Stradis
I

Professional 4:2:2 MPEG-2 Decoder
SDMO050, SDM250 and SDM250

Application Program Interface

for Windows® 98 and Windows NT®

Introduction/Overview

The Stradis Professional MPEG-2 Decoder Board and API
provide everything needed to decode all standard MPEG
streams at full 4:2:2 profile or MP@ML (4:2:0) up to 50
Mbits per second. MPEG-1 Elementary and System Streams
and MPEG-2 Elementary, Packetized Elementary (PES),
Transport and Program Streams are supported.

The Transport, Program and System streams are processed
by the host processor in the API. PES packets (or MPEG-1
System Packets) are extracted from the stream and placed
into a PC-based rate buffer before being block transferred to
the decoder hardware. The de-multiplexing processing takes
only small amount of the host processor’s time. The
decoding of the PES packets (or MPEG-1 System Packets) is
performed by hardware on the decoder card. The hardware is
also capable of decoding a stereo MPEG-2 audio PES stream
in parallel with an MPEG video PES stream.

Audio/Video synchronization of the streams can be
performed with the stream level PCR, video PTS or audio
PTS as the master. Streams can also be played with no
synchronization. The audio and video clocks are always
phase-locked together to maintain a fixed synchronization
between the audio and video. In other words, no video
frames need be skipped or repeated once synchronization is
established if the original stream was synchronized. The
hardware also contains a VCXO (Voltage Controlled Crystal
Oscillator) so that real-time clock recovery can be performed
and the decoder can be synchronized to a real-time video
feed.

This API is structured as a hierarchy that allows the
programmer to interface software to the Stradis Professional
MPEG-2 Decoder Card at any level from playing a user
specified file to setting low level registers on the decoder
card. The use of high level functions like playback of an
MPEG encoded disk file does not require any knowledge of
the lower levels of the API. The lower levels are provided
for implementing functions that are not contained in the
higher level functionality.

In addition to the hierarchy, the API contains two methods
of accessing its functionality. The first method is a C++
interface. This requires the use of the MSVC C++ compiler.
The other method is a “C” style interface that uses stdcall
calling convention. This is the same calling convention used
to call WIN API functions. This interface is appropriate
when using a program language other than MSVC C++.

The API contains three levels of interface for decoding
streams. The three interfaces (in order of increasing level)
are known as the RateBuffer, Demux and File interface and
each higher level builds on the lower level. The lowest level
is the RateBuffer interface. The RateBuffer interface contains
the PC-based video and audio rate buffers. The rate buffers
can contain elementary stream, packetized elementary
stream (PES) or system packet data. If elementary stream
data is used, no synchronization is performed. The PES or
packet data must be used in order for hardware
synchronization to take place. The next higher level is the
Demux interface. The Demux interface de-multiplexes a
single stream and places the result into the rate buffers. The
Demux interface can handle Transport, Program, System,
PES and Elementary Streams. The highest level is the File
interface, which provides all of the mechanisms to open and
play files from a disk, CD-ROM, DVD or network file. With
regard to the DVD, there is no mechanism for de-encrypting
encrypted DVD files. The File interface also provides for
seamless back-to-back playback of multiple files.

The RateBuffer and Demux interfaces can be used in either a
real-time or playback mode. In the real-time mode, there is a
mechanism to adjust the master clock to match the
transmitted clock. The playback mode is used to decode files
from a disk drive. The default mode is the playback mode.

In addition to the interfaces described above, a
synchronization interface (CStradisSynchronize class) can
be used to synchronize multiple boards. There can be
multiple instances of the synchronization class to control
mutually exclusive groups of decoders. The synchronization



class does not need to be used if multiple cards are not being
used or there is no need to synchronize them.

The API also provides interfaces for the OSD (On Screen
Display) and VBI (Vertical Blanking Interval) as well as
interfaces for the various subsystem of the decoder.

Note that the API supports up to eight Stradis decoder cards
in one system.
The “C++” Interface Method

The C++ interface method is comprised of four major
classes. The CStradisScan, CStradisDecoder,

CStradisDecoderSettings and the CStradisSynchronize class.

One other class is provided to create buffers that can be
directly DMAed to the decoder for use with the Still Picture
interface. This class is the CSpciDmaMem class. Unless, the
application is using the Still Picture interface, this class is
not needed.

No matter what API level is being used, the
CStradisDecoder class must be created. The
CStradisDecoder class contains most of the functionality of
the API. In order to create the CStradisDecoder class, a card
descriptor must be obtained. The card descriptor is obtained
from the CStradisScan class. Once the CStradisDecoder
class is created, the functionality of the API is accessed
through the CStradisDecoder class and the CStradisScan
class is no longer needed.

The CStradisDecoderSettings class provides a mechanism
for maintaining a set of parameters that specify how the
decoder will function. This includes things like whether the
card is in NTSC or PAL mode, what video line the decoded
output will start on, etc.

The CStradisSynchronize class works with the File interface
and is used to synchronously start and stop multiple cards in
a frame accurate manner.

The CStradisScan Class

This class is used to get the card descriptor for a specific
Stradis Decoder card. After the class is constructed, the
function GetCardsFound() can be used to get the number of
Stradis cards found.

CStradisDecoderSettings Class

The CStradisDecoderSettings class is used to provide the
various initialization routines with information about how to
initialize the decoder. Some of the member variables of the
class are set by the File_Open() function. The default values
after construction of the class are shown next to the member
variable name. Not all of the member variables of the
CStradisDecoderSettings class are used by every
initialization functions. Some variables are only used during
the Decoder_Init() function, some during the Demux_Init()
function and some during the RateBuffer_Init() function and
so on. Table 1 indicates the variables used by each
initialization function.

Initializing the CStradisDecoder Class

The CStradisDecoder class is used to gain access to the
Stradis Professional MPEG-2 Decoder. Before the card can
be used, the CStradisDecoder class must be created and the
Decoder_Init() function called. The Decoder_Init() Function
must be called before any other function in the
CStradisDeocder class can be called. The constructor for the
CStradisDecoder class takes a single argument. This
argument is a descriptor for the card. The descriptor must be
obtained from the CStradisScan class.

Error Handling

Anytime that an error occurs during a call to one of the
CStradisDecoder class functions, an error variable is set
inside the class. Functions are used to retrieve and interpret
these errors. During the debugging phase, a flag can be set
that causes all errors to display an AfxMessageBox with the
associated text message of the error. The default setting is
not to display these error messages.

File Interface

The File interface functions provide a mechanism to cue and
play back audio, video and combined streams. Seamless
back-to-back playback of multiple MPEG files playback is
provided with the File_Next() and File_Switch() functions.
Use of the File interface does not require any knowledge of
the Demux or RateBuffer interfaces. In order to understand
how to play two files seamlessly back-to-back, first read
how to open and play a single file. Of the three interfaces,
the File interface is the simplest to use for the functionality
provided. In its simplest form, a typical program would
simply call the File_Open() functions, then the File_First()
function followed by the
File_Command(CStradisDecoder::FILE_PLAY) function to
start the playback.

The Demux Interface

The Demux interface is used when the application already
has the stream data in memory in a transport stream,
program stream or system stream format. The Demux
interface is used to separate the audio and video PES or
Packet data from the stream and place the data into the video
and audio rate buffers. For convenience, the Demux interface
will also process a single stream of audio or video PES or
Elementary Stream data. If separate audio and video PES or
Elementary Streams are in memory, the appropriate interface
to use is the RateBuffer interface.

Before using the Demux interface, the Decoder_Init() and
then the Demux_Init() functions must be called in that order.
Once the initialization has taken place, the rate buffers can
be pre-loaded by calling the Demux_Stream() function. Once
sufficient data has been loaded into the rate buffers, the
Demux_StartPlay() function can be called to start playing
the stream. The RateBuffer interface can be used to
determine how much data is in the rate buffers. When the
end of the stream is reached (no more data to send to the
Demux_Stream()), the Demux_SetEndOfStream() function
must be called. The Demux_SetEndOfStream() function



cleans up the de-multiplexing process and assures that the
decoder hardware receives all of the de-multiplexed data.

The Demux interface has no buffers associated with it. It
takes data from the buffer passed to the Demux_Stream()
function, separates the audio and video data and places that
data directly in the rate buffers through RateBuffer interface.

RateBuffer Interface

The RateBuffer interface is the lowest level interface and
provides direct access to the PC-based rate buffers. This
interface can be used if the application has a separate audio
and video stream in the Elementary, PES or Packet format.
If the data is in the PES or Packet format, the hardware
audio/video synchronization modes can be used. To use the
RateBuffer interface, the application must first call the
Decoder_Init() function followed by a call to the
RateBuffer_Init() function. Once the interface is initialized,
the rate buffers can be pre-loaded by calling the
RateBuffer_AddToVideoBuffer() and
RateBuffer_AddToAudioBuffer() functions. The
RateBuffer_StartPlay() function can be used to start the
decoder playing the data in the rate buffers.

Master Clock System

The decoder’s master clock is a 27 MHz VCXO that can be
controlled one of two ways. The VCXO can be set to follow
a reference video signal (GenLock) or it can be controlled
locally by the software with a pulse width modulator
(PWM). In the GenLock mode, an input composite video
signal is connected the decoder card. The decoder card
watches the sync edges of the signal and locks the output
vertical and horizontal sync edges to the reference signal.
The relationship of the horizontal sync edges of the
reference and output signals can be shifted in 37ns
increments.

If the GenLock mode is not set, the VCXO is controlled by
software with a Pulse Width Modulator (PWM). Larger
values of the PWM value increase the VCXO frequency.
The VCXO can be pulled by at least 100 PPM high or low of
the nominal 27 MHz frequency. This allows the board to
recover the clock of the original encoded signal in a
transmission environment.

In the PWM mode, the API can provide a software
mechanism to aid in the implementation of a clock recovery
system. Clock recovery is required for MPEG transmission
systems that require low delay and continuous feeds. A
clock recovery system attempts to reproduce the sample
clock used to sample the original video and audio. Unless
clock recovery is implemented, the difference between the
original clock and the decoder’s clock will cause the
decoder’s rate-buffers to eventually underflow or overflow
depending on whether the original clock is slower or faster
than the decoder’s clock.

Clock recovery can be ignored for relatively short
transmissions. In the case of short transmissions, the
application would set up a large enough rate buffer and
allow it to fill half-way before starting the decoding process.
If the decoder’s clock was faster than the original clock, the

rate-buffer would have enough data buffered so that by the
end of the transmission the rate-buffer would not underflow.
Likewise, if the decoder’s clock was slower than the original
clock, the rate-buffer could accept enough data that it would
not overflow before the transmission completed. The size of
the rate-buffer required to handle such a transmission
depends on the length of transmission as well as the
difference in the original and decoder clocks.

To implement clock recovery, the m_bClockRecover
member variable of the CStradisDecoderSettings class must
set when calling the function Decoder_Init() or File_First(),
The API will call the virtual function
Demux_ClockRecover() every time the Demux_Stream()
function runs across a PCR in the stream. The
Demux_ClockRecovery() function is called with two double
parameters. The first parameter is the PCR value found in
the stream. The second parameter is the current system time
clock (STC). Both values are measured in seconds. The STC
is a hardware clock reference in the decoder that is used to
determine when frames of video and audio are presented to
display and audio D/A system. When the STC is equal to the
PTS of the frame, then the frame is displayed.

The base Demux_ClockRecover() function is a null function.
The application is expected to overload the base function
with its own function for clock recovery. The application’s
Demux_ClockRecover() function can then look at the
difference between the PCR and STC and use some
algorithm to vary the VCXO frequency to track the original
clock. The API does implement an algorithm to do this. The
algorithm used to recover the clock will depend on the
transmission system used. The specification and
implementation of such an algorithm is therefore beyond the
scope of this APl and its implementation is left to the
application. However, the API provides all of the functions
to implement such a clock recovery algorithm.

On Screen Display (OSD) Interface

The OSD function displays one or more bitmaps on top of a
decoded video image. The size of a bitmap can be from 8x2
to 720x480 NTSC or 8x2 to 720x576 PAL and is not
affected by the video bitstream parameters. The bitmaps are
contained in regions that contain a header that specifies the
coordinates of the region, size of the region, address of the
next region, color resolutions, color table and other controls.
The OSD function has the following features:

e Multiple rectangular regions of bitmaps linked by
addresses

»  Each line pair can be a region and up to one region per
horizontal line pair

» 16 or 4 colors per pixel or pixel pair by region

»  Each region has its own color table

» 16 levels of blending between video and OSD

e 16 levels of shading of video

»  Easy removal of OSD region from screen

e Animation Support

The API provides two methods for building regions in the
decoder’s OSD memory. The first method provides



functions for building OSD regions from data resident in the
host’s memory space. This includes functions for creating
YCrCb color tables from RGB values and setting the various
OSD modes.

The other method of building regions in the OSD memory
reads a .bmp file from disk and places the image in OSD
memory as a region. The .bmp file must be a 2, 4 or 16 color
file and should have a width that is devisable by 8 (16 color)
or 16 (2 and 4 color) and height that is devisable by 2. If the
width or height is not divisible by the appropriate amount,
the image will be cropped on the right and/or top/bottom
(depending on the .bmp file) to fit into the appropriately
divisible size.

The API also supports the animation feature of the OSD.

Closed Caption

The API supports Closed Caption as two separate interfaces.
One interface captures Closed Caption from the MPEG
stream in real-time and the output produces the VVBI
waveform from Closed Caption data sent to the output
interface. The Closed Caption interface can be set up to
direct the captured Closed Caption information extracted
from the MPEG stream to the output interface.

The Closed Caption capture interface automatically
recognizes ATSC and several proprietary formats. However,
there are two ways to incorporate Closed Caption data in to
the MPEG stream. One way is to attach each pair of Closed
Caption bytes to the frame from which they were originally
decoded. This causes the Closed Caption bytes to arrive at
the decoder out of sequence (same as video frames). In this
mode, the decoder must re-order the bytes to get them back
in time sequence.

The other way of encoding the bytes is to place them in the
stream sequentially without regard to the actual frame with
which they were originally associated. In this mode, the
decoder simply passes the Closed Caption data as it is
received and no re-ordering is necessary.

Still Picture Interface

The Still Picture Interface provides a means to place bitmaps
on the video output. This interface is separate from the
MPEG decoding interface in that the decoder must be reset
(by calling Decoder_Init()) between Still Picture mode and
MPEG playback mode. The call to Decoder_Init() is
automatically performed by the
Decoder_PrepareVideoMemory() (see below) and
File_First() (see Section 6 File Interface) functions. There
are two levels to the Still Picture Interface. At the highest
level, the application can make one function call to display
one of three predefined patterns or a bitmap file from disk.
The predefined patterns are 100% color bars, 75% color bars
and grayscale ramp.

The Still Picture Interface can also be used to place bitmaps
in the host’s memory into the decoder’s video memory for

This document contains preliminary information and is subject to change
without notice. Microsoft, Windows, and Windows NT are registered
trademarks of Microsoft Corporation. Stradis is a trademark of Stradis, Inc.
Copyright 2000 Stradis, Inc. All rights reserved.

display on the video output. The video memory is first
prepared for the bitmap by calling the
Decoder_PrepareVideoMemory() function. After the
Decoder_PrepareVideoMemory() returns, the video display
memory is initialized to black. In order to select the
decoder’s video output, the DvBus_Set() function must be
called with the parameter equal to DECODER. The address
of the luminance display memory can be obtained from the
IBM_GetLuminanceAddress() function (See Miscellaneous
Functions). The address of the chroma display memory can
be obtained from the IBM_GetChrominanceAddress()
function. The luminance data can be built in the host
memory organized as YO, Y1, Y2, Y3, Y4, Y5 ... and the
chrominance data is organized in the hosts memory as Chy,
Crg, Cby, Cry ... . The IBM_DramWrite() function can then
be used to transfer the bitmap image into the video memory.

Subsystem Settings Functions

These functions are used to setup and interrogate the various
subsystems including GenLock, analog audio and the Digital
Video Encoder.

Configuration ROM

The decoder contains a ROM that contains configuration
information. Functions are provided to access this
information.

Miscellaneous Functions
CSpciDmaMem Class

The purpose of the CSpciDmaMem class is to provide an
easy-to-use mechanism to allocate and manage memory
needed for DMA transfers. The class will allocate physically
locked memory, and provide a logical address for access.

The Synchronization Interface
(CStradisSynchronize)

The synchronization interface (CStradisSynchornize class) is
used to synchronize one or more groups of decoders for use
with the File interface. The CStradisSynchronize class
provides for synchronous starting and stopping of each
decoder in the group. If there is more than one group, each
group must contain a mutually exclusive set of decoders
with respect to the other groups. After the synchronization
class is created, it must be initialize (by calling the Init()
function) before any other functions within the class are
called.

Note that in order for the synchronization class to work on a
frame-accurate basis, all cards in a group must be
GenLocked together. This may be done by feeding all cards
from a common external sync generator, or by using one
card to provide sync to the other cards in the system. In the
first case, all decoders should have their GenLock enabled.
In the second case, the master decoder should not have
GenLock enabled and the slave decoder(s) should.

3170 Sugarplum Rd., NE
Atlanta, GA 30345-1553 USA
1-770-621-0625

fax 1-770-625-0310

\AAAAAT etradic rPrnm

Stradis
e



	Introduction/Overview
	The “C++” Interface Method
	The CStradisScan Class
	CStradisDecoderSettings Class
	Initializing the CStradisDecoder Class
	Error Handling
	File Interface
	The Demux Interface
	RateBuffer Interface
	Master Clock System
	On Screen Display (OSD) Interface
	Closed Caption
	Still Picture Interface
	Subsystem Settings Functions
	Configuration ROM
	Miscellaneous Functions
	CSpciDmaMem Class
	The Synchronization Interface (CStradisSynchronize)

