Abstract: The purpose of this guide is to provide the basic installation and configuration guidelines for the Linux operating system on AlphaServer DS10, DS20, DS20E, ES40 and AlphaStation XP1000 computers.

This guide limits its testing to two prominent Linux distributions, Red Hat version 6.1 and SuSE version 6.3. Much of the information contained in this document should be applicable to most other Linux distributions for AlphaServer and AlphaStation computers too.
Extended Table of Contents

EXTENDED TABLE OF CONTENTS.................................2

INTRODUCTION..6

Management Summary..6

Document Structure..6

Distributions Overview..6
 Red Hat..6
 SuSE..6

OVERVIEW OF INSTALLATION...7

COMPAQ ALPHASERVER DS10...8

Hardware Options...8
 Tested Saleable Hardware Options..8

Red Hat Version 6.1 Distribution...9
 Firmware Inspection and Upgrade..9
 System Resource Manager Configuration................................9
 Software Installation..10
 X11 GUI Installation..10
 Post-Installation..11
 System Resource Manager Configuration..............................11

SuSE Version 6.3 Distribution...11
 Firmware Inspection and Upgrade..11
 System Resource Manager Configuration................................11
 Software Installation..13
 Disk Partitioning...13
 Post-Installation..16
 System Resource Manager Configuration..............................16

COMPAQ ALPHASERVER DS20...17

Hardware Options...17
 Tested Saleable Hardware Options..17

Red Hat Version 6.1 Distribution...18
 Firmware Inspection and Upgrade..18
 System Resource Manager Configuration................................18
 Software Installation..19
 X11 GUI Installation..19
 Post-Installation..19
 System Resource Manager Configuration..............................19

SuSE Version 6.3 Distribution...20
Pre-Installation ... 20
Firmware Inspection and Upgrade .. 20
System Resource Manager Configuration ... 20
Software Installation ... 21
Disk Partitioning .. 21
Post-Installation ... 24
System Resource Manager Configuration ... 24

COMPAQ ALPHASERVER DS20E ... 25

Hardware Options ... 25
Tested Saleable Hardware Options ... 25

Red Hat Version 6.1 Distribution ... 25
Pre-Installation .. 26
Firmware Inspection and Upgrade .. 26
System Resource Manager Configuration ... 26
Software Installation .. 27
X11 GUI Installation ... 27
27Error! Bookmark not defined. Post-Installation .. 27
System Resource Manager Configuration ... 27

SuSE Version 6.3 Distribution ... 28
Firmware Inspection and Upgrade ... 28
System Resource Manager Configuration ... 28
Software Installation .. 29
Disk Partitioning .. 29
Post-Installation .. 32
System Resource Manager Configuration ... 32

COMPAQ ALPHASERVER ES40 ... 33

Hardware Options ... 33
Tested Saleable Hardware Options ... 33

Red Hat Version 6.1 Distribution ... 34
Firmware Inspection and Upgrade ... 34
System Resource Manager Configuration ... 34
Software Installation .. 36
X11 GUI Installation ... 36
36Error! Bookmark not defined. Post-Installation .. 36
System Resource Manager Configuration ... 36

SuSE Version 6.3 Distribution ... 37
Firmware Inspection and Upgrade ... 37
System Resource Manager Configuration ... 37
Software Installation .. 39
Disk Partitioning .. 39
Post-Installation .. 42
System Resource Manager Configuration ... 42

COMPAQ ALPHASTATION XP1000 ... 43

Hardware Options ... 43
Tested Saleable Hardware Options ... 43
Red Hat Version 6.1 Distribution ... 44
 Firmware Inspection and Upgrade ... 44
 System Resource Manager Configuration .. 44
 Software Installation .. 45
 X11 GUI Installation .. 45
 45Error! Bookmark not defined.Post-Installation ... 45
 System Resource Manager Configuration .. 45

SuSE Version 6.3 Distribution .. 46
 Firmware Inspection and Upgrade ... 46
 System Resource Manager Configuration .. 46
 Software Installation .. 47
 Disk Partitioning ... 47
 Post-Installation ... 50
 System Resource Manager Configuration .. 50

APPENDIX A ... 51

Linux Links ... 51

APPENDIX B ... 52

AlphaServer Configurations .. 52
 Compaq AlphaServer DS10 ... 52
 Compaq AlphaServer DS20 ... 52
 Compaq AlphaServer ES40 ... 52
 Compaq AlphaStation XP1000... 52

APPENDIX C ... 53

SCSI and IDE Configurations .. 53
 SCSI Only ... 53
 Mixed - IDE and SCSI ... 53

Adding a second drive to your system .. 53

Reusing a previously installed hard drive ... 54

TLZ07 and TLZ09 Errata ... 54

GLOSSARY ... 55
Notice

The information in this publication is subject to change without notice and is provided “AS IS” WITHOUT WARRANTY OF ANY KIND. THE ENTIRE RISK ARISING OUT OF THE USE OF THIS INFORMATION REMAINS WITH RECIPIENT. IN NO EVENT SHALL COMPAQ BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE OR OTHER DAMAGES WHATSOEVER (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION OR LOSS OF BUSINESS INFORMATION), EVEN IF COMPAQ HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The limited warranties for Compaq products are exclusively set forth in the documentation accompanying such products. Nothing herein should be construed as constituting a further or additional warranty.

This publication does not constitute an endorsement of the product or products that were tested. The configuration or configurations tested or described may or may not be the only available solution. This test is not a determination of product quality or correctness, nor does it ensure compliance with any federal, state or local requirements.

Compaq, ActiveAnswers, Deskpro, Fastart, Compaq Insight Manager, Systempro, Systempro/LT, ProLiant, ROMPaq, QVision, SmartStart, NetFlex, QuickFind, PaqFax and Prosignia are registered with the United States Patent and Trademark Office.

Netelligent, Systempro/XL, SoftPaq, QuickBlank, QuickLock are trademarks and/or service marks of Compaq Computer Corporation.

Linux is a registered trademark of Linus Torvalds

Alpha, AlphaStation and AlphaServer are registered trademarks of Compaq Computer Corporation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their respective companies.

©1999 Compaq Computer Corporation. All rights reserved. Printed in the U.S.A.

Installation and Configuration Guide for Linux and Apache Web Server on Intel
Installation Guide prepared by Internet and E-Commerce Business Unit

Fourth Edition (January 2000)
Document Number ECG513/0100

Special thanks to Anthony Ronghi and Norberto Collado for their time and effort in creating the original Linux document on which this is largely based on.
Introduction

The purpose of this guide is to discuss the basics of installation and configuration of the Linux operating system on the Compaq AlphaServer DS10, DS20, DS20E, ES40 and AlphaStation XP1000 computers. Numerous references to external sources and materials are used in this guide, and Compaq recommends that you refer to these sources where additional detail is needed. You can find an extensive list of these in Appendix A of this document.

Management Summary

Each distribution vendor includes operating system and application management tools that form a common base across one or more distributions. Red Hat’s Package Management (RPM) format, for instance, is a commonly used software distribution mechanism. Other tools, such as each vendor’s setup program, are specific to a particular distribution. This guide does not provide discussion of the Operating System Management (OSM). For detailed information on the OSM, you should refer to the particular distribution vendor.

Document Structure

The structure of this document is intended to be convenient for users to follow when installing Linux software on the AlphaServer and AlphaStation computers. There is a major section dedicated to each platform, with subsections, which discuss hardware options, software distributions, and software installation procedures. At the end of the document readers will find an extensive list of external sources of information and a glossary of terms.

Distributions Overview

The discussion in this document focuses on the following two Linux distributions:

- Red Hat Software, Inc., version 6.1 only
- SuSE, Inc., version 6.3 only

All of these distributions include large amounts of software that can run in conjunction with Linux. This guide will not analyze the available software by distribution nor give a comparison of the software from one distribution to another. The focus of the guide is exclusively on the base Linux operating system and the process required configuring and installing the software.

Red Hat

Red Hat is one of the most popular distributions of Linux in the United States. It is created by Red Hat Software, Inc. and is available through its website located at http://www.RedHat.com. The distribution used in the creation of this document was 6.1. This document does not accurately reflect procedures and requirements for any other Red Hat software version!

SuSE

SuSE is one of the most popular distributions of Linux in Europe and is gaining in popularity in the United States. It is maintained by SuSE, Inc. and is available through its website located at http://www.suse.com. The distribution used in the creation of this document was 6.3. This document does not accurately reflect procedures and requirements for any other SuSE software version!
Overview of Installation

The process of installing Linux on your Compaq AlphaServer or AlphaStation follows these general steps:

1. Creation of BOOT and RAMDISK floppies.
2. Firmware revision inspection and upgrade.
3. SRM configuration for installation.
4. Linux software installation and configuration.
5. SRM reconfiguration for booting the installed software.
6. Post installation configuration.

The sections that follow discuss each of the above steps in more detail, specific to each platform and distribution vendor.
Compaq AlphaServer DS10

Hardware Options

Tested Saleable Hardware Options

Tested saleable hardware options for the DS10 is outlined in Table 1. All of the systems used come equipped with standard bus-interface devices for which drivers already exist for Linux. All bus-interface devices detailed use the PCI bus. Detailed information on each particular bus-interface device can be founds in a subsection of the appropriate software. Only the installation and configuration details that are necessary to clarify the hardware explanation are provided in this table. Unless otherwise specified, the Linux kernel version used in qualifying each component is version 2.2.5.

Table 1. Tested Saleable Options List

<table>
<thead>
<tr>
<th>Compaq PN</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3X-MS310-BA</td>
<td>DS10 128MB Memory Option</td>
<td></td>
</tr>
<tr>
<td>3X-MS310-CA</td>
<td>DS10 256MB Memory Option</td>
<td></td>
</tr>
<tr>
<td>3X-MS310-DA</td>
<td>DS10 512MB Memory Option</td>
<td></td>
</tr>
<tr>
<td>DE500-BA</td>
<td>PCI 1 CH 10/100 Ethernet</td>
<td>Red Hat - Use DE4*5 or Tulip driver</td>
</tr>
<tr>
<td>DE504-BA</td>
<td>PCI 4 CH 10/100 Ethernet</td>
<td>Red Hat - Use DE4*5 or Tulip driver</td>
</tr>
<tr>
<td>DS-RZ1DA-VW</td>
<td>9.1 GB UltraSCSI 7200RPM</td>
<td></td>
</tr>
<tr>
<td>DS-RZ1DD-WA</td>
<td>9.1 GB UltraSCSI 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>DS-RZ1DD-VW</td>
<td>9.1 GB UltraSCSI 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>DS-RZ2DA-WA</td>
<td>9.1 GB UltraSCSI 7200 RPM</td>
<td></td>
</tr>
<tr>
<td>3X-RE56A-AA</td>
<td>10 GB IDE, 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>DS-RZ1EA-VW</td>
<td>18.2 GB UltraSCSI 7200 RPM</td>
<td></td>
</tr>
<tr>
<td>DS-RZ1ED-VW</td>
<td>18.2 GB UltraSCSI 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>DS-RZ2EA-WA</td>
<td>18.2GB UltraSCSI 7200 RPM</td>
<td></td>
</tr>
<tr>
<td>DS-RZ1FB-VW</td>
<td>36.4 GB UltraSCSI 7200 RPM</td>
<td></td>
</tr>
<tr>
<td>KZPCM-DA</td>
<td>UltraSCSI, 2 CH, SE, 1 CH 10/100 Ethernet</td>
<td>Need the 2.2.12 kernel from ftp site to perform install.</td>
</tr>
<tr>
<td>KZPBA-CA</td>
<td>UltraSCSI, 1 CH, SE</td>
<td>Must be installed in slots 15 or 16 if not using 2.2.12 kernel</td>
</tr>
<tr>
<td>KZPBA-CB</td>
<td>UltraSCSI, 1CH, Diff.</td>
<td>Must be installed in slots 15 or 16 if not using 2.2.12 kernel</td>
</tr>
<tr>
<td>PBXGK-BB</td>
<td>Elsa Gloria 8MB</td>
<td>use XF86_3Dlabs; Must be installed in slot 14 or 15 on bus 00</td>
</tr>
<tr>
<td>3X-AVH10-01</td>
<td>Ensonic Sound Adapter</td>
<td>Needs 2.2.12 kernel to work.</td>
</tr>
</tbody>
</table>

For up-to-date information about configuration options, you should refer to the following web sites, which are updated regularly with the latest information:

Red Hat Version 6.1 Distribution

Firmware Inspection and Upgrade

After powering up your AlphaServer or AlphaStation computer, type the command "show version". Check that the version string printed is "V5.4-2 May 19 1999 14:25:16" or newer, and that the first letter of the version string is a "V". If this is not the case, you should upgrade your firmware. Instructions on how to do this can be found at http://ftp.digital.com/pub/Digital/Alpha/firmware/ along with the latest firmware images.

System Resource Manager Configuration

There are several pieces of information that you need to configure in the SRM subsystem, as well as device identifiers that you should make note of, prior to beginning the installation process. The steps that follow take you through that process.

1. Power up your system. After several diagnostics are completed, you will be presented an SRM prompt ">>>", as shown here:

```
1024 Meg of system memory
probing hose 0, PCI
probing PCI-to-ISA bridge, bus 1
probing PCI-to-PCI bridge, bus 2
probing PCI-to-PCI bridge, bus 3
bus 0, slot 9 -- ewa -- DE500-BA Network Controller
bus 0, slot 11 -- ewb -- DE500-BA Network Controller
bus 0, slot 13 -- dqa -- Acer Labs M1543C IDE
bus 0, slot 13 -- dqb -- Acer Labs M1543C IDE
bus 0, slot 14 -- vga -- ELSA GLoria Synergy
bus 2, slot 4 -- eia -- Intel 82558 Ethernet
bus 2, slot 5 -- eib -- Intel 82558 Ethernet
bus 2, slot 6 -- eic -- Intel 82558 Ethernet
bus 2, slot 7 -- eid -- Intel 82558 Ethernet
bus 3, slot 0 -- pka -- NCR 53C875
bus 3, slot 1 -- pkb -- NCR 53C875
bus 3, slot 2 -- ewc -- DE500-AA Network Controller
System Temperature is 31 degrees C
```

AlphaServer DS 10 466 MHz Console V5.4-2, May 19 1999 14:25:16 >>>

2. Determine what devices your system has installed. In particular you will need to note your installation device (a floppy and/or CD-ROM), and your target disk drive. Entering the command "show devices" as shown below will print out the information about your system:

```
>>> show device
dka0.0.0.3000.0  DKA0  RZ1CF-CF  1614
dka100.1.0.3000.0  DKA100  RZ1CF-CF  1614
dka200.2.0.3000.0  DKA200  COMPAQ BB00911CA0  3B05
dka300.3.0.3000.0  DKA300  COMPAQ BB00911CA0  3B05
dqa0.0.0.13.0  DQA0  TOSHIBA CD-ROM XM-6302B  1017
dva0.0.0.0.0  DVA0
eia0.0.0.2004.0  EIA0  00-50-8B-6F-62-AA
eib0.0.0.2005.0  EIB0  00-50-8B-6F-62-AB
eic0.0.0.2006.0  EIC0  00-50-8B-6F-38-84
eid0.0.0.2007.0  EID0  00-50-8B-6F-38-85
ewa0.0.0.9.0  EWA0  08-00-2B-86-1F-64
ewb0.0.0.11.0  EWBO  08-00-2B-86-1F-63
```
In the output above, the first line shows that DKA0 is a hard disk, DQA0 is a CD-ROM, and DVA0 is a floppy drive.

Also useful for inspecting the computer configuration is the "show config" command, as shown here:

```
$ show config | more
```

3. Configure the system SRM parameters to boot from your installation device. A table providing cross-referenced device names is located in Appendix C, for your convenience. Example commands for configuring to boot from the CDROM device are shown here:

```
>>> set bootdef_dev dqa0
>>> set boot_file kernels/generic.gz
>>> set boot_osflags "root=/dev/hda"
>>> show boot*
boot_dev             dqa0.0.0.107.0
boot_file            kernels/generic.gz
boot_osflags         root=/dev/hda
boot_reset           OFF
bootdef_dev          dqa0.0.0.107.0
booted_dev
booted_file
booted_osflags
```

1. **Insert the Red Hat CD** into the drive.

2. Boot the system using the "boot" command. The result should be that the system boots from the CD.

If during this process you encounter a problem, such as due to a typographic error in the setting of the SRM parameters, you will probably be stopped with an "aboot>" prompt. The best way to deal with this situation is to reset the system using the reset button on the front panel. Then using the SRM commands, correct the mistake, and repeat the "boot" process.

Software Installation

The Red Hat version used in the testing for this guide has a simple installation program. Most of the devices available with the AlphaStations can be correctly autodetected by Red Hat. Testing for this Solutions Guide was performed using Red Hat Linux version 6.1.

During the boot process, you may see messages about "IDE STO" errors. These can be safely ignored.

When configuring "Timezones", select "EST" for the timezone, or the value that is appropriate for your location.

X11 GUI Installation

The new Red Hat 6.1 installation is capable of creating and editing the BSD Disk Labels through the use of Disk Druid and automatically installs and configures aboot. It also adds a configuration file for aboot that makes booting more simple that in previous versions.
After booting, the installation program begins by displaying the language screen. Using the mouse point and click on the next button. The GUI is easy to follow. If you decided to install the X Window System, the amount of video RAM available on the Elsa Gloria Card is 8 megabytes. Please refer to the Red Hat Installation guide for further details.

Post-Installation

System Resource Manager Configuration

After the software has been loaded to the disk, the system will attempt to reboot. Before it begins the bootup process, press the front panel reset button. This will stop the bootup process, and allow you to make the final configuration changes to be able to boot directly from the disk, instead of the floppy or CD-ROM. You should now be at the SRM prompt, ">>>”. Enter the following commands to finalize the configuration.

You need to enter these commands, such that the drive reference on the second line needs to refer to the drive which you installed to:

```bash
>>> set boot_file
>>> set bootdef_dev dka0
(or whatever device you installed on. It could also be dqa0 for an IDE drive. See Appendix C for further information on systems with IDE controllers.)
>>> set boot_osflags 0
```

At the SRM prompt, you can now boot directly from the hard drive.

```bash
>>> boot
```

SuSE Version 6.3 Distribution

Firmware Inspection and Upgrade

After powering up your AlphaServer computer, type the command "show version". Check that the version string printed is "V5.4-2 May 19 1999 14:25:16" or newer, and that the first letter of the version string is a "V". If this is not the case, you should upgrade your firmware. Instructions on how to do this can be found at http://ftp.digital.com/pub/Digital/Alpha/firmware/ along with the latest firmware images.

System Resource Manager Configuration

There are several pieces of information that you need to configure in the SRM subsystem, as well as device identifiers that you should make note of, prior to beginning the installation process. The steps that follow take you through that process.

1. Power up your system. After several diagnostics are completed, you will be presented an SRM prompt ">>>", as shown here:

```
1024 Meg of system memory
probing hose 0, PCI
probing PCI-to-ISA bridge, bus 1
probing PCI-to-PCI bridge, bus 2
probing PCI-to-PCI bridge, bus 3
bus 0, slot 9 -- ewa -- DE500-BA Network Controller
bus 0, slot 11 -- ewb -- DE500-BA Network Controller
bus 0, slot 13 -- dqa -- Acer Labs M1543C IDE
bus 0, slot 13 -- dqb -- Acer Labs M1543C IDE
bus 0, slot 14 -- vga -- ELSA Gloria Synergy
```
bus 2, slot 4 -- eia -- Intel 82558 Ethernet
bus 2, slot 5 -- eib -- Intel 82558 Ethernet
bus 2, slot 6 -- eic -- Intel 82558 Ethernet
bus 2, slot 7 -- eid -- Intel 82558 Ethernet
bus 3, slot 0 -- pka -- NCR 53C875
bus 3, slot 1 -- pkb -- NCR 53C875
bus 3, slot 2 -- ewc -- DE500-AA Network Controller

System Temperature is 31 degrees C

AlphaServer DS 10 466 MHz Console V5.4-2, May 19 1999 14:25:16

2. Determine what devices your system has installed. In particular you will need to note your installation device (a floppy and/or CD-ROM), and your target disk drive. Entering the command "show devices" as shown below will print out the information about your system:

>>> show device

In the output above, the first line shows that DKA0 is a hard disk, DQA0 is a CD-ROM, and DVA0 is a floppy drive.

Also useful for inspecting the computer configuration is the "show config" command, as shown here:

>>> show config | more

3. Configure the system SRM parameters to boot from your installation device. A table providing cross referenced device names is located in Appendix C, for your convenience. Example commands for configuring to boot from the CDROM device are shown here:

>>> set bootdef_dev dqa0
>>> set boot_file
>>> set boot_osflags
>>> show boot *

4. Insert the Suse 6.3 CD into the drive.

5. Boot the system using the "boot -flags 0" command. The result should be that the system boots from the CDROM.
If during this process you encounter a problem, such as due to a typographic error in the setting of the SRM parameters, you will probably be stopped with an "aboot>" prompt. The best way to deal with this situation is to reset the system using the reset button on the front panel. Then using the SRM commands, correct the mistake, and repeat the "boot" process.

Software Installation

SuSE’s installation program is flexible. While it allows for autodetection of devices and autoload of device drivers, it allows you to override the automatically configured parameters. Compaq’s testing this Solutions Guide was performed using SuSE Version 6.3.

The software installation process requires that the system be rebooted at two critical places in the process. The first time is just after completing the partitioning of the disk, and the second happens automatically after all of the software components are installed on the disk. Be certain not to skip the reboot after the disk partition process is completed.

Disk Partitioning

In preparation to partition your disk, you should boot your AlphaServer via the BOOT CDROM and following the process for selecting a language, display color, keyboard type, and installation media. At this stage, you should select the “Install From Scratch” menu option, and proceed to the window titled "Partition Hard Drives". At this point, press the ALT+F2 keys, which will change the display to show a shell-command prompt. At this prompt, type the command "fdisk" followed by the enter key.

The process of partitioning your boot disk for Linux on your AlphaServer can be somewhat involved. This section provides an example of how perform the partitioning process using fdisk. Note, the partition recommendations used in steps 14-27 are based on a RZ1DD-AA disk geometry. If your disk has a different geometry you will need to use different starting/ending cylinder numbers for each partition. The correct starting/ending cylinder numbers can be computed by using these size recommendations and the number of bytes/cylinder for the disk that you are using (this figure is reported by fdisk). The disk used for this example is a 4.3GB drive (DS-RZ1CF) which fdisk shows as having 1023 cylinders:

```
4 partitions:
#     size   offset    fstype   [fsize bsize   cpg]
 a:   16368        0      boot    # (Cyl.    1 -  2)
 b:   212784      16368    ext2    # (Cyl.    3 -  28)
 c:   4272048     229152    swap    # (Cyl.   29 -  550)
 d:   3871032    4501200    ext2   # (Cyl.  551 - 1023)
```

We strongly recommend the following multi-partition layout:

A boot partition – A boot partition is used to reserved the first 2 cylinders (1-2) to write the bootloader in order to boot the disk from SRM.

A root partition – The root partition is where the / (root directory) resides. Always starts at cylinder 3. We recommend creating a root partition of 300Mb minimum and 900Mb maximum.

A swap partition – A swap partition is used to support virtual memory. We commend creating a swap partition of 2 times the computer RAM.

A /usr partition – The /usr partition is where the software of the system resides. This partition should use all of the space left on the hard drive.

To perform the partitioning operation on the disk, when prompted, follow these steps:

1. Now you are at the fdisk command line
2. Type “m” for help.
3. Type “p” to print the partition table.
4. If there is partition information already configured for the disk, you will need to delete it using the “d” option. Please be sure that you want to zero out this drive. All data will be lost on the drive doing this.
5. Type “b” to edit the BSD disklabel.
6. If you completed the last step correctly, you should see the following: “/tmp/sda contains no disklabel. Do you want to create a disklabel? (y/n)” – Answer Y.
7. Type “m” for more help.
8. Type “p” to print the partition table. You should see a “c” partition that takes up the whole disk. This will have to be removed to install Linux correctly.
9. Type “d” to delete a BSD partition
10. Type “c” to delete the c partition
11. Type “p” to print the partition table and verify no partitions exist
12. Type “n” to add a new BSD partition – the boot partition in this case
13. Type “a” for partition a.
14. First cylinder: Type “1”.
15. Last cylinder: Type “2”.
16. Type “n” to add a new BSD partition – the / (root) partition in this case.
17. Type “b” for partition b.
18. First cylinder: Type “3”.
19. Last cylinder: Type “28”.
20. Type “n” to add a new BSD partition – the swap partition in this case.
21. Type “c” for partition c.
22. First cylinder: Type “29”.
23. Last cylinder: Type “550”.
24. Type “n” to add a new BSD partition – the /usr partition in this case.
25. Type “d” for partition d.
26. First cylinder: Type “551”.
27. Last cylinder: Type “1023”; last cylinder - one. Do NOT accept the program generated default of “1024” here, because of possible disk corruption.
28. Type “p” to print the partition table. You should notice that the fstype is set to unused for each of the partitions. This will have to be changed via “toggle” – see next step.
29. Type “t” to change the partitions filesystem id.
30. Type “a” for partition a – boot partitions use a “boot” code.
31. Type “L” to list the codes you can use.
32. Enter “d” for boot type.
33. Type “t” to change the partitions filesystem id.
34. Type “b” for partition b – / (root) partitions use a “ext2” code.
35. Enter “8” for ext2 type.
36. Type “t” to change the partitions filesystem id.
37. Type “c” for partition c – swap partitions use a “swap” code.
38. Enter “1” for swap type.
39. Type “t” to change the partitions filesystem id.
40. Type “d” for partition d – /usr partitions use a “ext2” code.
41. Enter “8” for ext2 type.
42. Type “p” to print the partition table – Please verify all your settings.
43. Type “w” to write the disklabel to the disk.
44. Type “q” to quit.

For further information on creating partitions please refer to the Installation Guide provided by the software distribution vendor.

At this point, the partitions have been created, and the system must be rebooted. You can reboot by either pressing the RESET or POWER buttons on the front of the AlphaServer system. Once the system returns to the SRM prompt, follow the preceding instructions to return to the “Partition Hard Drives” window. Select the "Do Not Partition" option at this screen.

You will now be presented a window that allows you to select and format the disk for the software to be installed, entitled "Creating Filesystems". Use the F5 =Expert menu key to change the Inodes density on the following mount point only “/” or sda2 to a density of 1024. You should use the F4 key to define the mount point of “/” for sda2 and “/usr” for sda4. Use the F6 key to select the "Normal" formatting of the drive for both partitions. Once those steps are complete, press enter to continue.

When the window changes to the Installation Menu, select "Start Installation" to start the process. After all CD’s have been loaded select the “Main Menu” to finish the installation. After the software has been loaded to the disk, the system will run the Linux OS, which will allow the user to log into the OS. Upon logging in, as “root” follow the next steps to finalize the installation.

1. Type: `swriteboot -f1 /dev/TdZ /boot/bootlx` (where T is the type of drive, s for SCSI or h for IDE; and Z is the letter of the drive you are booting; ex: dka0=sda, dq0=hda) For example: `swriteboot -f1 /dev/sda /boot/bootlx` for SCSI and for IDE `swriteboot -f1 /dev/hda /boot/bootlx`
2. Type: `cd /boot`
3. Type: `mount /dev/hda /cdrom`
4. Type: `cp /cdrom/etc/vm_full.gz`.
5. Type: `umount /dev/hda`
6. During installation the YAST utility doesn't recognize the swap partition as defined and therefore no swap partition is found in the /etc/fstab file. You will need to edit the /etc/fstab file to add the swap partition entry manually, as follows:

```
/dev/sda3       swap       swap defaults 0 0
```

ECG513/0100
7. After you have completed modifying the /etc/fstab file, you will need to be initialize it with the command `mkswap /dev/sda3`. The changes will take effect after the system is rebooted.

8. To configure the X window System type: `sax`
Following the prompts answering the questions appropriately for your system. Once this process is completed, you should be able to run the command "`startx`" to make use of the graphical interface.

9. Type: `shutdown -h now`

Post-Installation

System Resource Manager Configuration

Now make the final configuration changes to be able to boot directly from the disk, instead of the floppy or CD-ROM. You should now be at the SRM prompt, ">>>". Enter the following commands to finalize the configuration.

You need to enter these commands, such that the drive reference on the second line needs to refer to the drive which you installed to:

```
>>>set boot_file 2/boot/vm_full.gz
>>>set bootdef_dev dka0
>>>set boot_osflags "root=/dev/sda2"
```

At the SRM prompt, you can now boot directly from the hard drive:

```
>>>boot
```
Compaq AlphaServer DS20

Hardware Options

Tested Saleable Hardware Options

Tested saleable hardware options for the DS20 is outlined in Table 1. All of the systems used come equipped with standard bus-interface devices for which drivers already exist for Linux. All bus-interface devices detailed use the PCI bus. Detailed information on each particular bus-interface device can be founds in a subsection of the appropriate software. Only the installation and configuration details that are necessary to clarify the hardware explanation are provided in this table. Unless otherwise specified, the Linux kernel version used in qualifying each component is version 2.2.5.

Table 2. Tested Saleable Options List

<table>
<thead>
<tr>
<th>Compaq PN</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H7899-AA</td>
<td>DS20 Power Supply</td>
<td></td>
</tr>
<tr>
<td>3X-KN310-AD</td>
<td>DS20 6/500 SMP UPG Linux only</td>
<td></td>
</tr>
<tr>
<td>MS340-BA</td>
<td>DS20 128MB Memory Option</td>
<td></td>
</tr>
<tr>
<td>MS340-CA</td>
<td>DS20 256MB Memory Option</td>
<td></td>
</tr>
<tr>
<td>MS340-DA</td>
<td>DS20 512MB Memory Option</td>
<td></td>
</tr>
<tr>
<td>MS340-EA</td>
<td>DS20 1GB Memory Option</td>
<td></td>
</tr>
<tr>
<td>DE500-BA</td>
<td>PCI 1 CH 10/100 Ethernet</td>
<td>Red Hat - Use DE4*5 or Tulip driver</td>
</tr>
<tr>
<td>DE504-BA</td>
<td>PCI 4 CH 10/100 Ethernet</td>
<td>Red Hat - Use DE4*5 or Tulip driver</td>
</tr>
<tr>
<td>RZ1DA-VW</td>
<td>9.1 GB UltraSCSI 7200RPM</td>
<td></td>
</tr>
<tr>
<td>RZ1DD-VW</td>
<td>9.1 GB UltraSCSI 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>RZ1EA-VW</td>
<td>18.2 GB UltraSCSI 7200 RPM</td>
<td></td>
</tr>
<tr>
<td>RZ1ED-VW</td>
<td>18.2 GB UltraSCSI 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>KZPCM-DA</td>
<td>UltraSCSI, 2 CH, SE, 1 CH 10/100 Ethernet</td>
<td>Need the 2.2.12 kernel from ftp site to perform install.</td>
</tr>
<tr>
<td>KZPBA-CA</td>
<td>UltraSCSI, 1 CH, SE</td>
<td></td>
</tr>
<tr>
<td>KZPBA-CB</td>
<td>UltraSCSI, 1CH, Diff.</td>
<td></td>
</tr>
<tr>
<td>PBXGK-BB</td>
<td>Elsa Gloria 8MB</td>
<td>use XF86_3DLabs</td>
</tr>
</tbody>
</table>

For up-to-date information about configuration options, you should refer to the following web sites, which are updated regularly with the latest information:

Red Hat Version 6.1 Distribution

Firmware Inspection and Upgrade

After powering up your AlphaServer or AlphaStation computer, type the command "show version". Check that the version string printed is "V5.4-2 May 19 1999 14:25:16" or newer, and that the first letter of the version string is a "V". If this is not the case, you should upgrade your firmware. Instructions on how to do this can be found at http://ftp.digital.com/pub/Digital/Alpha/firmware/ along with the latest firmware images.

System Resource Manager Configuration

There are several pieces of information that you need to configure in the SRM subsystem, as well as device identifiers that you should make note of, prior to beginning the installation process. The steps that follow take you through that process.

1. Power up your system. After several diagnostics are completed, you will be presented an SRM prompt "P00>>>", as shown here:

 1024 Meg of system memory
 probing hose 1, PCI
 bus 0, slot 7 -- ewa -- DE500-AA Network Controller
 bus 0, slot 8 -- pka -- QLogic ISP1020
 probing hose 0, PCI
 probing PCI-to-ISA bridge, bus 1
 bus 0, slot 5, function 1 -- dqa -- Cypress 82C693 IDE
 bus 0, slot 5, function 2 -- dqb -- Cypress 82C693 IDE
 bus 0, slot 8 -- pkb -- QLogic ISP1020
 bus 0, slot 9 -- vga -- ELSA GLoria Synergy
 System Temperature is 24 degrees C
 initializing GCT/FRU at offset 1d0000

 AlphaServer DS 20 Console V5.4-2, May 19 1999 14:25:16
 P00>>>

2. Determine what devices your system has installed. In particular you will need to note your installation device (a floppy and/or CD-ROM), and your target disk drive. Entering the command "show devices" as shown below will print out the information about your system:

 P00>>> show device
 dka0.0.0.8.1 DKA0 RZ1DF-CB 0371
 dkb500.5.0.8.0 DKB500 RRD46 1337
 dva0.0.0.0.0 DVA0
 ewa0.0.0.0.7.1 EWA0 00-00-F8-10-AE-C5
 pka0.7.0.8.1 PKA0 SCSI Bus ID 7 5.57
 pkb0.7.0.8.0 PKB0 SCSI Bus ID 7 5.57

 In the output above, the first line shows that DKA0 is a hard disk, DKB500 is a CD-ROM, and DVA0 is a floppy drive.

 Also useful for inspecting the computer configuration is the "show config" command, as shown here:

 P00>>> show config | more

3. Configure the system SRM parameters to boot from your installation device. A table providing cross-referenced device names is located in Appendix C, for your convenience. Example commands for configuring to boot from the CDROM device are shown here:

 P00>>> set bootdef_dev DKB500
 P00>>> set boot_file kernels/generic.gz
 P00>>> set boot_osflags "root=/dev/scd0"
 P00>>> show boot*
3. Insert the Red Hat CD into the drive.

4. Boot the system using the "boot" command. The result should be that the system boots from the CD.

If during this process you encounter a problem, such as due to a typographic error in the setting of the SRM parameters, you will probably be stopped with an "aboot>" prompt. The best way to deal with this situation is to reset the system using the reset button on the front panel. Then using the SRM commands, correct the mistake, and repeat the "boot" process.

Software Installation

The Red Hat version used in the testing for this guide has a simple installation program. Most of the devices available with the AlphaStations can be correctly autodetected by Red Hat. Testing for this Solutions Guide was performed using Red Hat Linux version 6.1.

During the boot process, you may see messages about "IDE STO" errors. These can be safely ignored.

When configuring "Timezones", select "EST" for the timezone, or the value that is appropriate for your location.

X11 GUI Installation

The new Red Hat 6.1 installation is capable of creating and editing the BSD Disk Labels through the use of Disk Druid and automatically installs and configures aboot. It also adds a configuration file for aboot that makes booting more simple that in previous versions.

After booting, the installation program begins by displaying the language screen. Using the mouse point and click on the next button. The GUI is easy to follow. If you decided to install the X Window System, the amount of video RAM available on the Elsa Gloria Card is 8 megabytes. Please refer to the Red Hat Installation guide for further details.

Post-Installation

System Resource Manager Configuration

After the software has been loaded to the disk, the system will attempt to reboot. Before it begins the bootup process, press the front panel reset button. This will stop the bootup process, and allow you to make the final configuration changes to be able to boot directly from the disk, instead of the floppy or CD-ROM. You should now be at the SRM prompt, "P00>>>". Enter the following commands to finalize the configuration.

You need to enter these commands, such that the drive reference on the second line needs to refer to the drive which you installed to:
SuSE Version 6.3 Distribution

Pre-Installation

Firmware Inspection and Upgrade

After powering up your AlphaServer computer, type the command "show version". Check that the version string printed is "V5.4-2 May 19 1999 14:25:16" or newer, and that the first letter of the version string is a "V". If this is not the case, you should upgrade your firmware. Instructions on how to do this can be found at http://ftp.digital.com/pub/Digital/Alpha/firmware/ along with the latest firmware images.

System Resource Manager Configuration

There are several pieces of information that you need to configure in the SRM subsystem, as well as device identifiers that you should make note of, prior to beginning the installation process. The steps that follow take you through that process.

Power up your system. After several diagnostics are completed, you will be presented an SRM prompt "P00>>>", as shown here:

1024 Meg of system memory
probing hose 1, PCI
bus 0, slot 7 -- ewa -- DE500-AA Network Controller
bus 0, slot 8 -- pka -- QLogic ISP1020
probing hose 0, PCI
probing PCI-to-ISA bridge, bus 1
bus 0, slot 5, function 1 -- dqa -- Cypress 82C693 IDE
bus 0, slot 5, function 2 -- dbg -- Cypress 82C693 IDE
bus 0, slot 8 -- pkb -- QLogic ISP1020
bus 0, slot 9 -- vga -- ELSA GLoria Synergy
System Temperature is 24 degrees C
initializing GCT/FRU at offset 1d0000

AlphaServer DS 20 Console V5.4-2, May 19 1999 14:25:16
P00>>>

Determine what devices your system has installed. In particular you will need to note your installation device (a floppy and/or CD-ROM), and your target disk drive. Entering the command "show devices" as shown below will print out the information about your system:

Dka0.0.0.8.1 DKA0 RZ1DF-CB 0371
Dkb500.5.0.8.0 DKB500 RRD46 1337
Dva0.0.0.0.0 DVA0
Ewa0.0.0.7.1 EWA0 00-00-F8-10-AE-C5
Pka0.7.0.8.1 PKA0 SCSI Bus ID 7 5.57
Pkb0.7.0.8.0 PKB0 SCSI Bus ID 7 5.57

In the output above, the first line shows that DKA0 is a hard disk, DKB500 is a CD-ROM, and DVA0 is a floppy drive.

Also useful for inspecting the computer configuration is the "show config" command, as shown here:
Configure the system SRM parameters to boot from your installation device. The commands for configuring to boot from the CDROM device are shown here:

```
P00>>> show config | more
```

Software Installation

SuSE’s installation program is flexible. While it allows for autodetection of devices and autoloading of device drivers, it allows you to override the automatically configured parameters. Compaq’s testing this Solutions Guide was performed using SuSE Version 6.3.

The software installation process requires that the system be rebooted at two critical places in the process. The first time is just after completing the partitioning of the disk, and the second happens automatically after all of the software components are installed on the disk. Be certain not to skip the reboot after the disk partition process is completed.

Disk Partitioning

In preparation to partition your disk, you should boot your AlphaServer via the BOOT CDROM and following the process for selecting a language, display color, keyboard type, and installation media. At this stage, you should select the "Install From Scratch" menu option, and proceed to the window titled "Partition Hard Drives". At this point, press the **ALT+F2** keys, which will change the display to show a shell-command prompt. At this prompt, type the command "**fdisk**" followed by the enter key.

The process of partitioning your boot disk for Linux on your AlphaServer can be somewhat involved. This section provides an example of how perform the partitioning process using fdisk. Note, the partition recommendations used in steps 14-27 are based on a RZ1DD-AA disk geometry. If your disk has a different geometry you will need to use different starting/ending cylinder numbers for each partition. The correct starting/ending cylinder numbers can be computed by using these size recommendations and the number of bytes/cylinder for the disk that you are using (this figure is reported by fdisk). The disk used for this example is a 4.3GB drive (DS-RZ1CF) which fdisk shows as having 1023 cylinders:

```
4 partitions:
  #   size     offset  fstype [fsize bsize   cpg]
a:  16368      0      boot    # (Cyl.  1 -  2)
b:  212784     16368  ext2    # (Cyl.  3 -  28)
c:  4272048    229152  swap    # (Cyl.  29 -  550)
d:  3871032    4501200  ext2    # (Cyl.  551 - 1023)
```
We strongly recommend the following multi-partition layout:

A boot partition – A boot partition is used to reserved the first 2 cylinders (1-2) to write the bootloader in order to boot the disk from SRM.

A root partition – The root partition is where the / (root directory) resides. Always starts at cylinder 3. We recommend creating a root partition of 300Mb minimum and 900Mb maximum.

A swap partition – A swap partition is used to support virtual memory. We commend creating a swap partition of 2 times the computer RAM.

A /usr partition – The /usr partition is where the software of the system resides. This partition should use all of the space left on the hard drive.

To perform the partitioning operation on the disk, when prompted, follow these steps:

1. Now you are at the fdisk command line
2. Type “m” for help.
3. Type “p” to print the partition table.
4. If there is partition information already configured for the disk, you will need to delete it using the “d” option. Please be sure that you want to zero out this drive. All data will be lost on the drive doing this.
5. Type “b” to edit the BSD disklabel.
6. If you completed the last step correctly, you should see the following: “/tmp/sda contains no disklabel. Do you want to create a disklabel? (y/n)” – Answer Y.
7. Type “m” for more help.
8. Type “p” to print the partition table. You should see a “c” partition that takes up the whole disk. This will have to be removed to install Linux correctly
9. Type “d” to delete a BSD partition
10. Type “c” to delete the c partition
11. Type “p” to print the partition table and verify no partitions exist
12. Type “n” to add a new BSD partition – the boot partition in this case
13. Type “a” for partition a.
14. First cylinder: Type “1”.
15. Last cylinder: Type “2”.
16. Type “n” to add a new BSD partition – the / (root) partition in this case.
17. Type “b” for partition b.
18. First cylinder: Type “3”.
19. Last cylinder: Type “28”.
20. Type “n” to add a new BSD partition – the swap partition in this case.
21. Type “c” for partition c.
22. First cylinder: Type “29”.
23. Last cylinder: Type “550”.

ECG513/0100
24. Type “n” to add a new BSD partition – the /usr partition in this case.

25. Type “d” for partition d.

26. First cylinder: Type “551”.

27. Last cylinder: Type “1023” ; last cylinder - one. Do NOT accept the program generated default of "1024" here, because of possible disk corruption.

28. Type “p” to print the partition table. You should notice that the fstype is set to unused for each of the partitions. This will have to be changed via “toggle” – see next step.

29. Type “t” to change the partitions filesystem id.

30. Type “a” for partition a – boot partitions use a “boot” code.

31. Type “L” to list the codes you can use.

32. Enter “d” for boot type.

33. Type “t” to change the partitions filesystem id.

34. Type “b” for partition b – / (root) partitions use a “ext2” code.

35. Enter “8” for ext2 type.

36. Type “t” to change the partitions filesystem id.

37. Type “c” for partition c – swap partitions use a “swap” code.

38. Enter “1” for swap type.

39. Type “t” to change the partitions filesystem id.

40. Type “d” for partition d – /usr partitions use a “ext2” code.

41. Enter “8” for ext2 type.

42. Type “p” to print the partition table – Please verify all your settings.

43. Type “w” to write the disklabel to the disk.

44. Type “q” to quit.

For further information on creating partitions please refer to the Installation Guide provided by the software distribution vendor.

At this point, the partitions have been created, and the system must be rebooted. You can reboot by either pressing the RESET or POWER buttons on the front of the AlphaServer system. Once the system returns to the SRM prompt, follow the proceeding instructions to return to the "Partition Hard Drives" window. Select the "Do Not Partition" option at this screen.

You will now be presented a window that allows you to select and format the disk for the software to be installed, entitled "Creating Filesystems". Use the F5 =Expert menu key to change the Inodes density on the following mount point only “/” or sda2 to a density of 1024. You should use the F4 key to define the mount point of "/" for sda2 and “/usr” for sda4. Use the F6 key to select the "Normal" formatting of the drive for both partitions. Once those steps are complete, press enter to continue.

When the window changes to the Installation Menu, select "Start Installation" to start the process. After all CD’s have been loaded select the “Main Menu” to finish the installation. After the software has been loaded to the disk, the system will run the Linux OS, which will allow the user to log into the OS. Upon logging in, as “root” follow the next steps to finalize the installation.
1. Type: `swriteboot -f1 /dev/sdZ /boot/bootlx` (where Z is the letter of the drive you are booting; ex: dka0=sda, dka100=sdb). For example: `swriteboot -f1 /dev/sda /boot/bootlx`

2. Type: `cd /boot`

3. Type: `mount /dev/scd0 /cdrom`

4. Type: `cp /cdrom/etc/vm_full.gz`.

5. Type: `umount /dev/scd0`

6. During installation the YAST utility doesn't recognize the swap partition as defined and therefore no swap partition is found in the `/etc/fstab` file. You will need to edit the `/etc/fstab` file to add the swap partition entry manually, as follows:

   ```
   /dev/sda3       swap       swap    defaults        0 0
   ```

7. After you have completed modifying the `/etc/fstab` file, you will need to initialize it with the command `mkswap /dev/sda3`. The changes will take effect after the system is rebooted.

8. To configure the X window System type: `sax`

 Follow the prompts and answer the questions appropriately for your system. Once this process is completed, you should be able to run the command "`startx`" to make use of the graphical interface.

9. Type: `shutdown -h now`

Post-Installation

System Resource Manager Configuration

Now will make the final configuration changes to be able to boot directly from the disk, instead of the floppy or CD-ROM. You should now be at the SRM prompt, ">>>". Enter the following commands to finalize the configuration.

You need to enter these commands, such that the drive reference on the second line needs to refer to the drive which you installed to:

```
>>> set boot_file 2/boot/vm_full.gz
>>> set bootdef_dev dka0
>>> set boot_osflags "root=/dev/sda2"
```

At the SRM prompt, you can now boot directly from the hard drive:

```
>>>boot
```
Compaq AlphaServer DS20E

Hardware Options

Tested Saleable Hardware Options

Tested saleable hardware options for the DS20E is outlined in Table 1. All of the systems used come equipped with standard bus-interface devices for which drivers already exist for Linux. All bus-interface devices detailed use the PCI bus. Detailed information on each particular bus-interface device can be founds in a subsection of the appropriate software. Only the installation and configuration details that are necessary to clarify the hardware explanation are provided in this table. Unless otherwise specified, the Linux kernel version used in qualifying each component is version 2.2.5.

Table 3. Tested Saleable Options List

<table>
<thead>
<tr>
<th>Compaq PN</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H7899-AA</td>
<td>DS20E Power Supply</td>
<td></td>
</tr>
<tr>
<td>3X-KN310-AD</td>
<td>DS20E 6/500 SMP UPG Linux only</td>
<td></td>
</tr>
<tr>
<td>MS340-BA</td>
<td>DS20E 128MB Memory Option</td>
<td></td>
</tr>
<tr>
<td>MS340-CA</td>
<td>DS20E 265MB Memory Option</td>
<td></td>
</tr>
<tr>
<td>MS340-DA</td>
<td>DS20E 512MB Memory Option</td>
<td></td>
</tr>
<tr>
<td>MS340-EA</td>
<td>DS20E 1GB Memory Option</td>
<td></td>
</tr>
<tr>
<td>DE500-BA</td>
<td>PCI 1 CH 10/100 Ethernet</td>
<td>Red Hat - Use DE4*5 or Tulip driver</td>
</tr>
<tr>
<td>DE504-BA</td>
<td>PCI 4 CH 10/100 Ethernet</td>
<td>Red Hat - Use DE4*5 or Tulip driver</td>
</tr>
<tr>
<td>RZ1DA-VW</td>
<td>9.1 GB UltraSCSI 7200RPM</td>
<td></td>
</tr>
<tr>
<td>RZ1DD-VW</td>
<td>9.1 GB UltraSCSI 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>RZ1EA-VW</td>
<td>18.2 GB UltraSCSI 7200 RPM</td>
<td></td>
</tr>
<tr>
<td>RZ1ED-VW</td>
<td>18.2 GB UltraSCSI 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>KZPCM-DA</td>
<td>UltraSCSI, 2 CH, SE, 1 CH 10/100 Ethernet</td>
<td>Need the 2.2.12 kernel from ftp site to perform install.</td>
</tr>
<tr>
<td>KZPBA-CA</td>
<td>UltraSCSI, 1 CH, SE</td>
<td></td>
</tr>
<tr>
<td>KZPBA-CB</td>
<td>UltraSCSI, 1CH, Diff.</td>
<td></td>
</tr>
<tr>
<td>PBXGK-BB</td>
<td>Elsa Gloria 8MB</td>
<td>Use XF86_3DLabs</td>
</tr>
</tbody>
</table>

For up-to-date information about configuration options, you should refer to the following web sites, which are updated regularly with the latest information:

Red Hat Version 6.1 Distribution

Pre-Installation

Firmware Inspection and Upgrade

After powering up your AlphaServer or AlphaStation computer, type the command "show version". Check that the version string printed is "V5.4-2 May 19 1999 14:25:16" or newer, and that the first letter of the version string is a "V". If this is not the case, you should upgrade your firmware. Instructions on how to do this can be found at http://ftp.digital.com/pub/Digital/Alpha/firmware/ along with the latest firmware images.

System Resource Manager Configuration

There are several pieces of information that you need to configure in the SRM subsystem, as well as device identifiers that you should make note of, prior to beginning the installation process. The steps that follow take you through that process.

1. Power up your system. After several diagnostics are completed, you will be presented an SRM prompt "P00>>>", as shown here:

 256 Meg of system memory
 probing hose 1, PCI
 bus 0, slot 9 -- ewa -- DE500-AA Network Controller
 probing hose 0, PCI
 probing PCI-to-ISA bridge, bus 1
 bus 0, slot 5, function 1 -- dqa -- Cypress 82C693 IDE
 bus 0, slot 5, function 2 -- dqb -- Cypress 82C693 IDE
 bus 0, slot 6, function 0 -- pka -- Adaptec AIC-7895
 bus 0, slot 6, function 1 -- pkb -- Adaptec AIC-7895
 bus 0, slot 7 -- vga -- ELSA Gloria Synergy
 os_type: UNIX - console CIPCA driver not started
 System Temperature is 30 degrees C
 initializing GCT/FRU at 1ec000

 COMPAQ AlphaServer DS20E 500 MHz Console V5.5-21, Oct 18 1999 13:33:24
 P00>>>

2. Determine what devices your system has installed. In particular you will need to note your installation device (a floppy and/or CD-ROM), and your target disk drive. Entering the command "show devices" as shown below will print out the information about your system:

 P00>>>show device
 dka0.0.0.6.0 DKA0 COMPAQ BA03611C9B 3B05
 dka100.1.0.6.0 DKA100 COMPAQ BB01811C9C 3B05
 dka200.2.0.6.0 DKA200 COMPAQ BB01811C9C 3B05
 dqa0.0.0.105.0 DQA0 CD-224E 9.5B
 dva0.0.0.0.0 DVA0
 ewa0.0.0.9.1 EWA0 00-00-F8-01-F5-DA
 pka0.7.0.6.0 PKA0 SCSI Bus ID 7
 pkb0.7.0.106.0 PKB0 SCSI Bus ID 7

 In the output above, the first line shows that DKA0 is a hard disk, DQA0 is a CD-ROM, and DVA0 is a floppy drive.

 Also useful for inspecting the computer configuration is the "show config" command, as shown here:

 P00>>>show config | more
3. Configure the system SRM parameters to boot from your installation device. A table providing cross-referenced device names is located in Appendix C, for your convenience. Example commands for configuring to boot from the CDROM device are shown here:

```
P00>>> set bootdef_dev dqa0
P00>>> set boot_file kernels/generic.gz
P00>>> set boot_osflags "root=/dev/hda"
P00>>> show boot*
  boot_dev             dqa0.0.0.105.0
  boot_file            kernels/generic.gz
  boot_osflags         root=/dev/hda
  boot_reset           OFF
  bootdef_dev          dqa0.0.0.105.0
  booted_dev
  booted_file
  booted_osflags
```

4. Insert the Red Hat CD into the drive.

5. Boot the system using the "boot" command. The result should be that the system boots from the CD.

If during this process you encounter a problem, such as due to a typographic error in the setting of the SRM parameters, you will probably be stopped with an "aboot>" prompt. The best way to deal with this situation is to reset the system using the reset button on the front panel. Then using the SRM commands, correct the mistake, and repeat the "boot" process.

Software Installation

The Red Hat version used in the testing for this guide has a simple installation program. Most of the devices available with the AlphaStations can be correctly autodetected by Red Hat. Testing for this Solutions Guide was performed using Red Hat Linux version 6.1.

During the boot process, you may see messages about "IDE STO" errors. These can be safely ignored.

When configuring "Timezones", select "EST" for the timezone, or the value that is appropriate for your location.

X11 GUI Installation

The new Red Hat 6.1 installation is capable of creating and editing the BSD Disk Labels through the use of Disk Druid and automatically installs and configures aboot. It also adds a configuration file for aboot that makes booting more simple that in previous versions.

After booting, the installation program begins by displaying the language screen. Using the mouse point and click on the **next** button. The GUI is easy to follow. If you decided to install the X Window System, the amount of video RAM available on the **Elsa Gloria Card is 8 megabytes**. Please refer to the Red Hat Installation guide for further details.

Post-Installation

System Resource Manager Configuration

After the software has been loaded to the disk, the system will attempt to reboot. **Before it begins the bootup process, press the front panel reset button.** This will stop the bootup process, and allow you to make the final configuration changes to be able to boot directly from the disk, instead of the floppy or CD-ROM. You should now be at the SRM prompt, "P00>>>". Enter the following commands to finalize the configuration.
You need to enter these commands, such that the drive reference on the second line needs to refer to the drive which you installed to:

```
P00>>> set boot_file
P00>>> set bootdef_dev dka0
P00>>> set boot_osflags 0
```

At the SRM prompt, you can now boot directly from the hard drive:

```
P00>>> boot
```

SuSE Version 6.3 Distribution

Firmware Inspection and Upgrade

After powering up your AlphaServer computer, type the command "show version". Check that the version string printed is "V5.4-2 May 19 1999 14:25:16" or newer, and that the first letter of the version string is a "V". If this is not the case, you should upgrade your firmware. Instructions on how to do this can be found at http://ftp.digital.com/pub/Digital/Alpha/firmware/ along with the latest firmware images.

System Resource Manager Configuration

There are several pieces of information that you need to configure in the SRM subsystem, as well as device identifiers that you should make note of, prior to beginning the installation process. The steps that follow take you through that process.

Power up your system. After several diagnostics are completed, you will be presented an SRM prompt "P00>>>", as shown here:

```
256 Meg of system memory
probing hose 1, PCI
bus 0, slot 9 -- ewa -- DE500-AA Network Controller
probing hose 0, PCI
probing PCI-to-ISA bridge, bus 1
bus 0, slot 5, function 1 -- dqa -- Cypress 82C693 IDE
bus 0, slot 5, function 2 -- dqb -- Cypress 82C693 IDE
bus 0, slot 6, function 0 -- pka -- Adaptec AIC-7895
bus 0, slot 6, function 1 -- pkb -- Adaptec AIC-7895
bus 0, slot 7 -- vga -- ELSA GLoria Synergy
os_type: UNIX -- console CIPCA driver not started
System Temperature is 30 degrees C
initializing GCT/FRU at l0e000

COMPAQ AlphaServer DS20E 500 MHz Console V5.5-21, Oct 18 1999 13:33:24
P00>>>
```

Determine what devices your system has installed. In particular you will need to note your installation device (a floppy and/or CD-ROM), and your target disk drive. Entering the command "show devices" as shown below will print out the information about your system:

```
P00>>> show device
dka0.0.0.6.0 DKA0 COMPAQ BA03611C9B 3B05
dka100.1.0.6.0 DKA100 COMPAQ BB01811C9C 3B05
dka200.2.0.6.0 DKA200 COMPAQ BB01811C9C 3B05
dqa0.0.0.105.0 DQA0 CD-224E 9.5B
dva0.0.0.9.1 DVA0
ewa0.0.0.9.1 EWA0 00-00-F8-01-F5-DA
pka0.7.0.6.0 PKA0 SCSI Bus ID 7
pkb0.7.0.106.0 PKB0 SCSI Bus ID 7
```
In the output above, the first line shows that DKA0 is a hard disk, DQA0 is a CD-ROM, and DVA0 is a floppy drive.

Also useful for inspecting the computer configuration is the "show config" command, as shown here:

```
P00>>> show config | more
```

Configure the system SRM parameters to boot from your installation device. The commands for configuring to boot from the CDROM device are shown here:

```
P00>>> set bootdef_dev dqa0
P00>>> set boot_file
P00>>> set boot_osflags
P00>>> show boot*
boot_dev             dqa0.0.0.105.0
boot_file
boot_osflags
boot_reset           OFF
boot_def_dev          dqa0.0.0.105.0
booted_dev
booted_file
booted_osflags
```

Insert the Suse 6.3 CD into the drive.

Boot the system using the "boot –flags 0" command. The result should be that the system boots from the CDROM.

If during this process you encounter a problem, such as due to a typographic error in the setting of the SRM parameters, you will probably be stopped with an "aboot>" prompt. The best way to deal with this situation is to reset the system using the reset button on the front panel. Then using the SRM commands, correct the mistake, and repeat the "boot" process.

Software Installation

SuSE's installation program is flexible. While it allows for autodetection of devices and autoload of device drivers, it allows you to override the automatically configured parameters. Compaq's testing this Solutions Guide was performed using SuSE Version 6.3.

The software installation process requires that the system be rebooted at two critical places in the process. The first time is just after completing the partitioning of the disk, and the second happens automatically after all of the software components are installed on the disk. Be certain not to skip the reboot after the disk partition process is completed.

Disk Partitioning

In preparation to partition your disk, you should boot your AlphaServer via the BOOT CDROM and following the process for selecting a language, display color, keyboard type, and installation media. At this stage, you should select the "Install From Scratch" menu option, and proceed to the window titled "Partition Hard Drives". At this point, press the ALT+F2 keys, which will change the display to show a shell-command prompt. At this prompt, type the command "fdisk" followed by the enter key.

The process of partitioning your boot disk for Linux on your AlphaServer can be somewhat involved. This section provides an example of how perform the partitioning process using fdisk. Note, the partition recommendations used in steps 14-27 are based on a RZ1DD-AA disk geometry. If your disk has a different geometry you will need to use different starting/ending cylinder numbers for each partition. The correct starting/ending cylinder numbers can be
computed by using these size recommendations and the number of bytes/cylinder for the disk that you are using (this figure is reported by fdisk). The disk used for this example is a 4.3GB drive (DS-RZ1CF) which fdisk shows as having 1023 cylinders:

| 4 partitions: |
#	size	offset	fstype	[fsize bsize cpg]
a:	16368	0	boot	(Cyl. 1 - 2)
b:	212784	16368	ext2	(Cyl. 3 - 28)
c:	4272048	229152	swap	(Cyl. 29 - 550)
d:	3871032	4501200	ext2	(Cyl. 551 - 1023)

We strongly recommend the following multi-partition layout:

A boot partition – A boot partition is used to reserved the first 2 cylinders (1-2) to write the bootloader in order to boot the disk from SRM.

A root partition – The root partition is where the / (root directory) resides. Always starts at cylinder 3. We recommend creating a root partition of 300MB minimum and a maximum of 900MB.

A swap partition – A swap partition is used to support virtual memory. We commend creating a swap partition of 2 times the computer RAM.

A /usr partition – The /usr partition is where the software of the system resides. This partition should use all of the space left on the hard drive.

To perform the partitioning operation on the disk, when prompted, follow these steps:

1. Now you are at the `fdisk` command line
2. Type “m” for help.
3. Type “p” to print the partition table.
4. If there is partition information already configured for the disk, you will need to delete it using the “d” option. Please be sure that you want to zero out this drive. All data will be lost on the drive doing this.
5. Type “b” to edit the BSD disklabel.
6. If you completed the last step correctly, you should see the following: “/tmp/sda contains no disklabel. Do you want to create a disklabel? (y/n)” – Answer Y.
7. Type “m” for more help.
8. Type “p” to print the partition table. You should see a “c” partition that takes up the whole disk. This will have to be removed to install Linux correctly
9. Type “d” to delete a BSD partition
10. Type “c” to delete the c partition
11. Type “p” to print the partition table and verify no partitions exist
12. Type “n” to add a new BSD partition – the boot partition in this case
13. Type “a” for partition a.
14. First cylinder: Type “1”.
15. Last cylinder: Type “2”.
16. Type “n” to add a new BSD partition – the / (root) partition in this case.
17. Type “b” for partition b.
18. First cylinder: Type “3”.
19. Last cylinder: Type “28”.
20. Type “n” to add a new BSD partition – the swap partition in this case.
21. Type “c” for partition c.
22. First cylinder: Type “29”.
23. Last cylinder: Type “550”.
24. Type “n” to add a new BSD partition – the /usr partition in this case.
25. Type “d” for partition d.
26. First cylinder: Type “551”.
27. Last cylinder: Type “1023” ; last cylinder - one. Do NOT accept the program generated default of “1024” here, because of possible disk corruption.
28. Type “p” to print the partition table. You should notice that the fstype is set to unused for each of the partitions. This will have to be changed via “toggle” – see next step.
29. Type “t” to change the partitions filesystem id.
30. Type “a” for partition a – boot partitions use a “boot” code.
31. Type “L” to list the codes you can use.
32. Enter “d” for boot type.
33. Type “t” to change the partitions filesystem id.
34. Type “b” for partition b – / (root) partitions use a “ext2” code.
35. Enter “8” for ext2 type.
36. Type “t” to change the partitions filesystem id.
37. Type “c” for partition c – swap partitions use a “swap” code.
38. Enter “l” for swap type.
39. Type “t” to change the partitions filesystem id.
40. Type “d” for partition d – /usr partitions use a “ext2” code.
41. Enter “8” for ext2 type.
42. Type “p” to print the partition table – Please verify all your settings.
43. Type “w” to write the disklabel to the disk.
44. Type “q” to quit.

For further information on creating partitions please refer to the Installation Guide provided by the software distribution vendor.

At this point, the partitions have been created, and the system must be rebooted. You can reboot by either pressing the RESET or POWER buttons on the front of the AlphaServer system. Once the system returns to the SRM prompt, follow the preceding instructions to return to the "Partition Hard Drives" window. Select the "Do Not Partition" option at this screen.

You will now be presented a window that allows you to select and format the disk for the software to be installed, entitled "Creating Filesystems". Use the F5 =Expert menu key to change the Inodes density on the following mount point only “/” or sda2 to a density of 1024. You
should use the F4 key to define the mount point of "/" for sda2 and "/usr" for sda4. Use the F6 key to select the "Normal" formatting of the drive for both partitions. Once those steps are complete, press enter to continue.

When the window changes to the Installation Menu, select "Start Installation" to start the process. After all CD's have been loaded select the “Main Menu” to finish the installation. After the software has been loaded to the disk, the system will run the Linux OS, which will allow the user to log into the OS. Upon logging in, as “root” follow the next steps to finalize the installation.

1. Type: `swriteboot -f1 /dev/TdZ /boot/bootlx` (where T is the type of drive, s for SCSI or h for IDE; and Z is the letter of the drive you are booting; ex: dka0=sda, dqa0=hda) For example: `swriteboot -f1 /dev/sda /boot/bootlx` for SCSI

2. Type: `cd /boot`

3. Type: `mount /dev/hda /cdrom`

4. Type: `cp /cdrom/etc/vm_full.gz`.

5. Type: `umount /dev/hda`

6. During installation the YAST utility doesn’t recognize the swap partition as defined and therefore no swap partition is found in the /etc/fstab file. You will need to edit the /etc/fstab file to add the swap partition entry manually, as follows:

```
/dev/sda3          swap            swap    defaults        0  0
```

7. After you have completed modifying the /etc/fstab file, you will need to be initialize it with the command `mkswap /dev/sda3`. The changes will take effect after the system is rebooted.

8. To configure the X window System type: `sax`

Following the prompts answering the questions appropriately for your system. Once this process is completed, you should be able to run the command "startx" to make use of the graphical interface.

9. Type: `shutdown –h now`

Post-Installation

System Resource Manager Configuration

Now will make the final configuration changes to be able to boot directly from the disk, instead of the floppy or CD-ROM. You should now be at the SRM prompt, ">>>". Enter the following commands to finalize the configuration.

You need to enter these commands:

```
>>>set boot_file 2/boot/vm_full.gz
>>>set bootdef_dev dka0
>>>set boot_osflags "root=/dev/sda2"
```

At the SRM prompt, you can now boot directly from the hard drive:

```
>>>boot
```
Compaq AlphaServer ES40

Hardware Options

Tested Saleable Hardware Options

Tested saleable hardware options for the ES40 is outlined in Table 1. All of the systems used come equipped with standard bus-interface devices for which drivers already exist for Linux. All bus-interface devices detailed use the PCI bus. Detailed information on each particular bus-interface device can be founds in a subsection of the appropriate software. Only the installation and configuration details that are necessary to clarify the hardware explanation are provided in this table. Unless otherwise specified, the Linux kernel version used in qualifying each component is version 2.2.5.

Table 4. Tested Saleable Options List

<table>
<thead>
<tr>
<th>Compaq PN</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA610-4D</td>
<td>ES40 4 Bay Drive Cage</td>
<td></td>
</tr>
<tr>
<td>H7906-A9</td>
<td>ES40 Power Supply</td>
<td></td>
</tr>
<tr>
<td>KN610-AA</td>
<td>ES40 SMP CPU, 500MHz</td>
<td></td>
</tr>
<tr>
<td>MS610-CA</td>
<td>ES40 512MB Memory Option, 100 MHz</td>
<td></td>
</tr>
<tr>
<td>MS610-DA</td>
<td>ES40 1GB Memory Option, 100 MHz</td>
<td></td>
</tr>
<tr>
<td>MS610-EA</td>
<td>ES40 2GB Memory Option, 100 MHz</td>
<td></td>
</tr>
<tr>
<td>DE500-BA</td>
<td>PCI 1 CH 10/100 Ethernet</td>
<td>Red Hat - Use DE4*5 or Tulip driver</td>
</tr>
<tr>
<td>DE504-BA</td>
<td>PCI 4 CH 10/100 Ethernet</td>
<td>Red Hat - Use DE4*5 or Tulip driver</td>
</tr>
<tr>
<td>RZ1DA-VW</td>
<td>9.1 GB UltraSCSI 7200 RPM</td>
<td></td>
</tr>
<tr>
<td>RZ1DD-VW</td>
<td>9.1 GB UltraSCSI 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>RZ2DD-16</td>
<td>9.1 GB Ultra2 SCSI 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>RZ1EA-VW</td>
<td>18.2 GB UltraSCSI 7200 RPM</td>
<td></td>
</tr>
<tr>
<td>RZ1ED-VW</td>
<td>18.2 GB UltraSCSI 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>RZ2ED-16</td>
<td>18.2 GB Ultra2 SCSI 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>RZ1FB-VW</td>
<td>36.4 GB UltraSCSI 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>KZPCM-DA</td>
<td>UltraSCSI, 2 CH, SE, 1 CH 10/100 Ethernet</td>
<td>Need the 2.2.12 kernel from ftp site to perform install.</td>
</tr>
<tr>
<td>KZPBA-CA</td>
<td>UltraSCSI, 1 CH, SE</td>
<td></td>
</tr>
<tr>
<td>KZPBA-CB</td>
<td>UltraSCSI, 1CH, Diff.</td>
<td></td>
</tr>
<tr>
<td>PBXGK-BB</td>
<td>Elsa Gloria 8MB</td>
<td>use XF86_3DLabs</td>
</tr>
</tbody>
</table>

For up-to-date information about configuration options, you should refer to the following web sites, which are updated regularly with the latest information:

For Alpha Systems Supported Options List:

Red Hat Version 6.1 Distribution

Firmware Inspection and Upgrade

After powering up your AlphaServer or AlphaStation computer, type the command "\texttt{show version}". Check that the version string printed is "V5.4-2 May 19 1999 14:25:16" or newer, and that the first letter of the version string is a "V". If this is not the case, you should upgrade your firmware. Instructions on how to do this can be found at http://ftp.digital.com/pub/Digital/Alpha/firmware/ along with the latest firmware images.

System Resource Manager Configuration

There are several pieces of information that you need to configure in the SRM subsystem, as well as device identifiers that you should make note of, prior to beginning the installation process. The steps that follow take you through that process.

1. Power up your system. After several diagnostics are completed, you will be presented an SRM prompt "P00 >>>", as shown here:

```
OpenVMS PALcode V1.61-2, Tru64 UNIX PALcode V1.54-2
starting console on CPU 0
initialized idle PCB
initializing semaphores
initializing heap
initial heap 200c0
memory low limit = 166000
heap = 200c0, 17fc0
initializing driver structures
initializing idle process PID
initializing file system
initializing hardware
initializing timer data structures
lowering IPL
CPU 0 speed is 500 MHz
create dead_eater
create poll
create timer
create powerup
access NVRAM
Memory size 4608 MB
testing memory
...
probe I/O subsystem
probing hose 1, PCI
bus 0, slot 4 -- pka -- NCR 53C895
bus 0, slot 6 -- ewa -- DE500-BA Network Controller
probing hose 0, PCI
probing PCI-to-ISA bridge, bus 1
bus 0, slot 1 -- vga -- ELSA Gloria Synergy
bus 0, slot 15 -- dqa -- Acer Labs M1543C IDE
bus 0, slot 15 -- dqb -- Acer Labs M1543C IDE
starting drivers
entering idle loop
initializing keyboard
starting console on CPU 1
initialized idle PCB
initializing idle process PID
lowering IPL
```
CPU 1 speed is 500 MHz
create powerup
starting console on CPU 2
initialized idle PCB
initializing idle process PID
lowering IPL
CPU 2 speed is 500 MHz
create powerup
starting console on CPU 3
initialized idle PCB
initializing idle process PID
lowering IPL
CPU 3 speed is 500 MHz
create powerup

Memory Testing and Configuration Status

<table>
<thead>
<tr>
<th>Array</th>
<th>Size</th>
<th>Base Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>512Mb</td>
<td>0000000100000000</td>
</tr>
<tr>
<td>1</td>
<td>2048Mb</td>
<td>0000000000000000</td>
</tr>
<tr>
<td>2</td>
<td>1024Mb</td>
<td>0000000080000000</td>
</tr>
<tr>
<td>3</td>
<td>1024Mb</td>
<td>00000000c0000000</td>
</tr>
</tbody>
</table>

4608 MB of System Memory

Testing the System
Testing the Disks (read only)
Testing the Network
Partition 0, Memory base: 000000000, size: 120000000
initializing GCT/FRU at 1a2000

AlphaServer ES40 Console V5.5-68, built on Jul 21 1999 at 17:02:39

2. Determine what devices your system has installed. In particular you will need to note your installation device (a floppy and/or CD-ROM), and your target disk drive. Entering the command "show devices" as shown below will print out the information about your system:

```
P00>>> show dev
da0.0.0.4.1      DKA0         RZ2ED-LS  0306
nda100.1.0.4.1    DKA100       RZ2DD-LS  0306
nda200.2.0.4.1    DKA200       RZ2DD-LS  0306
nda300.3.0.4.1    DKA300       RZ2DD-LS  0306
dqa0.0.0.15.0     DQA0         COMPAQ CDR-8435 0013
dva0.0.1000.0     DVA0         08-00-28-C4-56-8E
ewa0.0.0.6.1      EWA0         08-00-2B-C4-56-8E
pka0.7.0.4.1      PKA0         SCSI Bus ID 7
```

In the output above, the first line shows that DKA0 is a hard disk, DQA0 is a CD-ROM, and DVA0 is a floppy drive.

Also useful for inspecting the computer configuration is the "show config" command, as shown here:

```
P00>>> show config | more
```

3. Configure the system SRM parameters to boot from your installation device. A table providing cross-referenced device names is located in Appendix C, for your convenience. Example commands for configuring to boot from the CDROM device are shown here:

```
P00>>> set bootdef_dev dqa0
P00>>> set boot_file kernels/generic.gz
P00>>> set boot_osflags "root=/dev/hda"
P00>>> show boot*
```

```
boot_dev          dqa0.0.0.15.0
boot_file         kernels/generic.gz
boot_osflags      root=/dev/hda
boot_reset        OFF
```
4. Insert the **Red Hat CD** into the drive.

5. Boot the system using the "**boot**" command. The result should be that the system boots from the CD.

If during this process you encounter a problem, such as due to a typographic error in the setting of the SRM parameters, you will probably be stopped with an "aboot>" prompt. The best way to deal with this situation is to reset the system using the reset button on the front panel. Then using the SRM commands, correct the mistake, and repeat the "boot" process.

Software Installation

The Red Hat version used in the testing for this guide has a simple installation program. Most of the devices available with the AlphaStations can be correctly autodetected by Red Hat. Testing for this Solutions Guide was performed using Red Hat Linux version 6.1.

During the boot process, you may see messages about "IDE STO" errors. These can be safely ignored.

When configuring "Timezones", select "EST" for the timezone, or the value that is appropriate for your location.

X11 GUI Installation

The new Red Hat 6.1 installation is capable of creating and editing the BSD Disk Labels through the use of Disk Druid and automatically installs and configures aboot. It also adds a configuration file for aboot that makes booting more simple that in previous versions.

After booting, the installation program begins by displaying the language screen. Using the mouse point and click on the **next** button. The GUI is easy to follow. If you decided to install the X Window System, the amount of video RAM available on the **Elsa Gloria Card is 8 megabytes**. Please refer to the Red Hat Installation guide for further details.

Post-Installation

System Resource Manager Configuration

After the software has been loaded to the disk, the system will attempt to reboot. **Before it begins the bootup process, press the front panel reset button.** This will stop the bootup process, and allow you to make the final configuration changes to be able to boot directly from the disk, instead of the floppy or CD-ROM. You should now be at the SRM prompt, ">>>". Enter the following commands to finalize the configuration.

You need to enter these commands:

```
P00>>> set boot_file
P00>>> set bootdef_dev dka0
P00>>> set boot_osflags 0
```

At the SRM prompt, you can now boot directly from the hard drive:

```
P00>>> boot
```
SuSE Version 6.3 Distribution

Firmware Inspection and Upgrade

After powering up your AlphaServer computer, type the command "show version". Check that the version string printed is "V5.4-2 May 19 1999 14:25:16" or newer, and that the first letter of the version string is a "V". If this is not the case, you should upgrade your firmware. Instructions on how to do this can be found at http://ftp.digital.com/pub/Digital/Alpha/firmware/ along with the latest firmware images.

System Resource Manager Configuration

There are several pieces of information that you need to configure in the SRM subsystem, as well as device identifiers that you should make note of, prior to beginning the installation process. The steps that follow take you through that process.

1. **Power up your system.** After several diagnostics are completed, you will be presented an SRM prompt ">>>", as shown here:

```
OpenVMS PALcode V1.61-2, Tru64 UNIX PALcode V1.54-2
starting console on CPU 0
initialized idle PCB
initializing semaphores
initializing heap
initial heap 200c0
memory low limit = 166000
heap = 200c0, 17fc0
initializing driver structures
initializing idle process PID
initializing file system
initializing hardware
initializing timer data structures
lowering IPL
CPU 0 speed is 500 MHz
create dead_eater
create poll
create timer
create powerup
access NVRAM
Memory size 4608 MB
testing memory
...
probe I/O subsystem
probing hose 1, PCI
bus 0, slot 4 -- pka -- NCR 53C895
bus 0, slot 6 -- ewa -- DE500-BA Network Controller
probing hose 0, PCI
probing PCI-to-ISA bridge, bus 1
bus 0, slot 1 -- vga -- ELSA GLoria Synergy
bus 0, slot 15 -- dqa -- Acer Labs M1543C IDE
bus 0, slot 15 -- db -- Acer Labs M1543C IDE
starting drivers
entering idle loop
initializing keyboard
starting console on CPU 1
initialized idle PCB
initializing idle process PID
lowering IPL
CPU 1 speed is 500 MHz
create powerup
starting console on CPU 2
initialized idle PCB
initializing idle process PID
```
lowering IPL
CPU 2 speed is 500 MHz
create powerup
starting console on CPU 3
initialized idle PCB
initializing idle process PID
lowering IPL
CPU 3 speed is 500 MHz
create powerup
Memory Testing and Configuration Status

<table>
<thead>
<tr>
<th>Array</th>
<th>Size</th>
<th>Base Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>512Mb</td>
<td>00000000100000000</td>
</tr>
<tr>
<td>1</td>
<td>2048Mb</td>
<td>00000000000000000</td>
</tr>
<tr>
<td>2</td>
<td>1024Mb</td>
<td>00000000800000000</td>
</tr>
<tr>
<td>3</td>
<td>1024Mb</td>
<td>00000000c00000000</td>
</tr>
</tbody>
</table>

4608 MB of System Memory
Testing the System
Testing the Disks (read only)
Testing the Network
Partition 0, Memory base: 0000000000, size: 120000000
initializing GCT/FRU at 1a2000

AlphaServer ES40 Console V5.5-68, built on Jul 21 1999 at 17:02:39

2. Determine what devices your system has installed. In particular you will need to note your installation device (a floppy and/or CD-ROM), and your target disk drive. Entering the command "show devices" as shown below will print out the information about your system:

```
P00>>> show dev
dka0.0.0.4.1  DKA0  RZ2ED-LS  0306
dka100.1.0.4.1 DKA100 RZ2DD-LS 0306
dka200.2.0.4.1 DKA200 RZ2DD-LS 0306
dka300.3.0.4.1 DKA300 RZ2DD-LS 0306
dqa0.0.0.15.0  DQA0  COMPAQ CDR-8435 0013
dva0.0.0.1000.0 DVA0
ewa0.0.0.6.1  EWA0  08-00-2B-C4-56-8E
pka0.7.0.4.1  PKA0  SCSI Bus ID 7
```

In the output above, the first line shows that DKA0 is a hard disk, DQA0 is a CD-ROM, and DVA0 is a floppy drive.

Also useful for inspecting the computer configuration is the "show config" command, as shown here:

```
P00>>> show config | more
```

3. Configure the system SRM parameters to boot from your installation device. The commands for configuring to boot from the floppy device are shown here:

```
P00>>> set bootdef_dev dqa0
P00>>> set boot_file
P00>>> set boot_osflags
P00>>> show boot*
boot_dev    dqa0.0.0.15.0
boot_file
boot_osflags
boot_reset   OFF
bootdef_dev  dqa0.0.0.15.0
booted_dev
booted_file
booted_osflags
```

4. Insert the Suse 6.3 CD into the drive.
5. Boot the system using the "\texttt{boot –flags 0}" command. The result should be that the system boots from the CDROM.

If during this process you encounter a problem, such as due to a typographic error in the setting of the SRM parameters, you will probably be stopped with an "aboot>" prompt. The best way to deal with this situation is to reset the system using the reset button on the front panel. Then using the SRM commands, correct the mistake, and repeat the "boot" process.

Software Installation

SuSE’s installation program is flexible. While it allows for autodetection of devices and autoload of device drivers, it allows you to override the automatically configured parameters. Compaq’s testing this Solutions Guide was performed using SuSE Version 6.3.

The software installation process requires that the system be rebooted at two critical places in the process. The first time is just after completing the partitioning of the disk, and the second happens automatically after all of the software components are installed on the disk. Be certain not to skip the reboot after the disk partition process is completed.

Disk Partitioning

In preparation to partition your disk, you should boot your AlphaServer via the BOOT CDROM and following the process for selecting a language, display color, keyboard type, and installation media. At this stage, you should select the "Install From Scratch" menu option, and proceed to the window titled "Partition Hard Drives". At this point, press the \texttt{ALT+F2} keys, which will change the display to show a shell-command prompt. At this prompt, type the command \texttt{fdisk} followed by the enter key.

The process of partitioning your boot disk for Linux on your AlphaServer can be somewhat involved. This section provides an example of how perform the partitioning process using fdisk. Note, the partition recommendations used in steps 14-27 are based on a RZ1DD-AA disk geometry. If your disk has a different geometry you will need to use different starting/ending cylinder numbers for each partition. The correct starting/ending cylinder numbers can be computed by using these size recommendations and the number of bytes/cylinder for the disk that you are using (this figure is reported by fdisk). The disk used for this example is an 18.2GB drive (RZ2ED-LS) which fdisk shows as having 17365 cylinders:

\begin{verbatim}
4 partitions:
size offset fstype [fsize bsize cpg]
a: 16368 0 boot # (Cyl. 1 - 2)
b: 212784 16368 ext2 # (Cyl. 3 - 28)
c: 4272048 229152 swap # (Cyl. 29 - 550)
d: 3871032 4501200 ext2 # (Cyl. 551 - 1023)
\end{verbatim}

We strongly recommend the following multi-partition layout:

A boot partition – A boot partition is used to reserved the first 2 cylinders (1-2) to write the bootloader in order to boot the disk from SRM.

A root partition – The root partition is where the / (root directory) resides. Always starts at cylinder 3. We recommend creating a root partition of 300MB minimum and 900MB maximum.

A swap partition – A swap partition is used to support virtual memory. We commend creating a swap partition of 2 times the computer RAM.

A /usr partition – The /usr partition is where the software of the system resides. This partition should use all of the space left on the hard drive.
To perform the partitioning operation on the disk, when prompted, follow these steps:
1. Now you are at the fdisk command line
2. Type “m” for help.
3. Type “p” to print the partition table.
4. If there is partition information already configured for the disk, you will need to delete it using the “d” option. Please be sure that you want to zero out this drive. All data will be lost on the drive doing this.
5. Type “b” to edit the BSD disklabel.
6. If you completed the last step correctly, you should see the following: “/tmp/sda contains no disklabel. Do you want to create a disklabel? (y/n)” – Answer Y.
7. Type “m” for more help.
8. Type “p” to print the partition table. You should see a “c” partition that takes up the whole disk. This will have to be removed to install Linux correctly
9. Type “d” to delete a BSD partition
10. Type “c” to delete the c partition
11. Type “p” to print the partition table and verify no partitions exist
12. Type “n” to add a new BSD partition – the boot partition in this case
13. Type “a” for partition a.
14. First cylinder: Type “1”.
15. Last cylinder: Type “2”.
16. Type “n” to add a new BSD partition – the / (root) partition in this case.
17. Type “b” for partition b.
18. First cylinder: Type “3”.
19. Last cylinder: Type “120”.
20. Type “n” to add a new BSD partition – the swap partition in this case.
21. Type “c” for partition c.
22. First cylinder: Type “121”.
23. Last cylinder: Type “8200”.
24. Type “n” to add a new BSD partition – the /usr partition in this case.
25. Type “d” for partition d.
26. First cylinder: Type “8201”.
27. Last cylinder: Type “17365”; last cylinder - one. Do NOT accept the program generated default of “17366” here, because of possible disk corruption.
28. Type “p” to print the partition table. You should notice that the fstype is set to unused for each of the partitions. This will have to be changed via “toggle” – see next step.
29. Type “t” to change the partitions filesystem id.
30. Type “a” for partition a – boot partitions use a “boot” code.
31. Type “L” to list the codes you can use.
32. Enter “d” for boot type.
33. Type “r” to change the partitions filesystem id.
34. Type “b” for partition b – (/root) partitions use a “ext2” code.
35. Enter “8” for ext2 type.
36. Type “t” to change the partitions filesystem id.
37. Type “c” for partition c – swap partitions use a “swap” code.
38. Enter “1” for swap type.
39. Type “t” to change the partitions filesystem id.
40. Type “d” for partition d – /usr partitions use a “ext2” code.
41. Enter “8” for ext2 type.
42. Type “p” to print the partition table – Please verify all your settings.
43. Type “w” to write the disklabel to the disk.
44. Type “q” to quit.

For further information on creating partitions please refer to the Installation Guide provided by the software distribution vendor.

At this point, the partitions have been created, and the system must be rebooted. You can reboot by either pressing the RESET or POWER buttons on the front of the AlphaServer system. Once the system returns to the SRM prompt, follow the preceeding instructions to return to the "Partition Hard Drives" window. Select the "Do Not Partition" option at this screen.

You will now be presented a window that allows you to select and format the disk for the software to be installed, entitled "Creating Filesystems". Use the F5 = Expert menu key to change the Inodes density on the following mount point only “/” or sda2 to a density of 1024. You should use the F4 key to define the mount point of “/” for sda2 and “/usr” for sda4. Use the F6 key to select the "Normal" formatting of the drive for both partitions. Once those steps are complete, press enter to continue.

When the window changes to the Installation Menu, select "Start Installation“ to start the process. After all CD’s have been loaded select the “Main Menu” to finish the installation. After the software has been loaded to the disk, the system will run the Linux OS, which will allow the user to log into the OS. Upon logging in, as “root” follow the next steps to finalize the installation.

1. Type: `swriteboot -f1 /dev/TdZ /boot/bootlx` (where T is the type of drive, s for SCSI or h for IDE; and Z is the letter of the drive you are booting; ex: dka0=sda, dq0=hda) For example: `swriteboot -f1 /dev/sda /boot/bootlx` for SCSI
2. Type: `cd /boot`
3. Type: `mount /dev/hda /cdrom`
4. Type: `cp /cdrom/etc/vm_full.gz`
5. Type: `umount /dev/hda`
6. During installation the YAST utility doesn't recognize the swap partition as defined and therefore no swap partition is found in the /etc/fstab file. You will need to edit the /etc/fstab file to add the swap partition entry manually, as follows:
7. After you have completed modifying the /etc/fstab file, you will need to be initialize it with the command `mkswap /dev/sda3`. The changes will take effect after the system is rebooted.

8. To configure the X window System type: `sax`

Following the prompts answering the questions appropriately for your system. Once this process is completed, you should be able to run the command "`startx`" to make use of the graphical interface.

9. Type: `shutdown –h now`

Post-Installation

System Resource Manager Configuration

Now will make the final configuration changes to be able to boot directly from the disk, instead of the floppy or CD-ROM. You should now be at the SRM prompt, ">>>". Enter the following commands to finalize the configuration.

You need to enter these commands:

```
>>> set boot_file 2/boot/vm_full.gz
>>> set bootdef_dev dka0
>>> set boot_osflags "root=/dev/sda2"
```

At the SRM prompt, you can now boot directly from the hard drive:

```
>>> boot
```
Compaq AlphaStation XP1000

Hardware Options

Tested Saleable Hardware Options

Tested saleable hardware options for the XP1000 is outlined in Table 1. All of the systems used come equipped with standard bus-interface devices for which drivers already exist for Linux. All bus-interface devices detailed use the PCI bus. Detailed information on each particular bus-interface device can be found in a subsection of the appropriate software. Only the installation and configuration details that are necessary to clarify the hardware explanation are provided in this table. Unless otherwise specified, the Linux kernel version used in qualifying each component is version 2.2.5.

Table 5. Tested Saleable Options List

<table>
<thead>
<tr>
<th>Compaq PN</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN-MSP01-KA</td>
<td>XP1000 128MB SDRAM (4x32)</td>
<td></td>
</tr>
<tr>
<td>SN-MSP01-KB</td>
<td>XP1000 256MB SDRAM (4x64)</td>
<td></td>
</tr>
<tr>
<td>SN-MSP01-KC</td>
<td>XP1000 512MB SDRAM (4x128)</td>
<td></td>
</tr>
<tr>
<td>SN-MSP01-KD</td>
<td>XP1000 1024MB SDRAM (4x256)</td>
<td></td>
</tr>
<tr>
<td>SN-DE500-BA</td>
<td>PCI 1 CH 10/100 Ethernet</td>
<td>Red Hat - Use DE4*5 or Tulip driver</td>
</tr>
<tr>
<td>DE504-BA</td>
<td>PCI 4 CH 10/100 Ethernet</td>
<td>Red Hat - Use DE4*5 or Tulip driver</td>
</tr>
<tr>
<td>SN-PBXRW-RB</td>
<td>4.3 GB Ultra Wide 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>DS-RZ1DA-VW</td>
<td>9.1 GB UltraSCSI 7200 RPM</td>
<td></td>
</tr>
<tr>
<td>DS-RZ1DD-VW</td>
<td>9.1 GB UltraSCSI 10000 RPM</td>
<td></td>
</tr>
<tr>
<td>SN-PBXRW-SB</td>
<td>9.1 GB Ultra Wide 7200 RPM</td>
<td></td>
</tr>
<tr>
<td>DS-RZ1ED-VW</td>
<td>18.2 GB UltraSCSI 7200 RPM</td>
<td></td>
</tr>
<tr>
<td>SN-PBXRW-TA</td>
<td>18.2 GB UltraSCSI 7200 RPM</td>
<td></td>
</tr>
<tr>
<td>KZPCM-DA</td>
<td>UltraSCSI, 2 CH, SE, 1 CH 10/100 Ethernet</td>
<td>Need the 2.2.12 kernel from ftp site to perform install.</td>
</tr>
<tr>
<td>SN-KZPBA-CA</td>
<td>UltraSCSI, 1 CH, SE</td>
<td></td>
</tr>
<tr>
<td>SN-KZPBA-CB</td>
<td>UltraSCSI, 1 CH, Diff.</td>
<td></td>
</tr>
<tr>
<td>SN-PBXGK-BB</td>
<td>Elsa Gloria 8MB</td>
<td>use XF86_3DLabs</td>
</tr>
<tr>
<td>SN-VRQP7-23</td>
<td>COMPAQ P75 17” CLR Monitor,SH</td>
<td></td>
</tr>
<tr>
<td>SN-VRQP7-24</td>
<td>COMPAQ P75 17” CLR Monitor,NH</td>
<td></td>
</tr>
<tr>
<td>SN-VRQP1-23</td>
<td>COMPAQ P110 21” CLR Monitor,SH</td>
<td></td>
</tr>
<tr>
<td>SN-VRQP1-24</td>
<td>COMPAQ P110 21” CLR Monitor,NH</td>
<td></td>
</tr>
</tbody>
</table>

For up-to-date information about configuration options, you should refer to the following web sites, which are updated regularly with the latest information:

Red Hat Version 6.1 Distribution

Firmware Inspection and Upgrade

After powering up your AlphaServer or AlphaStation computer, type the command "show version". Check that the version string printed is "V5.4-2 May 19 1999 14:25:16" or newer, and that the first letter of the version string is a "V". If this is not the case, you should upgrade your firmware. Instructions on how to do this can be found at http://ftp.digital.com/pub/Digital/Alpha/firmware/ along with the latest firmware images.

System Resource Manager Configuration

There are several pieces of information that you need to configure in the SRM subsystem, as well as device identifiers that you should make note of, prior to beginning the installation process. The steps that follow take you through that process.

1. Power up your system. After several diagnostics are completed, you will be presented an SRM prompt ">>>>", as shown here:

 OpenVMS PALcode V1.61-22, Digital UNIX PALcode V1.54-20
 COMPAQ Professional Workstation XP1000 Console V5.5-7
 built on Jul 22 1999 at 11:10:07
 >>>

2. Determine what devices your system has installed. In particular you will need to note your installation device (a floppy and/or CD-ROM), and your target disk drive. Entering the command "show devices" as shown below will print out the information about your system:

 >>> show device
 dka0.0.0.6.1 DKA0 RZ2CC-KA 5520
 dka100.1.0.6.1 DKA100 RZ2CC-KA 5520
 dqa0.0.0.107.0 DQA0 TOSHIBA CD-ROM XM-6202B 1110
 dva0.0.0.0.0 DVA0
 ewa0.0.0.3.1 EWA0 00-00-F8-71-53-F5
 ewb0.0.0.12.0 EWB0 00-00-F8-1E-86-8F
 pka0.7.0.6.1 PKA0 SCSI Bus ID 7 5.57
 pkb0.7.0.2009.1 PKB0 SCSI Bus ID 7 5.57

 In the output above, the first line shows that DKA0 is a hard disk, DQA0 is a CD-ROM, and DVA0 is a floppy drive.

 Also useful for inspecting the computer configuration is the "show config" command, as shown here:

 >>> show config | more

3. Configure the system SRM parameters to boot from your installation device. A table providing cross-referenced device names is located in Appendix C, for your convenience. Example commands for configuring to boot from the CDROM device are shown here:

 >>> set bootdef_dev dqa0
 >>> set boot_file kernels/generic.gz
 >>> set boot_osflags "root=/dev/hda"
 >>> show boot*
 boot_dev dqa0.0.0.107.0
 boot_file kernels/generic.gz
 boot_osflags root=/dev/hda
 boot_reset OFF
4. Insert the Red Hat CD into the drive.

5. Boot the system using the "boot" command. The result should be that the system boots from the CD.

If during this process you encounter a problem, such as due to a typographic error in the setting of the SRM parameters, you will probably be stopped with an "aboot>" prompt. The best way to deal with this situation is to reset the system using the reset button on the front panel. Then using the SRM commands, correct the mistake, and repeat the "boot" process.

Software Installation

The Red Hat version used in the testing for this guide has a simple installation program. Most of the devices available with the AlphaStations can be correctly autodetected by Red Hat. Testing for this Solutions Guide was performed using Red Hat Linux version 6.1.

During the boot process, you may see messages about "IDE STO" errors. These can be safely ignored.

When configuring "Timezones", select "EST" for the timezone, or the value that is appropriate for your location.

X11 GUI Installation

The new Red Hat 6.1 installation is capable of creating and editing the BSD Disk Labels through the use of Disk Druid and automatically installs and configures aboot. It also adds a configuration file for aboot that makes booting more simple that in previous versions.

After booting, the installation program begins by displaying the language screen. Using the mouse point and click on the next button. The GUI is easy to follow. If you decided to install the X Window System, the amount of video RAM available on the Elsa Gloria Card is 8 megabytes. Please refer to the Red Hat Installation guide for further details.

Post-Installation

System Resource Manager Configuration

After the software has been loaded to the disk, the system will attempt to reboot. Before it begins the bootup process, press the front panel reset button. This will stop the bootup process, and allow you to make the final configuration changes to be able to boot directly from the disk, instead of the floppy or CD-ROM. You should now be at the SRM prompt, ">>>". Enter the following commands to finalize the configuration.

You need to enter these commands:

```bash
>>>set boot_file
>>>set bootdef_dev dka0
>>>set boot_osflags 0
```

At the SRM prompt, you can now boot directly from the hard drive:

```bash
>>>boot
```
SuSE Version 6.3 Distribution

Firmware Inspection and Upgrade

After powering up your AlphaStation computer, type the command "show version". Check that the version string printed is "V5.4-2 May 19 1999 14:25:16" or newer, and that the first letter of the version string is a "V". If this is not the case, you should upgrade your firmware. Instructions on how to do this can be found at http://ftp.digital.com/pub/Digital/Alpha/firmware/ along with the latest firmware images.

System Resource Manager Configuration

There are several pieces of information that you need to configure in the SRM subsystem, as well as device identifiers that you should make note of, prior to beginning the installation process. The steps that follow take you through that process.

1. Power up your system. After several diagnostics are completed, you will be presented an SRM prompt ">>>", as shown here:

```bash
OpenVMS PALcode V1.61-22, Digital UNIX PALcode V1.54-20
COMPAQ Professional Workstation XP1000 Console V5.5-7
built on Jul 22 1999 at 11:10:07
```

2. Determine what devices your system has installed. In particular you will need to note your installation device (a floppy and/or CD-ROM), and your target disk drive. Entering the command "show devices" as shown below will print out the information about your system:

```bash
>>>show device
dka0.0.0.6.1       DKA0                      RZ2CC-KA 5520
dka100.1.0.6.1      DKA100                    RZ2CC-KA 5520
dqa0.0.0.107.0      DQA0        TOSHIBA CD-ROM XM-6202B 1110
dva0.0.0.0.0        DVA0
ewa0.0.0.3.1        EWA0              00-00-F8-71-53-F5
ewb0.0.0.12.0       EWB0              00-00-F8-1E-86-8F
pka0.7.0.6.1        PKA0                  SCSI Bus ID 7 5.57
pkb0.7.0.2009.1     PKB0                  SCSI Bus ID 7 5.57
```

In the output above, the first line shows that DKA0 is a hard disk, DQA0 is a CD-ROM, and DVA0 is a floppy drive.

Also useful for inspecting the computer configuration is the "show config" command, as shown here:

```bash
>>>show config | more
```

3. Configure the system SRM parameters to boot from your installation device. The commands for configuring to boot from the CDROM device are shown here:

```bash
>>>set bootdef_dev dqa0
>>>set boot_file
>>>set boot_osflags
>>>show boot*
  boot_dev             dqa0.0.0.107.0
  boot_file
  boot_osflags
  boot_reset           OFF
  bootdef_dev          dqa0.0.0.107.0
  booted_dev
  booted_file
```
4. Insert the **Suse 6.3 CD** into the drive.

5. Boot the system using the "boot –flags 0" command. The result should be that the system boots from the CDROM.

If during this process you encounter a problem, such as due to a typographic error in the setting of the SRM parameters, you will probably be stopped with an "aboot>" prompt. The best way to deal with this situation is to reset the system using the reset button on the front panel. Then using the SRM commands, correct the mistake, and repeat the "boot" process.

Software Installation

SuSE’s installation program is flexible. While it allows for autodetection of devices and autoload of device drivers, it allows you to override the automatically configured parameters. Compaq’s testing this Solutions Guide was performed using SuSE Version 6.3.

The software installation process requires that the system be rebooted at two critical places in the process. The first time is just after completing the partitioning of the disk, and the second happens automatically after all of the software components are installed on the disk. Be certain not to skip the reboot after the disk partition process is completed.

Disk Partitioning

In preparation to partition your disk, you should boot your AlphaServer via the BOOT CDROM and following the process for selecting a language, display color, keyboard type, and installation media. At this stage, you should select the "Install From Scratch" menu option, and proceed to the window titled "Partition Hard Drives". At this point, press the **ALT+F2** keys, which will change the display to show a shell-command prompt. At this prompt, type the command "**fdisk**" followed by the enter key.

The process of partitioning your boot disk for Linux on your AlphaServer can be somewhat involved. This section provides an example of how perform the partitioning process using fdisk. Note, the partition recommendations used in steps 14-27 are based on a RZ1DD-AA disk geometry. If your disk has a different geometry you will need to use different starting/ending cylinder numbers for each partition. The correct starting/ending cylinder numbers can be computed by using these size recommendations and the number of bytes/cylinder for the disk that you are using (this figure is reported by fdisk). The disk used for this example is a 4.3GB drive (DS-RZ1CF) which fdisk shows as having 1023 cylinders:

<table>
<thead>
<tr>
<th></th>
<th>size</th>
<th>offset</th>
<th>fstype</th>
<th>[fsize bsize cpg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a:</td>
<td>16368</td>
<td>0</td>
<td>boot</td>
<td># (Cy1. 1 - 2)</td>
</tr>
<tr>
<td>b:</td>
<td>212784</td>
<td>16368</td>
<td>ext2</td>
<td># (Cy1. 3 - 28)</td>
</tr>
<tr>
<td>c:</td>
<td>4272048</td>
<td>229152</td>
<td>swap</td>
<td># (Cy1. 29 - 550)</td>
</tr>
<tr>
<td>d:</td>
<td>3871032</td>
<td>4501200</td>
<td>ext2</td>
<td># (Cy1. 551 - 1023)</td>
</tr>
</tbody>
</table>

We strongly recommend the following multi-partition layout:

A boot partition – A boot partition is used to reserved the first 2 cylinders (1-2) to write the bootloader in order to boot the disk from SRM.

A root partition – The root partition is where the / (root directory) resides. Always starts at cylinder 3. We recommend creating a root partition of 300MB minimum and 900MB maximum.
A swap partition – A swap partition is used to support virtual memory. We commend creating a swap partition of 2 times the computer RAM.

A /usr partition – The /usr partition is where the software of the system resides. This partition should use all of the space left on the hard drive.

To perform the partitioning operation on the disk, when prompted, follow these steps:

1. Now you are at the fdisk command line
2. Type “m” for help.
3. Type “p” to print the partition table.
4. If there is partition information already configured for the disk, you will need to delete it using the “d” option. Please be sure that you want to zero out this drive. All data will be lost on the drive doing this.
5. Type “b” to edit the BSD disklabel.
6. If you completed the last step correctly, you should see the following: “/tmp/sda contains no disklabel. Do you want to create a disklabel? (y/n)” – Answer Y.
7. Type “m” for more help.
8. Type “p” to print the partition table. You should see a “c” partition that takes up the whole disk. This will have to be removed to install Linux correctly
9. Type “d” to delete a BSD partition
10. Type “c” to delete the c partition
11. Type “p” to print the partition table and verify no partitions exist
12. Type “n” to add a new BSD partition – the boot partition in this case
13. Type “a” for partition a.
14. First cylinder: Type “1”.
15. Last cylinder: Type “2”.
16. Type “n” to add a new BSD partition – the / (root) partition in this case.
17. Type “b” for partition b.
18. First cylinder: Type “3”.
19. Last cylinder: Type “28”.
20. Type “n” to add a new BSD partition – the swap partition in this case.
21. Type “c” for partition c.
22. First cylinder: Type “29”.
23. Last cylinder: Type “550”.
24. Type “n” to add a new BSD partition – the /usr partition in this case.
25. Type “d” for partition d.
26. First cylinder: Type “551”.
27. Last cylinder: Type “1023” ; last cylinder - one. Do NOT accept the program generated default of “1024” here, because of possible disk corruption.
28. Type “p” to print the partition table. You should notice that the fstype is set to unused for each of the partitions. This will have to be changed via “toggle” – see next step.

29. Type “t” to change the partitions filesystem id.

30. Type “a” for partition a – boot partitions use a “boot” code.

31. Type “L” to list the codes you can use.

32. Enter “d” for boot type.

33. Type “t” to change the partitions filesystem id.

34. Type “b” for partition b – / (root) partitions use a “ext2” code.

35. Enter “8” for ext2 type.

36. Type “t” to change the partitions filesystem id.

37. Type “c” for partition c – swap partitions use a “swap” code.

38. Enter “1” for swap type.

39. Type “t” to change the partitions filesystem id.

40. Type “d” for partition d – /usr partitions use a “ext2” code.

41. Enter “8” for ext2 type.

42. Type “p” to print the partition table – Please verify all your settings.

43. Type “w” to write the disklabel to the disk.

44. Type “q” to quit.

For further information on creating partitions please refer to the Installation Guide provided by the software distribution vendor.

At this point, the partitions have been created, and the system must be rebooted. You can reboot by either pressing the RESET or POWER buttons on the front of the AlphaServer system. Once the system returns to the SRM prompt, follow the preceding instructions to return to the "Partition Hard Drives" window. Select the "Do Not Partition" option at this screen.

You will now be presented a window that allows you to select and format the disk for the software to be installed, entitled "Creating Filesystems". Use the F5 =Expert menu key to change the Inodes density on the following mount point only “/” or sda2 to a density of 1024. You should use the F4 key to define the mount point of “/” for sda2 and “/usr” for sda4. Use the F6 key to select the "Normal" formatting of the drive for both partitions. Once those steps are complete, press enter to continue.

When the window changes to the Installation Menu, select "Start Installation“ to start the process. After all CD’s have been loaded select the “Main Menu” to finish the installation. After the software has been loaded to the disk, the system will run the Linux OS, which will allow the user to log into the OS. Upon logging in, as “root” follow the next steps to finalize the installation.

1. Type: swriteboot -f1 /dev/TdZ /boot/bootlx (where T is the type of drive, s for SCSI or h for IDE; and Z is the letter of the drive you are booting; ex: dka0=sda, dqa0=hda) For example: swriteboot -f1 /dev/sda /boot/bootlx for SCSI

2. Type: cd /boot

3. Type: mount /dev/hda /cdrom
4. Type: `cp /cdrom/etc/vm_full.gz`

5. Type: `umount /dev/hda`

6. During installation the YAST utility doesn't recognize the swap partition as defined and therefore no swap partition is found in the `/etc/fstab` file. You will need to edit the `/etc/fstab` file to add the swap partition entry manually, as follows:

   ```
   /dev/sda3 swap swap defaults 0 0
   ```

7. After you have completed modifying the `/etc/fstab` file, you will need to be initialize it with the command `mkswap /dev/sda3`. The changes will take effect after the system is rebooted.

8. To configure the X window System type: `sax`

 Following the prompts answering the questions appropriately for your system. Once this process is completed, you should be able to run the command "`startx`" to make use of the graphical interface.

9. Type: `shutdown –h now`

Post-Installation

System Resource Manager Configuration

Now will make the final configuration changes to be able to boot directly from the disk, instead of the floppy or CD-ROM. You should now be at the SRM prompt, ">>>". Enter the following commands to finalize the configuration.

You need to enter these commands:

```
>>>set boot_file 2/boot/vm_full.gz
>>>set bootdef_dev dka0
>>>set boot_osflags "root=/dev/sda2"
```

At the SRM prompt, you can now boot directly from the hard drive:

```
>>>boot
```
Appendix A

Linux Links

This is a partial list of available links. If you would like to submit additional sites, please e-mail to the author at chris.stewart@compaq.com. Every attempt will be made to include pertinent sites in future document revisions.

- http://www.alphalinux.org: A web site dedicated to information about Linux and Alpha-based computer systems.
- http://www.linux.org: The web site of Linux Online.
- http://metalab.unc.edu/LDP: The web site of the Linux Documentation Project.
- http://www.cs.cmu.edu/People/AUIS/ftp/web/andrew-home.html: The Andrew Consortium site. You can obtain the Andrew EZ program for viewing Andrew EZ format documents (such as the SMP document posted on the http://www.linux.org.uk site).
- http://www.xfree86.org: The XFree86 Project. Most Linux distributions (including Caldera, SuSE and Red Hat) include the free X server developed by this organization.
- http://www.kde.org/: The K Desktop Environment web site, one of the more popular desktop software packages available for Linux.
- http://www.freshmeat.net: An large index of ports of software for Linux and other platforms. If you are looking for a particular utility or program, try looking here first.
Appendix B

AlphaServer Configurations

Compaq AlphaServer DS10

- Uni Processor Alpha 21264 6/466MHz
- 2MB L2 Cache
- 2GB Max Memory
- 2 Integrated 10/100 Ethernet Ports
- 4 PCI slots
- IDE or SCSI Disk Support

Compaq AlphaServer DS20

- Dual Processor Capable Alpha 21264 6/500MHz
- 4MB L2 Cache
- 4GB max memory capable
- NIC PCI Interface
- 6 PCI Slots
- SCSI Storage

Compaq AlphaServer ES40

- Quad Processor Capable Alpha 21264 6/500MHz
- 4MB L2 Cache
- 16GB max memory capable
- NIC PCI Interface
- 6 PCI Slots
- SCSI Storage

Compaq AlphaStation XP1000

- Uni Processor Alpha 21264 6/500MHz
- 4MB L2 Cache
- 2GB max memory
- Integrated 10/100 Ethernet Port
- 5 PCI Slots
- SCSI Storage
Appendix C

SCSI and IDE Configurations

SCSI Only

Depending on the configuration, your internal drives may be either dkax or dkbx - where x is the value assigned by the SRM console (i.e. dkb100). Usually, the SCSI CDROM is on its own controller/channel, so the SRM will usually report it as dka500 or dkb500. Disks will be on the other controller (for example dka500 is an RRD46 - a SCSI CDROM, then dkb0 would be the first SCSI harddrive - possibly RZ2DD-xx).

Mixed - IDE and SCSI

On the AlphaServer DS10, ES40 and AlphaStation XP1000, the CDROM is IDE based, so the device information passed in the "root=/dev/devicename" has several possibilities. If you check the configuration under SRM console prompt (>>>show config | more), you should find the IDE devices under dqa and dqb device names. The following table is useful to map IDE SRM device names to the Linux device name used for the same device.

<table>
<thead>
<tr>
<th>SRM console</th>
<th>Linux device</th>
</tr>
</thead>
<tbody>
<tr>
<td>dqa0</td>
<td>hda</td>
</tr>
<tr>
<td>dqa1</td>
<td>hdb</td>
</tr>
<tr>
<td>dqb0</td>
<td>hdc</td>
</tr>
<tr>
<td>dqb1</td>
<td>hdd</td>
</tr>
</tbody>
</table>

Adding a second drive to your system

This section provides an example of how perform the partitioning process using fdisk in order to add a second drive to the system. The disk used for this example is an 18.2GB drive (RZ2ED-LS) which fdisk shows as having 17365 cylinders:

To perform the partitioning operation on the second disk, follow these steps:

1. Open a terminal window and issue the following command; # fdisk /dev/TdZ (where T is the type of drive, s for SCSI or h for IDE; and Z is the letter of the drive you are booting; ex: dka0=sda, dqa0=hda)
2. Type “m” for help.
3. Type “p” to print the partition table.
4. If there is partition information already configured for the disk, you will need to delete it using the “d” option. Please be sure that you want to zero out this drive. All data will be lost on the drive doing this.
5. Type “b” to edit the BSD disklabel.
6. If you completed the last step correctly, you should see the following: “/tmp/TdZ contains no disklabel. Do you want to create a disklabel? (y/n)” – Answer Y.
7. Type “m” for more help.
8. Type “p” to print the partition table. You should see a “c” partition that takes up the whole disk. This will have to be removed to install Linux correctly.
9. Type “d” to delete a BSD partition
10. Type “c” to delete the c partition
11. Type “p” to print the partition table and verify no partitions exist
12. Type “n” to add a new BSD partition
13. Type “a” for partition a.
14. First cylinder: Type “3”. ; always starts at cylinder 3
15. Last cylinder: Type “17365” ; last cylinder - one. Do NOT accept the program generated default of ”17366” here, because of possible disk corruption).
16. Type “w” to write the disklabel to the disk.
17. Type “q” to quit.
18. Please shutdown the system in order to recognize the new partition on a second drive.
19. Once the system as rebooted and the user has log in, open a terminal window and issue the following command;

```
# mkfs /dev/TdZ1
```

(where T is the type of drive, s for SCSI or h for IDE; and Z is the letter of the drive you are booting; ex: dka0=sda, dqa0=hda)
20. The device is now ready to be mounted by the OS.

Reusing a previously installed hard drive

In some rare cases, you may find yourself needing to install onto a disk drive that has previously been installed to. It is important that you re-create the boot records on the drive. If you followed the rest of the instructions in this manual, you will have allocated the first three sectors of the drive for this purpose. Assuming that is the case, you can destroy the contents of those sectors prior to installing, using this command:

```
dd if=/dev/zero of=/dev/TdZ count=2 bs=512
```

where T is the type of drive, s for SCSI or h for IDE; and Z is the letter of the drive you are using; ex: dka0=sda, dqa0=hda.

TLZ07 and TLZ09 Errata

Problems have been observed when trying to install to systems that have TLZ07 and TLZ09 tape devices installed. Specifically, when booting from the floppy, the system will hang during the SCSI probe phase of the boot process. The suggested work around is to power down the system, remove the power plug from the tape device, and then repower and boot the system. After the system has been installed, you can reconnect the tape device.
Glossary

<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Availability - Refers to the amount of time that an application is available to perform work, typically measured in percentage of uptime.</td>
</tr>
<tr>
<td>B</td>
<td>Bootstrap – The act of passing control over a computer to an operating system following system power-up.</td>
</tr>
<tr>
<td>C</td>
<td>CPU – Central Processing Unit</td>
</tr>
<tr>
<td>D</td>
<td>GB – Gigabytes</td>
</tr>
<tr>
<td>E</td>
<td>IDE – Integrated Development Environment</td>
</tr>
<tr>
<td>F</td>
<td>IP – Internet Protocol – The part of TCP/IP Protocol set that provides the routing mechanism.</td>
</tr>
<tr>
<td>G</td>
<td>Man pages - Manual pages</td>
</tr>
<tr>
<td>H</td>
<td>MIB – Management Information Base – Set of monitored items that management application and management agents use to monitor, analyze, and control the operation of managed devices.</td>
</tr>
<tr>
<td>I</td>
<td>MB - Megabytes</td>
</tr>
<tr>
<td>J</td>
<td>NIC – Network Interface Card</td>
</tr>
<tr>
<td>K</td>
<td>RAID – Redundant Array of Independent Disks</td>
</tr>
<tr>
<td>L</td>
<td>SRM – System Resource Manager, used to configure the bootup parameters of Compaq AlphaServers.</td>
</tr>
<tr>
<td>M</td>
<td>System Partition – The name of the bootable partition used to configure Compaq AlphaServers.</td>
</tr>
<tr>
<td></td>
<td>Switch – A switch is a network device that selects a path or circuit for sending a unit of data to its next destination.</td>
</tr>
<tr>
<td>T</td>
<td>TCP/IP – Protocol that manages the transmission of packets on a network and checks for errors.</td>
</tr>
<tr>
<td>U</td>
<td>URL – Universal Resource Locator – the name of a specific resource on the Internet.</td>
</tr>
</tbody>
</table>
YaST – The setup and configuration utility provided by SuSE for their Linux distribution.