
E Brick Logo Quick Reference

Brick Logo is the language used to write programs that run on the Brick. Brick
Logo is similar to the versions of Logo that are part of the commercial LEGO Dacta
products (bothLEGO tc logo andLEGO Control Lab). Previous experience with
either of these two products, as well as any other Logo experience, will translate
easily to writing programs for the Programmable Brick.

E.1 Motors

Motors A, B, and C are bi-directional (the motors’ can be reversed under software
control). Motor D is uni-directional—the Brick can only turn the motor on and
off, and the direction is determined by the way the cable is connected.

a, Selects motor A for subsequent commands.

b, Selects motor B.

c, Selects motor C.

d, Selects motor D.

ab, Selects motors A and B together.

bc, Selects motors B and C.

ac, Selects motors A and C.

abc, Selects motors A, B, and C.

abcd, Selects all motors.

on Turns selected motor(s) on.

off Turns selected motor(s) off.

toggle Inverts on/off state of selected motor(s); i.e., motors that are off go on,
and motors that are on go off.

rd Reverses direction of selected motor(s).

thisway Sets selected motor(s) for one of the two possible directions (indicated
by the green motor LED being illuminated). When motors are first turned
on, they are in the “thisway” state.

45

thatway Sets selected motor(s) for the other of the two directions (indicated by
the red motor LED being illuminated).

onfor time Turns selected motor(s) on fortime tenths of seconds.

setpower level Sets the power level of the selected motor(s). Power levels range
from 8 (full power) to 0 (off). The initial state of motors, when turned on, is
full power.

E.2 Sensors

switcha

switchb

switchc Reports value of switch sensor (pressed is “true,” not pressed is “false.”)

sensora

sensorb

sensorc

sensord

sensore

sensorf Reports value of sensor as a number from 0 to 255.

countera

counterb

counterc Reports counts on angle sensor.

resetca

resetcb

resetcc Resets count to zero.

timer Reports amount of elapsed time in milliseconds. Reset byresett or
pressing STOP button.

resett Resets elapsed time count to zero.

battery Reports battery level as a percentage of full charge (0 to 100).

46

E.3 Control Structures

wait time Waits (does nothing) fortime tenths of seconds.

waituntil [condition] Waits untilcondition becomes true.
Example:waituntil [sensora > 180]

if condition [action] Performsaction if condition is true. Typically used in a
loop to repeatedly test the condition. Example:if switcha [ad, rd]

ifelse condition [action] [else-action] Performsaction if condition is true;
otherwise, performselse-action. Example: ifelse sensora > 180
[a, on d, off][a, off d, on]

repeat times [action] Repeatedly performsaction for times number of times.
Example:repeat 10 [ad, onfor 10 rd]

loop [action] Indefinitely loops performingaction. To exit, usestop com-
mand, which causes currently running procedure to terminate.

E.4 Input/Output

E.4.1 LCD Display

print "word Prints a single word to the LCD screen. Example:print "hello

print [word1 word2 word3 : : :] Prints phrase to the computer screen. Ex-
ample:print [hello there matey]

print number Prints a number to the LCD screen. Example:print sensora

type Used likeprint, but allows multiple statements to print onto the same
display line. Example:type [Sensor is] print sensora

top Selects top line of display for subsequent printing.

bottom Selects bottom line of display.

47

E.4.2 Input

The following describes the action of the start and stop buttons.

START button. Pressing the START button causes the screen item currently dis-
played on the Brick’s LCD screen to be run (if it was idle). An asterisk is
displayed in the lower right corner of the screen while the item is running.
If the screen item was already active when the START button is pressed, then
the item’s process is stopped.

STOP button. Pressing the STOPbutton causes all processes running on the Brick
to be stopped. All motor outputs are turned off. Additionally, the internal
motor state is reset to the power-on defaults: all motors atsetpower 8,
directionthisway, and talkto statea,.

E.4.3 Sound

note midi-step duration Plays a tone on the Brick’s beeper. Pitch is determined
by midi-step number, which represents successive semi-tones as value in-
creases. Audible values range from about 40 (low tones) to 120 (high tones).
duration is specified in tenths of seconds.

E.4.4 Infrared Communication

The Brick infrared commands from a Sony-brand infrared remote (or a universal
remote programmed to transmit Sony codes). Keys 1 through 7 cause the first
through seventh screen item, respectively, to be run.

When the Brick is running a program, thePower key will cause the program
to stop (this is equivalent to pressing theStop button). In addition, Brick Logo
programs can use the following primitives to send and receive infrared codes. Note
that if a Brick transmits the code corresponding to the “1” key to another Brick,
the Brick receiving the transmission will run the screen item corresponding to the
key. If this program is already running, receiving the code will stop execution;
otherwise, it will initiate it.

ir Reports a number corresponding to a key on an infrared remote or signal
transmitted from another Brick.

irf Reports number received by infrared sensor plugged into sensor port F.

48

irsend value Sendsvalue from 0 to 255 to another Brick, using infrared trans-
mitter accessory plugged into motor port D. Note translation table below.5

Transmitted Received
Character Action

128 or 18 runs/stops menu item 1
129 or 20 runs/stops menu item 2
130 or 19 runs/stops menu item 3
131 or 17 runs/stops menu item 4

132 runs/stops menu item 5
133 runs/stops menu item 6
134 runs/stops menu item 7

149 or 223 stops all processes & motors

E.4.5 Serial Line

The Brick can send characters over the serial line while it is executing Brick Logo
programs. The serial line setting is 9600 baud, eight bit data, no parity.

send char Transmits lower byte ofchar over serial line.

E.4.6 Speech Output

The Brick can connect to a specially-modified version of RC Systems’ voice board
for natural-speech output.6 The “say” primitive is used to transmit information to
the voice board over the Brick’s serial line connection:

say "word Outputs a single word to the voice board. Example:say "hello

say [word1 word2 word3 : : :] Outputs phrase to the voice board. Example:
say [hello there matey]

5This table is used to translate the channel/volume up/down keys, from a Casio infrared watch,
into the codes for buttons 1 through 4. The 149 code is the Power key, and the 223 code is the Stop
key on Sony CD player remotes.

6Contact the authors for information about how to wire the voice board to the Brick.

49

say number Outputs a number to the voice board. For example,say sensora
would result in the current value of sensor A being transmitted. The voice
board converts the numeric representation (e.g., “193”) to its spoken form
(e.g., “one hundred ninety three”).

After any power-on, it is necessary to send the voice board an odd-numbered-
byte over the serial line, followed by a short delay, to establish communications
baud rate. The carriage return character, 13, is a good choice. Also, it is necessary
to send the carriage return to get the board to speak words that have been already
transmitted:

to init-speech-board
send 13 wait 1

end

to test-speech-board
say [hello there.] send 13

end

E.5 Multi-Tasking

The Brick can support up to eight concurrent process tasks. Each of the following
primitives launches a new task.

E.5.1 Launching Processes

launch [action] Launchesaction as a separate process.

forever [action] Launches a process to repeatedly executeaction. Equiva-
lent tolaunch [loop [action]].

when [condition][action] Launches a process to repeatedly testcondition
and executeaction when it becomes true.

The condition clause for thewhen statement fires on edge-triggered logic;
that is,action is run each time thatcondition changes from false to true. In
the case in which thecondition is true the first time thewhen statement is
executed, theaction is not run.

50

every time [action] Launches a process to executeaction every time tenths-
of-seconds.

E.5.2 Stopping Processes

Pressing the STOPbutton or sending the infrared stop code stops all running tasks,
turns off motors, and resets the internal motor state (see E.4.2).

stoprules Stops all processes except the one executing the “stoprules” com-
mand.

E.6 Data Recording and Playback

There is a single global array for storing data which holds 5887 2-byte integer
values. There is no error-checking to prevent against overrunning the data buffer.

erase Resets the data recording pointer to zero.

record value Recordsvalue in the data buffer, and advances the recording
pointer.

record# Reports value of record pointer, indicating where the next data point to
be recorded will go.

resetr Resets the recall pointer to zero.

recall Reports value of current data point, and advances the recall pointer.

recall# Reports value of recall pointer.

E.7 Procedures, Variables, and Comments

E.7.1 Procedure Definition

Procedures are defined using the keyword “to”; i.e.:

to test
procedure body

end

51

E.7.2 Procedure Inputs

Inputs, or arguments, to procedures are declared using the standard Logo colon
syntax; e.g.:

to test :input1 :input2
top type [Input 1 is] print :input1
bottom type [Input 2 is] print :input2
wait 10

end

Procedure inputs are local variables.

E.7.3 Local Variables

Local variables are declared using thelet keyword, accessed using Logo’s colon
syntax, and set using themake keyword:

to local-example
let [alocal 5 anotherlocal 17]
print :alocal ; prints "5"
make "anotherlocal 3
print :anotherlocal ; prints "3"

end

The “let” declaration should be made at the beginning of a procedure.

E.7.4 Global Variables

Global variables are declared using theglobal keyword, which takes a list of the
names of globals to be created; i.e.:

global [name1 name2 name3 : : :]

This declaration should come at the beginning of the procedure buffer. After
being declared, each global is set using a mechanism in which the global name is
preceded by the word “set”; their values are accessed by using the global name as
a reporter; e.g.:

52

global [myglobal]

to test
setmyglobal 3
print myglobal
wait 10

end

Global variables maintain their value when the Brick is power-cycled.

E.7.5 Procedure Return Values

By default, procedures do not produce return values. Procedures may return a
numeric value using theoutput primitive; e.g.:

to double :n
output :n * 2

end

Procedures may terminate at any point using thestop primitive, which exits
the procedure without producing a return value.

Care should be taken to ensure that a procedure eitheralways or never exits
with a return value.

E.7.6 Code Comments

There are two forms for comments in the procedure buffer:

� Any text between theend statement of one procedure and theto declaration
of the next procedure is ignored.

� Any text after a semicolon (“;”) on any given line is ignored.

53

E.8 Numeric Operations

Brick Logo is based on signed 16-bit integer arithmetic (all numeric values are in
the inclusive range from�32768 to+32767).

All of the following arithmetic and boolean operators must be preceded and
followed by a space. For example, the following expression isnot legitimate:

print 3+4

E.8.1 Arithmetic Operators

The following arithmetic operators are supported, using infix notation:

+ — addition.

- — subtraction.

* — multiplication.

/ — division.

n — remainder.

The minus sign may also be used as a prefix negation operator.

E.8.2 Boolean and Bitwise Operators

The Boolean operators always produce values of zero or one. In evaluating
conditionals, zero is false; any value other than zero is true.

and — performs bitwise “and” function. Prefix.

or — performs bitwise “or” function. Prefix.

not — performs Boolean logical negation. Prefix.

> — performs Boolean test for greater-than. Infix.

< — performs Boolean test for less-than. Infix.

= — performs Boolean test for equality. Infix.

54

Since the Boolean operators produce values of one and zero, and non-zero
results are considered true, theand andor operators, which are bitwise, can func-
tion as Booleans when combining the result of other conditionals. The following
example illustrates correct usage:

if and (:value > 100) (:value < 150) [doit]

E.8.3 Precedence

Order of evaluation is from left to right; standard rules of precedence arenot
observed. Parentheses may be used to override the standard order of evaluation.

E.9 File Management

To save and load Brick Logo programs, please use the following (rather than saving
multiple copies of the Brick Logo project):

saveall "filename Saves procedures and screen items into file namedfilename.

loadall "filename Loads procedures and screen items from file namedfile-
name.

These commands must be typed into the MicroWorlds command center, located
at the bottom of the computer screen, not the Brick command center.

It is also possible to save an entire Brick Logo project (procedure definitions
and screen items) to a Brick. Use the following commands:

savetobrick Saves procedures and screen items to a Brick.

loadfrombrick Loads procedures and screen items from a Brick.

55

