3 Class File Format

Important Note

This chapter documents the Java class file format. An important objective of Java as used in WebRunner is that
alternative implementations of Java can exist and interact by sharing class files. For this to be possible, these
Java implementations must precisely implement the design given here. Elements of the design not covered by
this document are not crucial to class file sharing and may be implemented as you choose.

Please contact us directly with any questions about which design elements are essential to a modified or
original Java implementation, or for help validating an Java implementation.

Overview

Class files are used to hold compiled versions of both Java classes and Java Interfaces. Compliant Java
interpreters must be capable of dealing with all class files that conform to the following specification.

An Java .class file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are constructed by reading
in two or four 8-bit bytes, respectively. The bytes are joined together in big-endian order.

The class file format is described in terms similar to a C structure. However, unlike a C structure,

* There is no “padding” or “alignment” between pieces of the structure.
¢ Each field of the structure may be of variable size.

* An array may be of variable size. In this case, some field prior to the array will give the array’s
dimension.

We use the types ul, u2, and u4 to mean an unsigned one-, two-, or four-byte quantity, respectively.
Attributes are used at several different places in the class format. All attributes have the following format:

GenericAttribute_info {
u2 attribute_name;
u4 attribute_length;
ul info[attribute_length];

}
The attribute_name is a 16-bit index into the class’s constant pool; the value of
constant_pool[attribute_name] will be a string giving the name of the attribute. The field
attribute_length gives the length of the subsequent information in bytes. This length does not include the

four bytes of the attribute_name and attribute_length
In the following text, whenever we allow attributes, we give the name of the attributes that are currently

understood. In the future, more attributes will be added. Class file readers are expected to skip over and ignore
the information in any attributes that they do not understand.

March 15, 1995 The Java Virtual Machine Specification 51

Class File Format

Format

The following pseudo-structure gives a top-level description of the format of a class file:

52

ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_infoconstant_pool[constant_pool_count - 1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_infofields[fields_count];
u2 methods_count;
method_infomethods[methods_count];
u2 attributes_count;
attribute_info attributes[attribute_count];

magi ¢
This field must have the value OxCAFEBABE.

m nor _version, najor_version

These fields contain the version number of the Java compiler that produced this class file. A
change of only the minor version number indicates a backwards compatible change to either
the format of the class file or to the bytecodes. A change of the major version number indicates
an incompatible change.

The current major version number is 45; the current minor version number is 2.

const ant _pool _count

This field indicates the number of entries in the constant pool table.

const ant _pool

The constant pool is an array of values. These values are the various string constants, class
names, field names, and others that are referred to by the class structure or by the code.

constant_pool[0] is always unused. The values of constant_pool entries 1 through
constant_pool_count-1 are described by the bytes that follow. These bytes are explained
more fully in the section “The Constant Pool.”

The Java Virtual Machine Specification March 15, 19954

access_fl ags

Class File Format

This field is a set of sixteen flags used by classes, methods, and fields to describe various
properties of the field, method, or class. The flags are also used to show how they can be
accessed by methods in other classes. Below is a table of all the access flags. The flags that are
used by classes are ACC_PUBLIG ACC_FINAL, and ACC_INTERFACE

Flag Name Value Meaning Used By
ACC_PUBLIC 0x0001 Visible to everyone Class, Method, Variable
ACC_PRIVATE 0x0002 | Visible only to the defining class Method, Variable
ACC_PROTECTED 0x0004 Visible to subclasses Method, Variable
ACC_STATIC 0x0008 Variable or method is static Method, Variable
ACC_FINAL 0x0010 | No further subclassing, overriding | Class, Method, Variable
ACC_SYNCHRONIZED| 0x0020 | Wrap method call in monitor lock | Method
ACC_THREADSAFE 0x0040 | Can cache in registers Variable
ACC_TRANSIENT 0x0080 | Not written or read by the persis- Variable

tent object manager
ACC_NATIVE 0x0100 | Implemented in C Method
ACC_INTERFACE 0x0200 Is an interface Class
ACC_ABSTRACT 0x0400 | No definition provided Method

Access Flags
t his_cl ass
This value is an index into the constant pool. constant_pool[this_class] must be a

class, and gives the index of this class in the constant pool.

super _cl ass

This value is an index into the constant pool. If the value of super_class
constant_pool[super_class]
superclass in the constant pool.

If the value of super_class

no superclass.

i nterfaces_count

is non-zero, then
must be a class, and gives the index of this class’s

is zero, then the class being defined must be Object, and it has

This field gives the number of interfaces that this class implements.

i nterfaces

Each value in the array is an index into the constant pool. If an array value is non-zero, then

constant_pool[interfaces[

i], for 0 <=

1 < interfaces_count,

class, and gives the index of an interface that this class implements.

fiel ds_count

must be a

This value gives the number of instance variables, both static and dynamic, defined by this
class. This array only includes those variables that are defined explicitly by this class. It does
not include those instance variables that are accessible from this class but are inherited from

super classes.

March 15, 1995

The Java Virtual Machine Specification

53

Class File Format

fields
Each value is a more complete description of a field in the class. See the section “Fields” for
more information on the field_info structure.

nmet hods_count

This value gives the number of methods, both static and dynamic, defined by this class. This
array only includes those methods that are explicitly defined by this class. It does not include
inherited methods.

net hods

Each value is a more complete description of a method in the class. See the section “Methods”
for more information on the method_info structure.

attributes_count

This value gives the number of additional attributes about this class.

attri butes

A class can have any number of optional attributes associated with it. Currently, the only class
attribute recognized is the “SourceFile” attribute, which gives the name of the source file from
which this class file was compiled.

Source File Attribute

The “SourceFile” attribute has the following format:

SourceFile_attribute {
u2 attribute_name_index;
u2 attribute_length;
u2 sourcefile_index;

}

attri bute_nane_i ndex
constant_pool[attribute_name_index] is the string “SourceFile.”

attribute_|length
The length of a SourceFile_attribute must be 2.

sourcefil e_i ndex

constant_pool[sourcefile_index] is a string giving the source file from which this
class file was compiled.

54 The Java Virtual Machine Specification March 15, 19954

Class File Format

Fields

The information for each field immediately follows the field_count field in the class file. Each field is described

by a variable length field_info structure. The format of this structure is as follows:

field_info {
u2 access_flags;
u2 name_index;
u2 signature_index;
u2 attributes_count;
attribute_infoattributes[attribute _count];

}
access_fl ags

This is a set of sixteen flags used by classes, methods, and fields to describe various properties
and how they many be accessed by methods in other classes. See the table “Access Flags” on
page 53 which gives the meaning of the bits in this field.

The possible fields that can be set for a field are ACC_PUBLIC ACC_PRIVATE
ACC_PROTECTEBCC_STATIC ACC_FINAL, ACC_THREADSAF&nd ACC_TRANSIENT.

At most one of ACC_PUBLICand ACC_PRIVATEcan be set for any method.

nane_i ndex
constant_pool[name_index] is a string which is the name of the field.

si gnat ur e_i ndex
constant_pool[signature_index] is a string which is the signature of the field. See the
section “Signatures” for more information on signatures.

attributes_count

This value gives the number of additional attributes about this field.

attri butes

A field can have any number of optional attributes associated with it. Currently, the only field
attribute recognized is the “ConstantValue” attribute, which indicates that this field is a static
numeric constant, and gives the constant value of that field.

Any other attributes are skipped.

Constant Value Attribute

The “ConstantValue” attribute has the following format:

ConstantValue_attribute {
u2 attribute_name_index;
u2 attribute_length;
u2 constantvalue_index;

}

attribute_nane_i ndex
constant_pool[attribute_name_index] is the string “SourceFile.”

attribute_length
The length of a SourceFile_attribute must be 2.

March 15, 1995 The Java Virtual Machine Specification

55

Class File Format

const ant val ue_i ndex

constant_pool[constantvalue_index] gives the constant value for this field.
The constant pool entry must be of a type appropriate to the field, as shown by the following
table:
long CONSTANT_Long
float CONSTANT_Float
double CONSTANT_Double
int, short, char, byte, boolean CONSTANT _Integer
Methods

The information for each method immediately follows the method_count field in the class file. Each method
is described by a variable length method_info structure. The structure has the following format:

method_info {
u2 access_flags;
u2 name_index;
u2 signature_index;
u2 attributes_count;
attribute_info attributes[attribute_count];

}
access_fl ags

This is a set of sixteen flags used by classes, methods, and fields to describe various properties
and how they many be accessed by methods in other classes. See the table “Access Flags” on
page 53 which gives the various bits in this field.

The possible fields that can be set for a method are ACC_PUBLIG ACC_PRIVATE
ACC_PROTECTEBCC_STATIGC ACC_FINAL, ACC_SYNCHRONIZEBCC_NATIVE and
ACC_ABSTRACT

At most one of ACC_PUBLICand ACC_PRIVATEcan be set for any method.

name_i ndex
constant_pool[name_index] is a string giving the name of the method.

si gnat ur e_i ndex
constant_pool[signature_index] is a string giving the signature of the field. See the
section “Signatures” for more information on signatures.

attributes_count

This value gives the number of additional attributes about this field.

attributes

A field can have any number of optional attributes associated with it. Each attribute has a
name, and other additional information. Currently, the only field attribute recognized is the
“Code” attribute, which describes the virtual bytecode that can be executed to perform this
method.

Any other attributes are skipped.

56 The Java Virtual Machine Specification March 15, 19954

Class File Format

Code Attribute
The “Code” attribute has the following format:

Code_attribute {
u2 attribute_name_index;
u2 attribute_length;
ul max_stack;
ul max_locals;
u2 code_length;
ul code[code_length];
u2 exception_table_length;
u2 start_pc;
u2 end_pc;
u2 handler_pc;
u2 catch_type;
} exception_table[exception_table_length];
u2 attributes_count;
attribute_infoattributes[attribute _count];

}

attribute_nane_i ndex
constant_pool[attribute_name_index] is the string “Code.”

attribute_l ength
This field gives the total length of the “Code” attribute, excluding the initial four bytes.

max_st ack
Maximum number of entries on the operand stack that will be used during execution of this
method. See the other chapters in this spec for more information on the operand stack.
max_| ocal s
Number of local variable slots used by this method. See the other chapters in this spec for
more information on the local variables.
code_l ength

The number of bytes in the virtual machine code for this method.

code

These are the actual bytes of the virtual machine code that implement the method. When read
into memory, the first byte of code must be aligned onto a multiple-of-four boundary. See the
definitions of the the opcodes “tableswitch” and “tablelookup” for more information on
alignment requirements.

exception_table_length

The number of entries in the following exception table.

exception_table

Each entry in the exception table describes one exception handler in the code.

start_pc, end_pc

The two fields start_pc and end_pc give the ranges in the code at which the exception
handler is active. The values of both fields are offsets from the start of the code. start_pc is
inclusive. end_pc is exclusive.

March 15, 1995 The Java Virtual Machine Specification 57

Class File Format

handl er _pc
This field gives the starting address of the exception handler. The value of the field is an offset
from the start of the code.

catch_type

If catch_type is non-zero, then constant_pool[catch_type] will be the class of
exceptions that this exception handler is designated to catch. This exception handler should
only be called if the thrown exception is an instance of the given class.

If catch_type is zero, this exception handler should be called for all exceptions.

attri butes_count
This value gives the number of additional attributes about code. The “Code” attribute can
itself have attributes.

attri butes

A “Code” attribute can have any number of optional attributes associated with it. Each
attribute has a name, and other additional information. Currently, the only code attributes
recognized are the “LineNumberTable” and “LocalVariableTable,” both of which contain
debugging information.

Any other attributes are skipped.

Line Number Table Attribute

The Line Number Table is used by debuggers and the exception handler to determine which part of the virtual
machine code corresponds to a given location in the source. The LineNumberTable_attribute has the following
format:

LineNumberTable_attribute {

u2 attribute_name_index;
u2 attribute_length;
u2 line_number_table_length;
{ u2 start_pc;
u2 line_number;
} line_number_table[line_number_table_length];

}

attri bute_nane_i ndex
constant_pool[attribute_name_index] will be the string “LineNumberTable.”

attribute_length

This field gives the total length of the LineNumberTable_attribute, excluding the initial four
bytes.

i ne_nunber _table |ength

This field gives the number of entries in the following line number table.

I i ne_nunber _table

Each entry in the line number table indicates that the line number in the source file changes at
a given point in the code.

start_pc

This field indicates the place in the code at which the code for a new line in the source begins.
source_p cis an offset from the beginning of the code.

58 The Java Virtual Machine Specification March 15, 19954

Class File Format

I i ne_nunber

The line number that begins at the given location in the file.

Local Variable Table Attribute

The Local Variable Table is used by debuggers to determine the value of a given local variable during the
dynamic execution of a method. The format of the LocalVariableTable_attribute is as follows:

LocalVariableTable_attribute {
u2 attribute_name_index;
u2 attribute_length;
u2 local_variable_table length;
{ u2 start_pc;
u2 length;
u2 name_index;
u2 signature_index;
u2 slot;
} local_variable_table[local_variable_table_length];

}

attribute_name_i ndex

constant_pool[attribute_name_index] will be the string “LocalVariableTable.”

attribute_ |l ength

This field gives the total length of the LineNumberTable_attribute, excluding the initial four
bytes.

| ocal _variable table | ength

This field gives the number of entries in the following local variable table.

i ne_nunber_table

Each entry in the line number table indicates a code range during which a local variable has a
value. It also indicates where on the stack the value of that variable can be found.

start_pc, length

The given local variable will have a value at the code between start pc and start pc +
length . The two values are both offsets from the beginning of the code.

nane_i ndex, signature_index

constant_pool[name_index] and constant_pool[signature_index] are strings
giving the name and signature of the local variable.

sl ot

The given variable will be the slot! local variable in the method’s frame.

March 15, 1995 The Java Virtual Machine Specification 59

Class File Format

Constant Pool
Each item in the constant pool begins with a 1-byte tag:. The table below lists the valid tags and their values.

Constant Type Value

CONSTANT_Class
CONSTANT_Fieldref
CONSTANT_Methodref
CONSTANT_String
CONSTANT_Integer
CONSTANT_Float
CONSTANT_Long
CONSTANT_Double
CONSTANT _InterfaceMethodref
CONSTANT_NameandType
CONSTANT_Asciz

—_
PNRFRPOUIER WO ON

— =

Each tag byte is then followed by one or more bytes giving more information about the specific constant.

Strings
CONSTANT_Asciz and CONSTANT_Unicode are used to represent constant string values.

CONSTANT_Asciz_info {
ul tag;
u2 length;
ul bytes[length];

CONSTANT_Unicode_info {
ul tag;
u2 length;
u2 bytes[length];

tag
The tag will have the value CONSTANT_Asciz or CONSTANT_Unicode .

I ength
The number of bytes in the string. This length does not include the implicit null termination.

byt es

The actual bytes in the string. The null termination is not included.

Classes and Interfaces

CONSTANT_Classis used to represent a class or an interface.

CONSTANT_Class_info {
ul tag;
u2 name_index;

}

60 The Java Virtual Machine Specification March 15, 19954

Class File Format

tag
The tag will have the value CONSTANT_Class

name_i ndex
constant_pool[name_index] is a string giving the name of the class.

Because arrays are objects, the opcodes anewarray and multianewarray can reference array “classes” via
CONSTANT_Classitems in the constant pool. In this case, the name of the class is its signature. For example,
the class name for

int[][]

is
([l
The class name for

Thread]]
is

“[Ljava.lang.Thread;”

Fields and Methods

Fields, methods, and interface methods are represented by similar structures.

CONSTANT _Fieldref _info {
ul tag;
u2 class_index;
u2 name_and_type_index;

}

CONSTANT_Methodref_info {
ul tag;
u2 class_index;
u2 name_and_type_index;

CONSTANT _InterfaceMethodref_info {
ul tag;
u2 class_index;
u2 name_and_type_index;

}

t ag
The tag will have the value CONSTANT_Fieldref , CONSTANT_Methodref, or
CONSTANT _InterfaceMethodref.

cl ass_i ndex

constant_pool[class_index] will be an entry of type CONSTANT_Classgiving the
name of the class or interface containing the field or method.

For CONSTANT_Fieldref and CONSTANT_Methodref, the CONSTANT _Classitem must be
an actual class. For CONSTANT _InterfaceMethodref , the item must be an interface which
purports to implement the given method.

nane_and_t ype_i ndex

constant_pool[name_and_type_index] will be an entry of type
CONSTANT_NameAndType. This constant pool entry gives the name and signature of the
field or method.

March 15, 1995 The Java Virtual Machine Specification 61

Class File Format

Abstract Fields and Methods

CONSTANT_NameAndTypés used to represent a field or method, detached from any particular class or
implementation.

CONSTANT_NameAndType_info {
ul tag;
u2 name_index;
u2 signature_index;

}

t ag
The tag will have the value CONSTANT_NameAndType

nane_i ndex
constant_pool[name_index] is a string giving the name of the field or method.

si gnat ure_i ndex

constant_pool[signature_index] is a string giving the signature of the field or
method.

String Objects
CONSTANT_String is used to represent constant objects of the built-in type String.

CONSTANT _String_info {
ul tag;
u2 string_index;

}

tag
The tag will have the value CONSTANT_String

nane_i ndex

constant_pool[string_index] is a string giving the value to which the String object is
initialized.
The string at constant_pool[string_index] is “encoded” so that strings containing only

ASCIZ characters, can be represented using only one byte per character, but characters of up
to 16 bits can be represented. The format we use is a modified UTF! format.

All characters in the range 0x0001 to 0x007F are represented by a single byte:

+-t-t-t-tt-t-+-+
[0]7bits of data|
e S T

The null character (0x0000) and characters in the range 0x0080 to O0xO3FF are represented by a
pair of two bytes:

1. There are two differences between this format and the “standard” UTF format. First, the null byte (0x00) is en-
coded as two bytes rather than as one byte, so that strings never have embedded nulls. Second, only the one-byte,
two-byte, and three-byte formats are used. We do not recognize the longer formats.

62 The Java Virtual Machine Specification March 15, 19954

Class File Format

s T o s s s S S
[1]1]0] 5bitst | [1]|0] 6 bits |
s T I e

Characters in the range 0x0400 to OxFFFF are represented by three bytes:

T S
[1]2]1]0]4 bits | |1|0] 6bits | |1]0] 6 bits |
O S e e e o e St e

Numeric Constants

Four-Byte Constants
CONSTANT _Integer and CONSTANT_Float represent four-byte constants.

CONSTANT _Integer_info {
ul tag;
u4 bytes;

CONSTANT_Float_info {
ul tag;
u4 bytes;

}
tag
The tag will have the value CONSTANT_Integer or CONSTANT_Float

byt es

For integers, the four bytes are in the integer. For floats, the four bytes represent the standard
IEEE representation of the floating point number.

Eight-Byte Constants
CONSTANT_Longand CONSTANT_Doublerepresent eight-byte constants.

CONSTANT_Long_info {
ul tag;
u4 high_bytes;
u4 low_bytes;

}
CONSTANT_Double_info {
ul tag;
u4 high_bytes;
u4 low_bytes;
}

All eight-byte constants take up two spots in the constant pool. If this is the n" item in the constant pool, then
the next item will be numbered n+2.

tag
The tag will have the value CONSANT_Longor CONSTANT_Double.

March 15, 1995 The Java Virtual Machine Specification 63

Class File Format

hi gh_bytes, |ow bytes
For CONSTANT _Longthe 64-bit value is (high_bytes << 32) + low_bytes

For CONSTANT_Double the 64-bit value, high_bytes and low_bytes together represent
the standard IEEE representation of the double-precision floating point number.

Signatures
A signature is a string representing the type of a method or field.

The field signature represents the value of an argument to a function or the value of a variable. It is a series of
bytes in the following grammar:

<field signature> = <field_type>

<field type> ;= <base_type>|<object_type>|<array_type>
<base_type> = BIC D F|1]J]S|Z

<object_type> = L<fullclassname> ;
<array_type> = [<optional-size><field_type>
<optional_size> = [0-9]*

The meaning of the base types is as follows:

B signed byte

C character

D double precision floating point number
F single precision floating point number
I integer

J long integer

L<fullclassname>; an object of the given class

S nsigned short

Y4 boolean

[<length><field sig> array

A return-type signature represents the return value from a method. It is a series of bytes in the following
grammar:

<return signature> = <field type> | \%

The character V indicates that the method returns no value. Otherwise, the signature indicates the type of the
return value.

An argument signature represents an argument passed to a method:

<argument signature> = <field type>

A method signature represents the arguments that the method expects, and the value that it returns.

<method_signature> = (<arguments signature>) <return signature>
<arguments signature>:= <argument signature>*

64 The Java Virtual Machine Specification March 15, 19954

