
ProgramEvent object provides the same components as the Service object carrying t
current program.

3.2.3 Guide Package

The guide package includes functionality to support EPGs. This package provides EP
with two related sets of information: the program schedule on each channel and the r
information associated either with the channel or a specific program event. The
ProgramSchedule object can be used to retrieve the program that is currently playing
immediately following one, and then any other available program in the future for a
specified time period. Each ProgramEvent object can be queried for its name, start tim
end time, description, rating, and other related information.

Rating related information is organized into rating regions (such as countries, groups
countries or arbitrary geographical regions) where each region may have a multiple r
dimensions, such as the MPAA rating, FCC TV rating, DVB age-based rating, and
broadcaster-specific rating. Each dimension contains multiple levels; each ProgramE
object is labeled with one of these levels for all supported rating regions.
Services and Service Information 17

-2
 to
ction
to
3.2.4 Transport Package

The transport package includes information about the physical media, such as MPEG
transport, that delivers the content the SI describes. The SI manager provides access
Transport objects, which in the MPEG case is extended by the TransportStreamColle
to represent an MPEG-2 multiplex. The generic Transport interface can be extended
support other types of transport delivery mechanisms, such as Internet Protocol (IP).
18 Java TV API Technical Overview, Version 1.0, 11/14/00

to
API
ack,
 the

audio
does
about

orts
d for

f
ervice
ndler

For
n in
Service Selection

Once a service has been discovered, the service selection API allows an application
control the presentation of services in a simple, high level way. The service selection
combines into a single method call control of tuning, service information, media playb
broadcast file transport, and the application manager. In particular, it largely conceals
nature of the components making up the service.

For instance, an application can present a service without needing to know about its
components, video components or subtitle components. Furthermore, an application
not need to know about whether the service has an associated application or anything
how to launch such an application.

4.1Service Selection Definitions

• service context - an environment in which services are presented. A receiver supp
one or more service contexts. Within a service context, one service may be selecte
presentation at a time.

• service content handler - an entity in the receiver responsible for the presentation o
some portion of a service. A single service content handler may present several s
components that share the same time clock. The lifecycle of the service content ha
is bound by the lifecycle of the presentation of the service. An individual service
content handler may also have its own lifecycle within the lifecycle of the service.
example, an application within a service may replace itself with another applicatio
the same service.
Service Selection 19

 to
hese
f

 level
xt

n is

s
f the

s"
io,
r. For
Player

tation
e

,
is state

an
ting
efore

enting,
4.2 Service Selection API Overview

The purpose of the service selection API is to provide applications with a mechanism
select services for presentation. The class that represents the environment in which t
services are presented is the ServiceContext class. Receivers may limit the number o
objects of this class that they support, even to one instance. ServiceContext is a high
representation of a tuner, its associated decoding hardware, and state. ServiceConte
allows an application to control the presentation of the components associated with a
particular service. Theselect() method on a ServiceContext object causes the service
context to attempt to present a service. This selection is asynchronous and completio
notified via an event-listener mechanism. Failure to select a service is reported via an
exception, if it can be determined at the timeselect() is called, or via an event, if it is
determined at some time later. Once a service context is presenting a service, variou
information can be obtained about that service, including locators for the components o
service.

When a ServiceContext object is presenting a service, the
getServiceContentHandlers() method returns references to the "engines" or "player
that are presenting the various service components. For real-time media such as aud
video, and subtitles, JMF Players are returned as objects of type ServiceMediaHandle
several audio, video, and subtitle components sharing the same clock, a single JMF
is returned.

4.3 Service Context State Model

A ServiceContext can exist in one of four states - Presenting, Not Presenting, Presen
Pending, and Destroyed. The initial state is Not Presenting. From any state (except th
Destroyed state), theselect() method can be called. Assuming no exception is thrown
the ServiceContext enters the Presentation Pending state. No event is generated on th
transition.

If a call toselect() method completes successfully, either a NormalContentEvent or
AlternativeContentEvent is generated and the ServiceContext moves into the Presen
state. If the service selection fails, a SelectionFailedEvent is generated. If the state b
the select call was Not Presenting, the ServiceContext returns to that state and a
PresentationTerminatedEvent is generated. If the state before the select call was Pres
20 Java TV API Technical Overview, Version 1.0, 11/14/00

 is
an be

,
ext is
the ServiceContext tries to return to a previous state which can result in a
NormalContentEvent or AlternativeContentEvent if possible. If that is not possible, the
ServiceContext returns a PresentationTerminatedEvent.

The Not Presenting state is entered due to service presentation being stopped, which
reported by the PresentationTerminatedEvent. The stopping of service presentation c
initiated by an application calling thestop() method or because some change in the
environment makes continued presentation impossible.

The Destroyed state is entered by calling thedestroy() method. Once this state is entered
the ServiceContext can no longer be used for any purpose. A destroyed ServiceCont
eligible for garbage collection once all references to it by any application have been
removed.

FIGURE 5 shows the state machine diagram for ServiceContext objects.

FIGURE 5 ServiceContext States
Service Selection 21

e
a

od is
us

n
ing

is

. In
TABLE 1 describes each valid ServiceContext state.

TABLE 1 Descriptions of the ServiceContext States

State Name Description

Not Presenting The initial state of the ServiceContext. In this state, no service is presented to th
viewer. The ServiceContext also enters this state if its stop method is called or if
previously presented service can no longer be presented.

Presentation Pending The ServiceContext enters the Presentation Pending state after the select meth
called and no exceptions are thrown. If a service was being presented in the previo
state, the service continues to be presented in this state. If the selection operatio
does not complete successfully, the ServiceContext leaves the Presentation Pend
state and attempts to return to its previous state.

Presenting The ServiceContext enters the Presenting state if the service selection operation
completes successfully. In this state, either normal content or alternative content
presented to the viewer.

Destroyed The ServiceContext enters the Destroyed state when the destroy method is called
this context, no service is presented to the viewer. Once this state is entered, the
ServiceContext can no longer be used.
22 Java TV API Technical Overview, Version 1.0, 11/14/00

nd
rious
the
video
d

. For

es
JMF and the Broadcast Pipeline

The Java TV API uses the Java Media Framework (JMF) 1.0 APIs for managing the
broadcast media pipeline. The JMF APIs provide a foundation for the Java TV API by
defining a set of APIs and a framework for displaying time-based media that are
independent of transport mechanism, transport protocol, and media content type.

JMF definesjavax.media.Player , which extends MediaHandler, for time-based media
data. A Player object encapsulates the state machine required to acquire resources a
manage the rendering of time-based media streams. A Player object also provides va
controls for the rendering facilities (e.g., volume and video picture controls). Finally, in
case of a Player for an audio/video stream, a GUI component object that contains the
portion of the stream can be obtained from the Player. This allows easy integration an
placement of video with the rest of the presentation.

For a detailed description of JMF, see the JMF 1.0 specification.

5.1 JMF Controls

A JMF Control is an object that is obtained from a Player at runtime. The object
implements thejavax.media.Control interface, and will also implement at least one
interface that provides control over some aspect of the media the Player is managing
example, many Players provide an object which supports thejavax.media.GainControl

interface to control a Player's audio gain.

In addition to the controls defined in the JMF 1.0 specification, the Java TV API includ
the following controls defined in thejavax.tv.media package.
JMF and the Broadcast Pipeline 23

ll of
sing

rts,
ht

ava

lock

erits
TABLE 2 Controls included in the Java TV API

The set of controls defined as part of the Java TV API are controls that a Java TV
implementation may support, though not all Players will support all of these controls a
the time. An application can check if a Player instance supports a particular control u
the Player’sgetControl(String forName) method. If the output is null, the control
specified byforName is not supported. To obtain all the controls a Player instance suppo
use thegetControls() method. This method returns an array of Control objects that mig
include manufacturer specific controls, if the implementation supports them.

Additionally, the DAVIC 1.4 (Digital Audio-Video Council) specification includes a
number of useful JMF Control objects that may be used with implementations of the J
TV API. These controls are listed inTABLE 3.

5.2 JMF Synchronization

JMF allows the specification of synchronization relationships between media and the c
that serves as the synchronization master for presenting the media. The details of the
synchronization primitives are described in the JMF documentation. A JMF Player inh

Interface Function

javax.tv.media.MediaSelectControl Media selection

javax.tv.media.AWTVideoSizeControl Video size and position

TABLE 3 DAVIC Controls

DAVIC Control Function

org.davic.media.MediaTimeEventControl Time based events

org.davic.media.LanguageControl Base class for language selection

org.davic.media.AudioLanguageControl Audio language selection

org.davic.media.SubtitlingLanguageControl Subtitle language selection

org.davic.media.FreezeControl Freeze frame

org.davic.media.MediaTimePositionControl Position
24 Java TV API Technical Overview, Version 1.0, 11/14/00

also
the
ion
g the

e
uch
tion

dia
a
ly
otocol
ort

ts, this
m of
 a

rk can
first

st
ary
is
hus,
from the Clock class, which provides a method to obtain the current media-time. Clock
provides a method to obtain an object called a time-base. The time-base represents
synchronization master for Clock, which has methods for specifying the synchronizat
point between media-time and the time-base, as well as other parameters for controllin
relationship between the media-time and the time-base.

A new mechanism defined by DAVIC is supported in the Java TV API to provide for th
delivery of an event at a particular media-time. A Player that can support delivery of s
events provides the MediaTimeEventControl interface, which provides for the registra
of MediaTimeEventListeners. The MediaTimeEvent is delivered to
MediaTimeEventListeners when the appropriate media-time has occurred.

5.3 Player Architecture and the Broadcast Pipeline

JMF controls the playback of media data with an object of classjavax.media.Player .
There are two distinct components that are created for this: protocol handlers and me
handlers. A Player is a type of media handler. A protocol handler is a source of data;
media handler is a consumer of data. A protocol abstracts and, therefore, is complete
dependent upon, the data delivery mechanism that is used. For example, separate pr
handlers are required for HTTP delivered over an IP connection and MPEG-2 Transp
delivered from a cable tuner. JMF defines the abstract class
javax.media.protocol.DataSource as the base class for all protocol handlers. JMF
defines the interfacejavax.media.MediaHandler for all content handlers;
javax.media.Player extends MediaHandler.

Most implementations of JMF assume that a complete decoding pipeline should be
constructed each time a new media stream is to be rendered. In desktop environmen
is a natural notion. Usually, separate network connections are required for each strea
media. Each connection has completely separate pipeline requirements, and requires
potentially complex negotiation with the source of the connection (e.g., a server).

In a broadcast environment, this is not the case. The interface to the broadcast netwo
be modeled as a multiplex of multiplexes. Such a model combines the actual tuner (the
multiplex) and demux (the second multiplex). Thus, the control interface to a broadca
network consists of tuning (primary multiplex selection) and stream selection (second
multiplex selection) (seeFIGURE 6). For traditional video broadcast, the resulting pipeline
always the same: the secondary multiplex is connected to an audio/video decoder. T
JMF and the Broadcast Pipeline 25

dec,

iew the

r
ction

ve, a
never

xes is
channel changing requires no acquisition of new pipeline resources (tuner, demux, co
screen), merely a command to the network interface with tuning and stream selection
parameters. This presumes that the same tuner and rendering sub-system is used to v
different channels.

FIGURE 6 Broadcast Network Interface

JMF can model this pipeline with no modification to the existing interfaces. The Playe
object still represents the whole pipeline and the DataSource still represents the conne
to the network. To accommodate the broadcast selection mechanisms described abo
simple addition is required. Rather than require that the pipeline be reconstructed whe
one of the two multiplexes is switched (which is what happens if a new player is
constructed for each tuning request), a selection interface that can affect the two demu
provided. This mechanism is found injavax.tv.media.MediaSelectControl . It is a JMF
Control with APIs for asynchronous selection and de-selection of content.
26 Java TV API Technical Overview, Version 1.0, 11/14/00

on

f the

ed in

O/

-
using

the
Broadcast Data APIs

The Java TV APIs for broadcast data permit access to data transmitted in the televisi
broadcast signal. These APIs support access to data carried in three formats:

• Broadcast file systems
The Java TV API provides access to broadcast file and directory data through use o
file access mechanisms defined in the packagejava.io .

• IP datagrams
The Java TV API provides access to unicast and multicast IP datagrams transmitt
the broadcast stream through the use of the conventional datagram reception
mechanisms of thejava.net package.

• Streaming data
The Java TV API provides access to generic streaming data extracted from the
broadcast using the JMF packagejavax.media.protocol .

6.1 Broadcast Data API Definitions

• DSM-CC - MPEG-2 Digital Storage Media Command and Control, as defined in IS
IEC 13818-6 (see the reference to DSM-CC in Appendix I).

• object carousel - A mechanism for cyclic transmission of DSM-CC User-to-User (U
U) Objects over data carousel. Object carousels convey hierarchical file structures
DSM-CC U-U File and Directory objects.

• data carousel- A mechanism for cyclic transmission of data modules, as defined by
DSM-CC User-to-Network Download protocol.
Broadcast Data APIs 27

 or

e file

rmit

n the

col.
nd

m. It

or
• asynchronous data - data that includes no timing requirements. In an MPEG-2
transport stream, asynchronous data contains no program clock reference (PCR)
presentation time stamp (PTS) values.

6.2 Broadcast File Systems

The Java TV API provides access to broadcast file and directory data through use of th
access mechanisms defined in the packagejava.io . Such data is typically transmitted in a
“carousel” wherein the contents of a remote file system are cyclically transmitted to pe
reconstruction on the receiver. The Java TV API models broadcast carousels as
conventional disk file systems with high access latencies. Most interactions with the
specific carousel protocols are handled by the Java TV API implementation rather tha
application.

The Java TV API is sufficiently high level for use with any broadcast file system proto
However, its use with two prevalent protocols, the DSM-CC object carousel protocol a
the DSM-CC data carousel protocol, are described in detail below.

6.2.1 DSM-CC Object Carousels

The DSM-CC object carousel protocol is a commonly used form of broadcast file syste
specifies three object types for structuring carousel data:

• DSM::ServiceGateway - provides access to the top-level directory of an object
carousel.

• DSM::Directory - represents a conventional directory structure; may refer to files
other directories.

• DSM::File - represents generic file data.

The classjava.io.File represents all of these object types. The Java TV API class
javax.tv.carousel.CarouselFile subclassesjava.io.File to handle object carousel
access, adding the ability to:

• Refer to a carousel object usingjavax.tv.locator.Locator

• Notify applications of updates to individual carousel objects
28 Java TV API Technical Overview, Version 1.0, 11/14/00

ject.

subtree
is

l has
stem

bjects

g

d

Applications use the conventional file input classes of thejava.io package (i.e.,
FileInputStream, FileReader, and RandomAccessFile) to read from a CarouselFile ob

6.2.1.1 Object Carousel Example Usage

1. Create CarouselFile of top-level directory.
CarouselFile serviceGateway = new CarouselFile(locator);

2. List top-level objects.
String files[] = serviceGateway.list();

3. Create a file object.
CarouselFile myFile = new CarouselFile(serviceGateway, files[0]);

4. Create a file input object.
FileInputStream fis = new FileInputStream(myFile);

5. Read from file.
byte data = fis.read();

6. Close file.
fis.close();

When a CarouselFile of a ServiceGateway is instantiated, the receiver "mounts" the
associated carousel in the local file system, attaching the carousel's namespace as a
of the local file system hierarchy. The location of the mount point in the local file system
dynamically determined or specified by television standards bodies. After the carouse
been mounted, the application can query the location of the carousel in the local file sy
hierarchy using the methodCarouselFile.getCanonicalPath() .

After a carousel has been mounted in the local file system, applications can access o
of type DSM::Directory and DSM::File in the carousel using CarouselFile objects or
normaljava.io.File objects. TheCarouselFile class has special asynchronous loadin
features not found injava.io.File (see Object Carousel Management).

The read methods on the file input classesFileInputStream , FileReader , and
RandomAccessFile throw instances ofIOException if the requested data cannot be loade
Broadcast Data APIs 29

rom
. The
s

usly

he

t

from the carousel. If the carousel is no longer accessible, the receiver may permit
applications to continue to read from previously loaded data.

6.2.1.2 Object Carousel Management

Although applications can treat object carousels much like any other file system, the
receiver must interact with carousels explicitly. This interaction should be consistent f
one receiver implementation to another to provide consistent behavior to applications
following actions are recommended when implementations of the Java TV API acces
DSM-CC object carousels.

Upon instantiating a CarouselFile of a DSM::ServiceGateway object, the receiver:

1. Attaches the service domain of the referenced carousel,
2. Mounts the carousel file hierarchy in the local file system, and
3. Asynchronously loads the contents of the DSM::ServiceGateway object.

Upon instantiating a CarouselFile of a DSM::Directory object, the receiver asynchrono
loads the contents of the DSM::Directory object. A call to the directory method
CarouselFile.listDirectoryContents() blocks until the contents of the
DSM::ServiceGateway or DSM::Directory referenced by the CarouselFile are loaded.

Likewise, instantiating a CarouselFile referencing a DSM::File object asynchronously
loads the contents of the DSM::File object. A read operation on a
java.io.FileInputStream , java.io.FileReader , or java.io.RandomAccessFile

object opened on a CarouselFile object representing a DSM::File object blocks until t
contents of the corresponding DSM::File object are loaded.

A close operation on every instance ofjava.io.FileInputStream ,
java.io.FileReader , andjava.io.RandomAccessFile corresponding to a single
DSM::File object unloads the contents of the DSM::File object.

Finalization of all instances of CarouselFile referring to a single DSM::Directory objec
unloads the contents of the DSM::Directory object. After all instances of CarouselFile
referring to objects in the carousel have been finalized and all instances of
java.io.FileInputStream , java.io.FileReader , andjava.io.RandomAccessFile

referring to DSM::File objects in the carousel have been closed, the receiver:
30 Java TV API Technical Overview, Version 1.0, 11/14/00

stem
ge
mit the

st

ilar to

 the

ules.
fers.

g a
tion

ch
nce of
les
se
ment
1. Unloads the DSM::ServiceGateway object,
2. Unmounts the carousel from the local file system, and
3. Detaches the service domain of the carousel.

6.2.2 DSM-CC Data Carousels

The DSM-CC data carousel protocol supports transmission of a single-directory file sy
to the receiver. The data carousel protocol includes a DownLoadInfoIndication messa
announcing the data modules present in a particular carousel, and messages to trans
contents of each carousel module. If the television receiver is compliant with broadca
standards that permit string-based naming of data carousel modules, instances of
CarouselFile can be used to access and read data carousel modules in a manner sim
that for DSM::File objects in an object carousel. Specifically,

• A CarouselFile instantiated as the top-level "directory" of a data carousel provides
contents of the DownLoadInfoIndication message for the carousel.

• Instances of CarouselFile may be created to refer to individual data carousel mod
Instantiating a CarouselFile object asynchronously loads the module to which it re

• A read operation on ajava.io.FileInputStream , java.io.FileReader , or
java.io.RandomAccessFile instance opened on a CarouselFile object representin
carousel module blocks until the corresponding module is loaded. The read opera
accesses only the contents of the blockDataByte field of the DownloadDataBlock
messages comprising the module.

• A close operation on every instance ofjava.io.FileInputStream ,
java.io.FileReader , andjava.io.RandomAccessFile corresponding to a single
data carousel module unloads the module.

6.2.3 Reducing the Effects of Carousel Latency

Access to data in DSM-CC object carousels or data carousels can be subject to a mu
higher degree of latency than is found in a typical disk-based file system. In the abse
measures to deal with this latency, applications that access multiple carousel-based fi
might experience considerable delays as all the needed data is loaded. To reduce the
delays, applications based on the Java TV API can use the following latency-manage
techniques:
Broadcast Data APIs 31

in
g

 file
tions.

llel

m

ue IP
es are
s (see

s

• Applications can create a new thread per carousel file to be read, and then block
parallel on read operations. This minimizes the average time required for accessin
each file, but causes additional thread overhead.

• Applications can poll non-blocking status methods, such as
FileInputStream.available() or FileReader.ready() , to determine the
availability of data.

• Applications can time out on read operations by issuingThread.interrupt() calls to
blocked threads.

• Instantiating a file input class on a CarouselFile asynchronously loads the
corresponding carousel data. Therefore, applications can first create instances of
input classes for each required carousel file and then block in series on read opera
This minimizes the total time required to access all the required files, but typically
causes the average file access time to be greater than in the case of multiple para
reads.

6.3 IP Datagrams

The Java TV API provides access to IP datagrams transmitted in the broadcast strea
through use of the normal datagram reception mechanisms of thejava.net package.
Applications receive unicast IP datagrams using thejava.net.DatagramSocket class.
Applications receive multicast IP datagrams using thejava.net.MulticastSocket class.

To enable reception of multicast IP datagrams, the Java TV API assigns a locally-uniq
address to service components carrying encapsulated IP datagrams. These address
generated dynamically from the set of IP addresses reserved for use in private network
RFC 1918 referenced in Appendix I for more information). Television applications
determine the local IP address assigned to a given service component using the clas
javax.tv.net.InterfaceMap . Applications then use this IP address to indicate the
network interface from which instances ofjava.net.MulticastSocket or
java.net.DatagramSocket receive multicast datagrams.
32 Java TV API Technical Overview, Version 1.0, 11/14/00

st

g a

is

cts.

ws
6.4 Streaming Data

The Java TV API provides access to generic streaming data in the television broadca
using the JMF packagejavax.media.protocol . Asynchronous streaming data can be
obtained using the interfacejavax.tv.media.protocol.PushSourceStream2 .

A Java TV API application typically refers to an individual data service component usin
javax.tv.locator.Locator object. Using the methodLocator.toExternalForm() , an
application converts the Locator object into a string from which a
javax.media.MediaLocator object is constructed. The resulting MediaLocator object
then used to obtain ajavax.media.DataSource object fromjavax.media.Manager .
Then, the DataSource object is used to obtain one or more PushSourceStream2 obje

The interface PushSourceStream2 extends the JMF version 1.0 interface
javax.media.protocol.PushSourceStream with a new read mechanism. The method
PushSourceStream2.readStream() provides access to the payload of the data and thro
exceptions to indicate data loss. The Java TV API makes no guarantees concerning
buffering or availability of the data obtained through PushSourceStream2.
Broadcast Data APIs 33

34 Java TV API Technical Overview, Version 1.0, 11/14/00

va
le is

 its

e
ired

the
re

e of
Application Lifecycle

The Java TV API defines an application model called the Xlet application lifecycle. Ja
applications that use this lifecycle model are called Xlets. The Xlet application lifecyc
compatible with the existing application environment and virtual machine technology.

The Xlet application lifecycle model defines the dialog (protocol) between an Xlet and
environment through the following:

• A simple, well-defined state machine
• A concise definition of the application's states
• An API to signal changes between the states

7.1 Xlet Application Lifecycle Definitions

The following definitions are used in the Xlet application lifecycle model:

• application manager - A part of a digital television receiver's software operating
environment that manages Java applications. The application manager controls th
lifecycle of an Xlet by signalling its state changes. An application manager is requ
on a receiver, but its precise behavior is implementation specific.

• Xlet - A Java application (usually downloaded) that runs on the digital television
receiver.

• Xlet states - The states changes of an Xlet are handled by the Xlet itself, i.e., only
Xlet knows when the state has been successfully changed. The four Xlet states a
Loaded, Active, Paused, and Destroyed. Xlets communicate with the application
manager about state changes via callbacks. The Xlet signals the success or failur
such changes with the return value of the callbacks.
Application Lifecycle 35

ach

ager
iving
ce

Java
ger

te
le to

tate.
ges

Xlet.

 its
so it
• Xlet context - the object that an Xlet uses to access other facilities in the system. E
Xlet has one XletContext object and it can be tailored to a specific environment.

7.2 Application Manager Requirements

The Xlet application lifecycle addresses the amount of control that an application man
can exert over an Xlet. The application manager's control over Xlets does not include g
an Xlet access to other resources on the receiver, such as graphics or shared resour
allocation/management. Note that the application manager may or may not be written
entirely in the Java language.

Although a detailed specification of an application manager is outside the scope of the
TV API, the Xlet application lifecycle model requires that the resident application mana
adhere to the following principles:

• An Xlet can be destroyed at any time.
An application manager is the entity on a digital television receiver that has ultima
control over the Xlets it manages. Therefore, the application manager must be ab
destroy an Xlet at any time.

• The current state an Xlet will always be known.
An application manager is responsible for signaling Xlets regarding their current s
Xlets, however, can also change their own states, but they must signal those chan
back to the application manager.

• An application manager can change the state of an Xlet.
The primary purpose of an application manager is to direct the state changes of an

• An application manager will know if an Xlet has changed its state.
One of the features of the Xlet application lifecycle API is that the Xlet can change
own state. Therefore, the application manager must be notified of this state change
can track the state of the Xlet.
36 Java TV API Technical Overview, Version 1.0, 11/14/00

as

has
out

his

es.

the

d

7.3 Xlet States

The lifecycle states for Xlets are:

TABLE 4 Xlet States

7.3.1 Xlet State Machine

The Xlet state machine is designed to ensure that the behavior of an Xlet is as close
possible to the behavior television viewers expect, specifically:

• The perceived startup latency of an Xlet should be very short.
• It should be possible to temporarily stop an Xlet from providing it service.
• It should be possible to destroy an Xlet at any time.

State Name Description

Loaded The Xlet has been loaded and has not been initialized. This state is entered after the Xlet
been created using new. The no-argument constructor for the Xlet is called and returns with
throwing an exception. The Xlet typically does little or no initialization in this step. If an
exception occurs, the Xlet immediately enters the Destroyed state and is discarded. Note: T
state is entered only once per instance of an Xlet.

Paused The Xlet is initialized and quiescent. It should not be holding or using any shared resourc
This state is entered:

From the Loaded state after the Xlet.initXlet() method returns successfully, or
From the Active state after the Xlet.pauseXlet() method returns successfully, or
From the Active state before the XletContext.notifyPaused() method returns successfully to
Xlet.

Active The Xlet is functioning normally and providing service. This state is entered from the Pause
state after the Xlet.startXlet() method returns successfully.

Destroyed The Xlet has released all of its resources and terminated. This state is entered:

When the destroyXlet() method for the Xlet returns successfully. The destroyXlet() method
shall release all resources held and perform any necessary clean up so it may be garbage
collected; or
When the XletContext.notifyDestroyed() method returns successfully to the Xlet. The Xlet
must perform the equivalent of the Xlet.destroyXlet() method before calling
XletContext.notifyDestroyed.

Note: This state is only entered once per instance of an Xlet.
Application Lifecycle 37

d.
nly

et is
FIGURE 7 shows the application state machine diagram for Xlets.

FIGURE 7 Xlet State Machine Diagram

7.3.2 Xlet Lifecycle Model

Only the Xlet can determine if it is able to provide the service for which it was designe
Therefore, an application manager cannot force an Xlet to provide its service; it can o
indicate that the Xlet is permitted to do so. A typical sequence of Xlet execution is:

TABLE 5 Xlet Execution

Application Manager Xlet

The application manager creates a new instance of an Xlet. The default (no argument) constructor for the Xl
called; it is in the Loaded state.

The application manager creates the necessary context object
for the Xlet to run and initializes the Xlet.

The Xlet uses the context object to initialize itself. It
is now in the Paused state.

The application manager has decided that it is an appropriate
time for the Xlet to perform its service, so it signals it to enter
the Active state.

The Xlet acquires any resources it needs and begins
to perform its service.

The application manager no longer needs the Xlet to perform its
service, so it signals the Xlet to stop performing its service.

The Xlet stops performing its service and might
choose to release some resources it currently holds.
38 Java TV API Technical Overview, Version 1.0, 11/14/00

d its

an
Xlet
ject.

sfully

sed
7.4 Xlet Package

The Xlet package provides developers with APIs that provide application lifecycle
signaling in a digital television receiver environment. The Xlet API consists of two
interfaces, Xlet and XletContext, which express the communication between an Xlet an
environment. (See Javadocs for more details.)

The Xlet APIs use a callback approach to signal state changes. The state of an Xlet c
change by either the application manager calling one of the methods on Xlet or by the
notifying the application manager of an internal state transition via the XletContext ob
The semantics of exactly when that state change occurs are important:

• Calls to Xlet
Calls to this interface indicate a successful state change only when the call succes
returns.

• Calls to XletContext
Calls to this interface indicate a state change on entry.

 The Xlet APIs adhere to the following principles:

• The Xlet API signals an Xlet when a state change is required.
The primary purpose of the Xlet API is to direct the state changes of an Xlet.

• A context will be provided to the Xlet when it is initialized.
An XletContext is an object that is used to represent the Xlet. An XletContext is pas
to the Xlet at initialization to permit configuration based on the environment.

• An Xlet can signal when it has changed state.

The application manager has determined that the Xlet is no
longer needed, or perhaps needs to make room for a higher
priority application, so it signals the Xlet that it is to be
destroyed.

If it has been designed to do so, the Xlet saves state
or user preferences and performs clean up.

Application Manager Xlet
Application Lifecycle 39

rm
 and

ger.

tion

s
 its
If for
tion
he

now
 the
ch

ck
ources
ange-

be
ina-
An individual Xlet is the only entity that can define whether or not it is able to perfo
properly. Therefore, an Xlet may discover that it can no longer operate as desired
may choose to change its state.

• An Xlet can signal when it is done.
When the Xlet has completed its task, it should signal this to the application mana

7.4.1 Xlet Interface

The Xlet interface provides an application manager with four methods to signal applica
lifecycle state changes to an Xlet:

• public void initXlet(XletContext ctx)

Initializes the Xlet. This method is a signal for Xlet to initialize itself, so that it is
prepared to provide its service quickly. An XletContext object is passed in with thi
method. This object can be used by the Xlet to access properties associated with
environment, as well as to signal the application manager that it has changed state.
some reason the Xlet cannot successfully initialize, it can signal this to the applica
manager by throwing an XletStateChangeException. Otherwise, the Xlet returns t
Paused state.

• public void startXlet()

The Xlet moves to the Active state when this method completes. The Xlet should
be providing its service. Xlets typically attempt to acquire resources at this time. If
Xlet cannot enter the Active state, it can throw an XletStateChangeException, whi
will notify the application manager that the state change failed.

• public void pauseXlet()

The pauseXlet callback signals the Xlet to stop providing service. When the callba
returns, the Xlet is in the Paused state. The Xlet may choose to release some res
at this time. If the Xlet cannot enter the Paused state, it can throw an XletStateCh
Exception, which will notify the application manager that the state change failed.

• public void destroyXlet()

This method is a signal to the Xlet that it is no longer needed and that it will soon
purged from the system. Xlets should perform any operations required before term
tion, such as releasing resources, saving preferences, and saving state.
40 Java TV API Technical Overview, Version 1.0, 11/14/00

rform
ot be
 be

never

 an
 its

uce
t the

w
 a

Xlet
te the

ace)

these
f the
r
s

7.4.1.1 Xlets and Finalization

The Java language provides a mechanism called finalization that allows objects to pe
some clean up just before they are garbage collected. The finalizer on an object will n
called until all references to the object have been discarded and the object is ready to
garbage collected. The Java language specification states that programmers should
depend on a finalizer being called. Note that in the Xlet interface thedestroyXlet()

method is called on an Xlet shortly before it is to be destroyed. The intent of the two
methods are similar, but programmers can assume that thedestroyXlet() method will be
called.

• What Xlets should do in their finalizers.
As mentioned above, objects should not depend on their finalizers being called. If
Xlet must typically do clean up at the end of normal execution, the Xlet should use
destroyXlet() method instead. In most cases the finalizer should be empty.

• Reducing the risk of misbehaving Xlets.
In general, the underlying Java application environment should be designed to red
the risk of Xlets that misbehave in their finalizers. One possible technique is to se
maximum priority of the finalizer's thread group very low. Constructors on objects
thought to cause potential risks (such as Thread and ThreadGroup) can also thro
security exceptions. The implementor of the application environment must provide
SecurityManager that implements this policy. An application environment will likely
provide at least two SecurityManager objects, one for the normal operation of an
and one that implements the security policy of the ThreadGroup objects that execu
finalizer threads.

7.4.1.2 Xlets and Threads

Xlets should declare their lifecycle methods (the methods implementing the Xlet interf
assynchronized . This is not done in the Xlet interface method signatures because
interface methods cannot be declared synchronized in the Java language. By declaring
methods synchronized, a lock will be acquired on the Xlet object interface when one o
lifecycle methods is called. This will have the effect of blocking other calls to the othe
method's lifecycle methods. Xlets can also benefit from acquiring a lock on themselve
before calling the lifecycle methods on their XletContext. A well-designed application
manager should create individual threads to call the lifecycle methods on Xlets.
Application Lifecycle 41

es
e

s:

yed
as

state.

 the

e

zes it

.
cation
7.4.2 XletContext Interface

An XletContext is an object passed to an Xlet when it is initialized. XletContext provid
an Xlet with a mechanism to obtain properties, as well as a way to signal internal stat
changes to the application manager. There is a one-to-one correspondence between
XletContext objects and Xlets. The XletContext interface defines the following method

• public void notifyDestroyed()

This method signals the application manager that the Xlet has entered the Destro
state. This method allows an Xlet to signal the application manager that the Xlet h
completed execution and is ready to be destroyed.

• public void notifyPaused()

This method signals the application manager that the Xlet has entered the Paused
This state is entered when an Xlet can no longer provide its service.

• public java.lang.Object getXletProperty(java.lang.String key)

This method allows an Xlet to retrieve named properties from the XletContext.

• public void resumeRequest()

This method signals the application manager that the Xlet is interested in entering
Active state.

7.5 Xlet Lifecycle Example

A simple example of Xlet lifecycle is a stock ticker that uses a back channel to retriev
stock quotes, which it displays on the viewer's television.

1. The application manager obtains the code for the Xlet.
2. The application manager creates an instance of the XletContext object and initiali

for the new Xlet.
3. The application manager initializes the Xlet by calling itsinitXlet() method and

passing it the XletContext object.
4. The Xlet uses the XletContext object to initialize itself and enters the Paused state
5. The user presses a button on the television's remote control that signals the appli

manager to start the Xlet.
42 Java TV API Technical Overview, Version 1.0, 11/14/00

nel to

e

he

uotes
It

it
6. The application manager calls thestartXlet() method for the Xlet. The application
manager assumes that the Xlet is performing its service.

7. Upon receiving this signal, the Xlet creates a new thread that opens the back chan
retrieve the stock quotes. The Xlet is now in the Active state.

8. The Xlet begins to show the stock quotes.
9. Due to circumstances beyond the control of the Xlet, it is no longer able to retriev

updated stock quotes.
10. The Xlet decides to continue displaying the most recent quotes it has. Note that t

application is still in the Active state.
11. After a time, the Xlet is still unable to open the back channel. It decides that the q

it is displaying are too old to present and that it can no longer perform its service.
chooses to take itself out of the Active state. It calls thenotifyPaused() method on the
XletContext object to signal this change to the application manager.

12. Finally, the Xlet decides it no longer has any chance of performing its service, so
decides it should be terminated. The Xlet does some final clean up and calls the
notifyDestroyed() method on the XletContext object to signal the application
manager that it has entered the Destroyed state.

13. The application manager prepares the Xlet for garbage collection.
Application Lifecycle 43

44 Java TV API Technical Overview, Version 1.0, 11/14/00

he
.

K

le

d
m/

 and

/

ss file
VM

on/
Appendix I: Related Documents

The PersonalJava application environment programming interfaces are specified by t
PersonalJava API Specification, Version 1.2 at http://java.sun.com/products/personaljava
This specification defines the relationship between the PersonalJava API and the JDTM

API.

TheJava Platform 1.1 Core API Specificationdescribes the Java platform and is availab
at http://java.sun.com/products/jdk/1.1/docs/api/packages.html.

The Java programming language is described inThe Java Programming Language, Secon
Edition (ISBN: 0-201-31006-6) by Ken Arnold and James Gosling at http://java.sun.co
docs/books/javaprog/secondedition. This book covers the constructs of the language
core packages in detail.

The Java programming language is specified inThe Java Language Specification(ISBN 0-
201-63451-1) by James Gosling, Bill Joy, and Guy Steele at http://java.sun.com/docs
books/jls.

The Java virtual machine is specified inThe Java Virtual Machine Specification (ISBN 0-
201-63452-X) by Tim Lindholm and Frank Yellin at http://java.sun.com/docs/books/
vmspec. This book contains comprehensive coverage of the Java virtual machine cla
format and instruction set. In addition, the book contains directions for compiling the J
with numerous practical examples to clarify how it operates in practice. The book also
demonstrates the VM's powerful verification techniques.

The JDK 1.1 class libraries are described in two volumes. The first volume,The Java Class
Libraries: Second Edition, Volume 1 (ISBN 0-201-31002-1) by Patrick Chan, Rosanna
Lee, and Douglas Kramer, is at http://java.sun.com/docs/books/chanlee/second_editi
vol1. The second volume,The Java Class Libraries: Second Edition, Volume 2 (ISBN 0-
Appendix I: Related Documents 45

http://java.sun.com/products/personaljava/spec-1-1/pJavaSpec.html
http://java.sun.com/products/jdk/1.1/docs/api/packages.html
http://java.sun.com/products/jdk/1.1/docs/api/packages.html
http://java.sun.com/docs/books/javaprog/secondedition
http://java.sun.com/docs/books/javaprog/secondedition
http://java.sun.com/docs/books/jls
http://java.sun.com/docs/books/jls
http://java.sun.com/docs/books/vmspec
http://java.sun.com/docs/books/vmspec
http://java.sun.com/docs/books/chanlee/second_edition/vol1
http://java.sun.com/docs/books/chanlee/second_edition/vol1
http://java.sun.com/docs/books/chanlee/second_edition/vol1
http://java.sun.com/docs/books/chanlee/second_edition
http://java.sun.com/docs/books/chanlee/second_edition

s/

This

dia/

Is

ge
201-31003-1) by Patrick Chan and Rosanna Lee, is at http://java.sun.com/docs/book
chanlee/second_edition.

The Secure Sockets Layer (SSL) is documented inSSL Java Standard Extension to JDK
1.1 at http://java.sun.com/security/.

The Java Media Framework is specified in theJava Media Framework 1.0 Specificationat
http://java.sun.com/products/java-media/jmf/forDevelopers/playerapi/packages.html.
specification documents the APIs. A developer's guide describing the Java Media
Framework is available in Java Media Players at http://java.sun.com/products/java-me
jmf/forDevelopers/playerguide/index.html.

The Digital Audio-Visual Industry Consortium (DAVIC) has defined Java language AP
for digital television. These can be found at ftp://ftp.davic.org/Davic/Pub/Spec1_4/
14p09ml.zip in part 9.

For broadcast data, the MPEG Systems Layer is described in ISO/IEC 13818-1:
Information technology - Generic coding of moving pictures and associated audio
information - Part 1: Systems.

DSM-CC is defined in ISO/IEC 13818-6:Information technology - Generic coding of
moving pictures and associated audio information - Part 6: Extension for Digital Stora
Media Command and Control (DSM-CC).

IP multicasting is described further in RFC 1112Host Extensions for IP Multicasting,
August 1989, by S. Deering; and RFC 2365Administratively Scoped IP Multicast, July
1998, by D. Meyer.

IP addresses reserved for use in private networks are described in RFC 1918Address
Allocation for Private Networks, February 1996, by Y. Rekhter, et al.

For broadcast data, the Internet RFCs can be found at http://www.ietf.org/rfc.html.
46 Java TV API Technical Overview, Version 1.0, 11/14/00

http://java.sun.com/docs/books/chanlee/second_edition
http://java.sun.com/docs/books/chanlee/second_edition
http://java.sun.com/security/ssl/API_users_guide.html
http://java.sun.com/products/java-media/jmf/forDevelopers/playerapi/packages.html
http://java.sun.com/products/java-media/jmf/forDevelopers/playerapi/packages.html
http://java.sun.com/products/java-media/jmf/forDevelopers/playerapi/packages.html
http://java.sun.com/products/java-media/jmf/forDevelopers/playerguide/index.html
http://java.sun.com/products/java-media/jmf/forDevelopers/playerguide/index.html
ftp://ftp.davic.org/Davic/Pub/Spec1_4/14p09ml.zip
http://www.ietf.org/rfc.html

Index
A
Abstract Window Toolkit, 12
Active state, 35
address, 14
advertisement, 4
application

environment, 9
lifecycle, 6, 35
lifecycle signaling, 39
model, 35
program-specific, 3
state, 35
television-specific, 3

application manager, 6, 19, 35, 36
requirements, 36

asynchronous
access, 15
data, 28
delivery, 16
service selection, 20
streaming data, 33

ATSC, 13, 14
audio

gain, 23
output, 5
output device, 8
stream, 8, 13

authentication keys, 11
AWT, 12

B
back channel, 42

bi-directional TCP/IP connection, 11
broadcast

data, 27
data stream, 10
enhanced, 2
file system, 27, 28
file transport, 19
interactive, 3
media pipeline, 5, 7, 8, 23

broadcast data API, 27
definitions, 27

broadcaster-specific rating, 17
bytecode verification, 11

C
C/A, 5, 8, 11
cache, 15
callback, 39
carousel, 28

data, 27
data structure, 28
latency, 31
management, 30
module, 31
object, 27
protocol, 28

channel, 13
back, 42
component, 17
name, 17
number, 17
return, 3, 10
 Index 47

clock, 19
media synchronization, 24
program clock reference, 28

commercial, 4
conditional access, 5, 7, 11, 17
content, 13, 18, 23

developer, 3
handler, 5, 19
provider, 14

context, 36
control interface, 25
Control object, 23
cyclic transmission, 27

D
data

broadcast, 27
carousel, 27, 31
delivery mechanism, 25
formats, 27
loss, 33
module, 27
source, 25
stream, 11, 13
streaming, 27, 33
transmission, 27

database, 14
datagram

IP, 27, 32
reception mechanism, 27, 32

DAVIC, 24, 25
decoder, 5, 7, 8
decoding hardware, 20
decrypt, 11
decrypted

audio stream, 8
video stream, 8

decryption algorithm, 11
definitions

API features, 5
application, 3
application manager, 6
broadcast data, 5
broadcast data API, 27
broadcast pipeline, 5
EPG, 4
JMF, 23

lifecycle, 6
receiver, 2
service, 5, 14
service information, 5
service selection, 5, 19
SI, 14
Xlet, 6
Xlet API, 35

delivery mechanism, 18
demultiplexer, 5, 7
demux, 25
descramble, 11
Destroyed state, 20, 35, 42
Digital Storage Media Command and Control, 27
directory data, 28
DSM::Directory, 28, 30
DSM::File, 28, 30
DSM::ServiceGateway, 28, 30
DSM-CC, 27, 30, 31

object carousel, 28
DSM-CC User-to-User, 27
DVB, 13, 14
DVB age-based rating, 17

E
electronic

commerce, 3
program guide, 4

electronic program guide, 15
element, 14

SI, 14
email, 3
end time, 17
enhanced broadcast, 2
environment software, 8
EPG, 4, 5, 15, 17
event, 16, 17, 25
event listener, 20
exception, 16, 20, 33

F
FCC TV rating, 17
features of the Java TV API, 5
file

access mechanism, 28
48 Java TV API Technical Overview, Version 1.0, 11/14/00

data, 28
file system, 31

broadcast, 27, 28
finalization, 30, 41
Flash ROM, 10

G
garbage collection, 41
graphics toolkit, 10
GUI component, 23
guide package, 15, 17

H
handler

content, 5
media, 25
protocol, 25
service content, 19

head-end, 3
HTTP, 10, 25
hub, 3

I
I/O, 10
input/output, 10
interaction, 3
interactive broadcast, 2, 3
Internet Protocol, 18
IP, 18

address, 32
connection, 25
data, 10

IP datagram, 27, 32
multicast, 27, 32
unicast, 27, 32

J
Java Media Framework, 5, 23
Java platform, 1
Java Secure Socket Extension, 11
java.awt.Canvas, 10
java.awt.Font, 10

java.awt.Scrollbar, 10
java.io, 10, 27, 28, 29
java.io.File, 28
java.io.InputStream, 10
java.io.OutputStream, 10
java.lang.Thread, 10
java.net, 10, 27, 32
java.net.DatagramSocket, 32
java.net.InetAddress, 10
java.net.MulticastSocket, 32
java.net.Socket, 10
java.net.URL, 10
java.util.Calendar, 10
java.util.EventObject, 10
java.util.Hashtable, 10
javax.io, 11
javax.media.Control, 23
javax.media.GainControl, 23
javax.media.MediaHandler, 25
javax.media.MediaLocator, 33
javax.media.Player, 23, 25
javax.media.protocol, 27, 33
javax.media.protocol.DataSource, 25
javax.net, 11
javax.net.InterfaceMap, 32
javax.net.ssl, 11
javax.tv.carousel.CarouselFile, 28
javax.tv.locator.Locator, 28, 33
javax.tv.media, 23
javax.tv.media.MediaSelectControl, 26
javax.tv.media.protocol.PushSourceStream2, 33
JMF, 5, 23

control, 23, 26
Player object, 20
synchronization, 24

JSSE, 11

K
keys, 11

L
latency, 37

management, 31
layout, 13
legacy security mechanism, 11
Index 49

lifecycle, 6
service content handler, 19
Xlet, 35, 41

listener, 16, 20, 25
Loaded state, 35
local viewer interaction, 3
locator, 13, 14, 17, 20, 28, 33

M
manager

application, 6, 19, 35
media, 33
SI, 5, 14

media, 18, 23
decoder, 7
handler, 25
manager, 33
pipeline, 23
playback, 19
synchronization, 24
time, 25

media stream
rendering, 25
selection, 25

memory, 15
footprint, 9

meta information, 14
MPAA rating, 17
MPEG-2, 8, 13, 15, 18, 25, 27

delivery, 5
multicast IP datagram, 32
multi-network receiver, 2
multiplex, 5, 25

N
naming, string-based, 31
native widget, 12
navigation, 5

package, 14, 16
network, 2

access, 10
sockets, 10

networking, 10
Not Presenting state, 20

O
object

Bouquet, 16
carousel, 27, 28
carousel management, 30
CarouselFile, 29
Control, 23, 24
DSM, 28
GUI, 23
Locator, 13, 33
model, SI database, 14
Network, 16
Player, 23, 26
ProgramEvent, 16
ProgramSchedule, 16, 17
SecurityManager, 41
Service, 17
ServiceComponent, 16
ServiceContext, 20
ServiceDetails, 16, 17
ServiceFilter, 17
ServiceList, 17
ServiceMediaHandler, 20
SI element, 14
SIChangeEvent, 16
SIChangeListener, 16
SIRequest, 16
SIRequestor, 16
ThreadGroup, 41
Transport, 16, 18
TransportStream, 16
XletContext, 36

output device, 8

P
Paused state, 35, 42
PCR, 28
PersonalJava application environment, 9
pipeline, 7

broadcast media, 23
construction, 25

platform, 1
playback, 25
Player object, 23, 25

JMF, 20
Presentation Pending state, 20
Presenting state, 20
50 Java TV API Technical Overview, Version 1.0, 11/14/00

program
clock reference, 28
guide, 3
schedule, 17

program-specific application, 4
property retrieval, 42
protocol, 1, 7, 13, 23, 25, 35

carousel, 28
handler, 25

PTS, 28

R
rating

dimension, 17
information, 17
region, 17

receiver, 2
Internet capable, 3
multi-network, 3
reconstruction, 28
resources, 36

rendering, 7
requirements, 2
return channel, 3, 10
RF signal, 8
RTOS, 9

S
schedule, 17
SCTE, 13
secure

communication, 11
sockets layer, 11

security, 11
exception, 41
policy, 41

selection, 13, 20
server, 3
service, 3, 13, 14

collection, 17
component, 14, 32, 33
component presenter, 19
content handler, 19
delivery mechanism, 17
domain, 30

information, 13, 14, 19
locator, 14, 20
package, 14, 16
presentation, 20
selection, 19
time, 17

service collection, 17
service context, 19, 20

states, 20
service selection, 20
service selection API, 19, 20
ServiceComponent, 16
ServiceDetails, 16
ServiceList, 17
set-top box, 1
SI, 5, 13, 14

API, 14
database, 13, 14, 17
element, 13, 14, 16
manager, 5, 14, 17, 18

signal, 2
analog, 2
digital, 2

sockets, 10
SSL, 11
stand-alone application, 4
start time, 17
state, 20, 35

change, 6
state machine, 35

JMF, 23
ServiceContext, 21
Xlet, 37

stock ticker, 4
storage, 10
streaming data, 33
subtitles, 19
synchronization, 24, 41

master, 25
system

functions, 10
requirements, 2

T
TCP/IP, 11
telephony, 3
television channel, 13
Index 51

Thread object, 41
ThreadGroup object, 41
threads, 41
time

clock, 19
stamp, 28
start, 17

time-base, 25
time-based media, 23
TLS, 11
transport

delivery mechanism, 18
mechanism, 23
package, 15, 18
protocol, 23
stream, 15

Transport Level Security, 11
tuner, 5, 7, 20, 25
tuning, 19

selection, 25
TV program, 3

U
unicast IP datagram, 32
URL, 10
user interface component, 12

V
video

on demand, 3
output device, 8
placement, 23
stream, 8, 11, 13

virtual machine, 9, 11, 35
VM, 9, 11

W
widget, 12

X
Xlet, 35

application lifecycle, 35

context, 36
interface, 39, 40
lifecycle model, 38
state machine, 37
states, 35, 36, 37

Xlet API, 39
definitions, 35

Xlet state machine diagram, 38
XletContext interface, 39, 42
52 Java TV API Technical Overview, Version 1.0, 11/14/00

	Contents
	1. Introduction�1
	2. Environment�7
	3. Services and Service Information�13
	4. Service Selection�19
	5. JMF and the Broadcast Pipeline�23
	6. Broadcast Data APIs�27
	7. Application Lifecycle�35
	8. Appendix I: Related Documents�45
	9. Index�47

	Introduction
	1.1 Television Receivers
	1.2 Television-Specific Applications
	1.2.1 Electronic Program Guides
	1.2.2 Program-Specific Applications
	1.2.3 Stand-alone Applications
	1.2.4 Advertisements

	1.3 Features of the Java TV API

	Environment
	2.1 Hardware Environment
	2.2 Software Environment
	2.3 Application Environment
	2.3.1 Storage and Input/Output
	2.3.2 Return Channel and Non-Broadcast Network Access
	2.3.3 Security
	2.3.4 Abstract Window Toolkit

	Services and Service Information
	3.1 Services and Service Information Definitions
	3.2 SI Packages
	3.2.1 Service Package
	3.2.2 Navigation Package
	3.2.3 Guide Package
	3.2.4 Transport Package

	Service Selection
	4.1Service Selection Definitions
	4.2 Service Selection API Overview
	4.3 Service Context State Model

	JMF and the Broadcast Pipeline
	5.1 JMF Controls
	5.2 JMF Synchronization
	5.3 Player Architecture and the Broadcast Pipeline

	Broadcast Data APIs
	6.1 Broadcast Data API Definitions
	6.2 Broadcast File Systems
	6.2.1 DSM-CC Object Carousels
	6.2.1.1 Object Carousel Example Usage
	6.2.1.2 Object Carousel Management

	6.2.2 DSM-CC Data Carousels
	6.2.3 Reducing the Effects of Carousel Latency

	6.3 IP Datagrams
	6.4 Streaming Data

	Application Lifecycle
	7.1 Xlet Application Lifecycle Definitions
	7.2 Application Manager Requirements
	7.3 Xlet States
	7.3.1 Xlet State Machine
	7.3.2 Xlet Lifecycle Model

	7.4 Xlet Package
	7.4.1 Xlet Interface
	7.4.1.1 Xlets and Finalization
	7.4.1.2 Xlets and Threads

	7.4.2 XletContext Interface

	7.5 Xlet Lifecycle Example

	Appendix I: Related Documents
	Index

