
 The Essential Difference

WebRunner™: What & Why Copyright © 1994 Sun Microsystems 1 of 5

WebRunner™:
What &
Why

The Internet is a vast sea of data represented in many formats and stored on
many hosts. Mosaic™ and NetScape™ are two of many browsers for that data.
Browsers allow people to treat the data spread across the Internet as one
cohesive whole. They integrate the function of fetching the data with figuring
out what it is and displaying it. One of the most important file types they
understand is the hypertext markup language (HTML). HTML allows text data
objects to embed simple formatting information and references to other objects.

WebRunner is a web browser that makes the Internet “come alive.” It builds on
the network browsing techniques established by Mosaic and expands them by
adding dynamic behavior that transforms static documents into dynamic
applications. Current documents in Mosaic are limited to text, illustrations,
low-quality sounds and videos.

WebRunner shatters these limitations by adding the capability to add arbitrary
behavior. Using WebRunner you can add applications that range from
interactive science experiments in educational material, to games and
specialized shopping applications. You can implement interactive advertising,
and customized newspapers; the possibilities are nearly endless.

In addition, WebRunner provides a way for users to access these applications in
a new way. Software transparently migrates across the network. There is no
such thing as “installing” software. It just comes when you need it (after,
perhaps, asking you to pay for it). “Content” developers for the World Wide
Web don’t have to worry about whether or not some special piece of software is
installed in a user’s system, it just gets there automatically. This transparent
acquiring of application frees developers from the boundaries of the fixed
media types like images and text and lets them do whatever they’d like.

The Essential
Difference

The central difference between WebRunner and other browsers is that while
these other browsers each have a lot of detailed, hard-wired knowledge about
the many different data types, protocols and behaviors necessary to navigate
the Web, WebRunner understands essentially none of them. But what it does
understand is to how find out about those things that it doesn’t understand.



 Dynamic content

2 of 5 WebRunner™: What & Why Copyright © 1994 Sun Microsystems

The result of this lack of understanding is great flexibility and the ability easily
to add new capabilities.

What makes this federation of pieces and dynamic addition of capabilites
possible is Java, the underlying programming language and environment on
which WebRunner is built. (See the companion document to this, Java: an
Overview, for and explanation about how Java enables WebRunner.) Briefly, one
can think of Java as a simplified, safe and portable version of C++. It has an
architecture-neutral distribution format, meaning that after you’ve compiled a
piece of Java code it will run on any CPU architecture.

Dynamic content One of the most visible uses of WebRunner’s ability to dynamically add to its
capabilities is something we call dynamic content. For example, someone could
write an Java program following the WebRunner API that implemented an
interactive chemistry simulation. People browsing the net with the WebRunner
browser could easily get this simulation and interact with it, rather than just
having a static picture with some text. They can do this and be assured that the
code that brings their chemistry experiment to life doesn’t also contain
malicious code that damages the system. Code that attempts to be malicious or
which has bugs essentially can’t breach the walls placed around it by the
security and robustness features of Java

For example, the following is a snapshot of WebRunner in use. Each diagram in
the document represents a sort algorithm. Each algorithm sorts an array of
integers. Each horizontal line represents an integer: the length of the line

h
tt

p

h
tm

l

sm
tp

u
rl

g
if

n
n

tp

ft
p

substrate

h
tt

p h
tm

l sm
tp

u
rl

g
if

n
n

tp

ft
p

WebRunner

n
ew

1

n
ew

2

n
ew

3

A conventional browser: a
monolithic chunk, all bound
tightly together.

WebRunner: the coordinator of a federation of pieces, each
with individual responsibility. New pieces can be added at
any time. Pieces can be added from across the network,
without needing to be concerned with what CPU architecture
they were designed for and with reasonable confidence that
they won’t compromise the integrity of a user’s system.



 Dynamic types

WebRunner™: What & Why Copyright © 1994 Sun Microsystems 3 of 5

corresponds to the value of the integer and the position of the line in the
diagram corresponds to the position of the integer in the array.

In a book or HTML document, the author has to be content with these static
illustrations. With WebRunner the author can enable the reader to click on the
illustrations and see the algorithms animate:

Using these dynamic facilities, content providers can define new types of data
and behavior that meet the needs of their specific audiences, rather than being
bound by a fixed set of objects.

Dynamic types WebRunner’s dynamic behavior is also used for understanding different types
of objects. For example, most web browsers can understand a small set of image
formats (typically GIF, X11 pixmap, and X11 bitmap). If they see some other
type, they have no way to deal with it directly. WebRunner, on the other hand,
can dynamically link the code from the host that has the image allowing it to
display the new format. So, if someone invents a new compression algorithm,
the inventor just has to make sure that a copy of the Java code is installed on the
server that contains the images they want to publish; they don’t have to
upgrade all the browsers in the world. WebRunner will, in effect, upgrade itself
on the fly when it sees this new type.



 Dynamic protocols

4 of 5 WebRunner™: What & Why Copyright © 1994 Sun Microsystems

The following is an illustration of how WebRunner negotiates with a server
when it encounters an object of an unknown type:

Dynamic
protocols

The protcols that Internet hosts use to communicate among themselves are key
components of the net. For the World Wide Web (WWW), HTTP is the most
important of these communication protocols. In documents on the WWW a
reference to a document is called a URL. The URL contains the name of the
protocol, HTTP, that is used to find that document. Current web browsers have
the knowledge of HTTP built-in. Rather than having built-in protocol handlers,
WebRunner uses the protocol name to link in the appropriate handler. This
allows new protocols to be incorporated dynamically.

The dynamic incorporation of protocols has special significance to how
business is done on the Internet. Many vendors are providing new web
browsers and servers with added capabilities, such as billing and security.
These capabilities most often take the form of new protocols. So each vendor
comes up with their unique style of security (for example) and sells a server and
browser that speak this new protocol. If a user wants to access data on multiple
servers on which each has proprietary new protocols, the user needs multiple
browers. This is incredibly clumsy and defeats the synergistic cooperation that
makes the WWW work.

T
im

e
Browser Server

User asks for object

Browser realizes it
doesn’t understand
the object type

Object displayed

Object

O.A.K. code to
support object

request

reply

request

reply

Network

Products from
Vendor A

HTTP
Server

Web
Browser

Proprietary
Protocol

Products from
Vendor B

HTTP
Server

Web
Browser

Proprietary
Protocol

?

Which browser
should the poor
user run?



 Dynamic protocols

WebRunner™: What & Why Copyright © 1994 Sun Microsystems 5 of 5

With WebRunner as a base, vendors can produce and sell exactly the piece that
is their added value, and integrate smoothly with other vendors, creating a final
result that is seamless and very convenient for the end user.

Products from
Vendor A

HTTP
Server

Web
Browser

Proprietary
Protocol

Products from
Vendor B

HTTP
Server

B

Proprietary
Protocol

!

No problem!

A


