
20 July/August 2003 QUEUE rants and raves: queue@acm.org QUEUE July/August 2003 21 more queue: www.acmqueue.com

From Server Room

T
he open source movement, exemplified by the grow-
ing acceptance of Linux, is finding its way not only
into corporate environments but also into a home near
you. For some time now, high-end applications such
as software development, computer-aided design and

manufacturing, and heavy computational applications have
been implemented using Linux and generic PC hardware.

Now, Linux and open source software are making inroads at
the other end of the computing spectrum. TiVo, the first commer-
cially available digital video recorder (DVR), provides an exam-
ple of how embedded devices are increasingly powerful enough
to support Linux as an operating system—providing a great deal
of leverage to system developers.

20 July/August 2003 QUEUE rants and raves: queue@acm.org QUEUE July/August 2003 21 more queue: www.acmqueue.com

How open source
and TiVo
became a perfect match

From Server Room to Living Room
JIM BARTON

22 July/August 2003 QUEUE rants and raves: queue@acm.org QUEUE July/August 2003 23 more queue: www.acmqueue.com

A BRIEF HISTORY OF OPEN SOURCE
To many people, the open source movement is a recent
phenomenon, springing into consciousness in the late
1990s with the creation of Netscape Navigator and the
rise of the Linux operating system. The true beginnings of
the open source movement, however, can be traced back
to the mid-1980s.

At that time, the computer industry, as well as aca-
demia, had become enchanted with the Unix operating
system1 and its variants. Computer manufacturers realized
that the era of each manufacturer providing a proprietary
operating system for its hardware was drawing to a close;
while this strategy locked customers to a particular manu-
facturer, it also limited the ability to acquire new custom-
ers and cost a great deal to support.

Unix was originally developed at Bell Laboratories as
a reaction to the large, complex, non-portable operating
systems of the early 1970s. AT&T did not see a significant
opportunity in licensing or supporting an operating sys-
tem; instead, it provided Unix source code for a nominal
license fee and small per-unit royalties. A number of
academic efforts sprang up to take advantage of this op-
portunity and extend the original sources with new and
interesting features.

The most famous of these efforts is the Berkeley
Software Distribution (BSD) of Unix, which pioneered
features such as paging and the “sockets” network ab-
straction. BSD Unix lives on today, but its descendants are
better known, among them: FreeBSD, NetBSD, Open-
BSD, and BSDi. This line of Unix development began in
1974,2 and the BSD developers created many features of
modern Unix-based operating systems. In fact, for many
years BSD versions of Unix were considered far superior
to AT&T Unix in features, performance, and reliability
(and many would argue BSD Unix is still the best). This
is largely a result of the open and collaborative nature of
BSD development at a time when Unix was a little-no-
ticed sideline within the vast halls of AT&T.

In the mid-1980s, every computer manufacturer either
provided or planned to provide a Unix-based operating
system for its computers. Each company had chosen a
particular version of Unix to start with, and then added
various proprietary features. Although all of these operat-
ing systems claimed to be Unix, software written on one

version was often not portable to the
other versions.

At this same time, AT&T was breaking
up into separate companies in response
to a U.S. government antitrust suit, spin-
ning off the telephone operating compa-
nies and an unregulated subsidiary. The
company was trying to use its wealth
of internally developed technologies as
a lever to create new revenue streams.
Within AT&T there was growing realiza-
tion that selling and supporting Unix
might be a significant new source of rev-
enue. The company began to promote its
own version of Unix as the standard for
the computing industry and to enforce
its intellectual property rights around the
Unix trademark and source code.

The prospect of AT&T “taking control”
of Unix and then potentially limiting de-
velopers in what they could see or change
in the software was one of the main
forces behind the earliest open source
initiatives.

THE GNU PROJECT AND
UNIX STANDARDIZATION
Many believed this effort by AT&T was bad news for the
software community. Among them was Richard Stallman,
a programmer at MIT, who in 1984 founded the GNU
Project (“GNU Is Not Unix”) as an effort to rewrite Unix
as “free” software—that is, software not controlled by any
one person and available for anybody to use and modify
as desired.

This led to the creation in 1985 of the Free Software
Foundation (FSF), the main funding and advocacy organi-
zation for the GNU Project. The Free Software Foundation
established the GNU General Public License (GPL), the
most important open source license in use today.

While the GNU Project was getting started, other ef-
forts began to at least standardize the definition of Unix
to enhance software portability. One such effort was the
formation of the IEEE 1003 standards committee, which
would go on to produce the set of standards known as

From Server Room to Living Room

22 July/August 2003 QUEUE rants and raves: queue@acm.org QUEUE July/August 2003 23 more queue: www.acmqueue.com

the Portable Operating System Interface (POSIX). Another
effort of note was the creation of the X/Open organiza-
tion, a commercial venture oriented toward application
portability, testing, and branding of Unix-compatible
operating systems.

THE GREAT SCHISM
Continuing its aggressive push with Unix, AT&T signed
an agreement with Sun Microsystems in 1987 to work
jointly on creating a version of AT&T’s System V Unix,
which would become the de-facto standard for Unix.
This version would run first and best on Sun’s Sparc
microprocessor architecture, which frightened all other
Unix-based manufacturers in the computer industry.
They saw themselves at a disadvantage to Sun, and Sun
enhanced this fear through aggressive marketing of the
joint development.

These manufacturers, led by Digital Equipment Cor-
poration (DEC) and Hewlett-Packard (HP), arranged a
meeting at DEC’s Western Research Lab in Palo Alto, Cali-
fornia. The lab was on Hamilton Avenue, so the group
of companies that met that first time came to be known
as the Hamilton Group.3 In reaction to the Sun/AT&T
alliance, many of these manufacturers came together to
create the Open Software Foundation (OSF), which was
given the task of creating an “alternative” version of Unix
to compete with AT&T.

In response, AT&T formed Unix International, recruit-
ing many computer vendors to back System V Unix. Thus
began the “Unix wars.” Meanwhile, quietly working in
the background, the GNU Project began producing a
number of useful tools and utilities, mostly used in aca-
demia and research.

THE ENEMY IS REALLY MICROSOFT
At the beginning of the 1990s, in the midst of the Unix
wars, those in the Unix industry began to realize that
Microsoft was beginning to dominate the PC segment of
the computer industry, and that the company might well
move from there into other parts of the industry.

This resulted in several infamous counter-efforts. One
spectacular failure was the “ACE” initiative, created to
go up against both Microsoft and Intel. It promoted the
Open Software Foundation’s Unix clone, OSF/1, running
on the MIPS microprocessor.4

Another counter-effort was the creation of Unix Sys-
tems Laboratories by AT&T, with an investment from No-
vell, as a stand-alone Unix technology company. As this
venture sputtered, AT&T sold its share to Novell, which
was looking for an industrial-strength operating system to

complement Novell Netware for the PC.
In 1995, Novell gave the Unix brand to X/Open and

sold the software technology business to the Santa Cruz
Operation (SCO). A year later, the Open Software Foun-
dation and X/Open merged to form The Open Group,
which continues the focus of both companies to develop
an open standard for Unix-based systems that anyone can
implement.

Meanwhile, the GNU Project continued to expand its
software base and improve the quality of its offerings.

Within academia, the GNU Compiler Collection (GCC)
was viewed as ideal for creating cross-platform software.
In many ways the compiler suite began to exceed the
quality of commercial offerings.

In 1991, Linus Torvalds began developing the Linux
kernel. By choosing to use GNU Project software to build
and extend this work, he created a fruitful collaboration
that enhanced the quality of both offerings over time.

LINUX RISING
Throughout the mid-1990s, development continued
apace on Linux, with a number of programmers
adding vast contributions to the operating system and

AT&T formed
Unix International
and thus began the
“Unix wars.”

24 July/August 2003 QUEUE rants and raves: queue@acm.org QUEUE July/August 2003 25 more queue: www.acmqueue.com

its infrastructure. In 1995, the first commercial Linux
distributions combined the Linux kernel with the GCC
tool suite and a full suite of Unix-like tools and utilities,
creating the first credible Unix replacement.

In the late 1990s, GNU/Linux came into its own as a
commercial-class operating system environment. Still-
famous companies entered the GNU/Linux distribution
business: Red Hat, VA Linux, Slackware, and others. Un-
fortunately, the GNU General Public License constrained
the business models that were available to these compa-
nies. Although many had highly successful public stock
offerings, they collapsed after being unable to generate
self-funding cash flows. Red Hat remains the standard
bearer for commercial Linux distribution and seems to be
making a successful business of distributing and support-
ing open source software.

THE UNIX LANDSCAPE TODAY
The legacy of Unix continues to cause controversy. Com-
panies such as IBM, Hewlett-Packard, Sun, and SGI now
support Linux distributions for their computers, usually
alongside their own proprietary Unix offerings.

GNU/Linux is increasingly being used as a server
operating system, reducing overall costs while allowing
the use of generic PC-based hardware rather than more
expensive proprietary hardware designs.

Many embedded applications that incorporate Linux
already exist or are about to come to market. The TiVo
Client Device (TCD), a set-top box that digitally records
television programs, was among the earliest of these
systems. Sony and a number of other Japanese consumer
electronics manufacturers recently announced their sup-
port of Linux and their commitment to making it ubiqui-
tous in consumer electronics applications.

The legacy of Unix, however, continues to cause
controversy. SCO, facing declining sales of its proprietary
offerings based on the original Unix derivation, sued IBM
in March, claiming that IBM had “tainted” the Linux
source base by incorporating patented technology derived
from the IBM Unix-based proprietary offering, called AIX.
This spat further heated up with Novell’s announcement
that it still controlled much of the intellectual property
incorporated into Unix. In addition to Greg Lehey’s anal-
ysis of the SCO action that appears in this issue of Queue

(see page 56), Eric Raymond, formerly of
Netscape and now president of the Open
Source Initiative, has written an exten-
sive commentary on the action and the
history of Unix in general that debunks
SCO’s claims.5 In June, SCO “terminated”
IBM’s license to the Unix software in AIX,
although IBM publicly stated that SCO
has no ability to do so.

Whatever the outcome of this suit, it
seems to be a rear-guard—and probably
hopeless—action by SCO. For some time
after filing suit, SCO was publishing its
own distribution of Linux, which we
must assume contained its intellectual
property. Because distributing software
under the GNU General Public License re-
quires the publisher to acknowledge that
it has no rights in the published source,
or that it is forgoing those rights, SCO
would seem to have forfeited any claims
it might make. At the very least, it will
be entertaining to see how this drama
unfolds, although it is not likely to have a
significant effect on the ongoing adop-
tion of Linux in many areas.

A BIT OF TIVO HISTORY
The original TiVo product, as proposed by Mike Ramsay
and me in 1997, was for a home network-based multime-
dia server, streaming content to thin clients throughout
the home. To build such a product requires a solid soft-
ware foundation. The home environment may be one of
the most mission-critical applications conceivable. From
a consumer’s perspective, the device must operate flaw-
lessly, be reliable and robust, and handle power failure
gracefully.

At that time, I had become familiar with Linux
through a number of avenues. At Silicon Graphics (SGI),
I was the executive sponsor of an effort to port Linux to
the SGI Indy workstation, based on the MIPS R5000. I
was using several early Linux distributions for personal
experimental and development work.

This experience led me to believe that Linux would

From Server Room to Living Room

24 July/August 2003 QUEUE rants and raves: queue@acm.org QUEUE July/August 2003 25 more queue: www.acmqueue.com

serve TiVo well as the operating system foundation. It was
based on well-tested APIs, included a solid disk manage-
ment system, a large base of support software and tools,
and virtual memory and paging. It also provided access
to and control of the software source code. With my
operating system devel-
opment background, I
felt comfortable that we
could handle any minor
modifications or bug fixes
needed to achieve the
product goals. I also had a
great deal of experience at
Hewlett-Packard and SGI
with molding Unix-like op-
erating systems to handle
real-time computing tasks.
I felt that Linux could
be similarly enhanced
to provide the real-time
performance needed to
support consumer-quality
television viewing.6

At the time, however, open source software was viewed
with suspicion. People often asserted that open source
software could never be as reliable as proprietary software.
Software released under the GPL was looked upon with
particular disfavor, because many people assumed that
such software contaminated everything it touched and
would disallow proprietary developments. Careful reading
of the GPL convinced me that these fears were unfounded
and that Linux could give us a powerful development
advantage while allowing the protection of our intellec-
tual property.

Early in the existence of TiVo, we realized that the
home networking bandwidth available to support a
client-server multimedia environment was not going to
be easily available in the foreseeable future. We decided to
collapse our design into a single product, the TiVo Client
Device. The TCD takes the form of a television set-top
box about the size of a video tape recorder. It contains a
number of off-the-shelf electronic components, including
a microprocessor, memory, modem, MPEG2 real-time
encoder and decoder, and most significantly, a large-
capacity PC OEM disk drive. Using patented and patent-
pending technologies, the TCD has the ability to encode
and store a television program on the disk drive in real
time, while in parallel retrieving a program from the disk
drive and outputting it as a standard television signal.
This early digital video recorder could thus record one

program while playing back another program that had
been recorded earlier. In fact, the program being played
back might even be the one being recorded, only shifted
in time. This provides some of the more well-known fea-
tures of a DVR—the ability to “pause” live television and

to skip through television commercials.
To make the TCD reliable and easy to use, we needed

to provide it with information about television programs
and schedules, enabling the consumer to peruse the
available programming and choose programs to be saved
for later viewing. This program-guide data is automati-
cally downloaded from our central servers during a daily
telephone call and provides up to a 14-day window into
future programming.

Early in the design of the TCD, we realized that
delivering the simplicity and ease of use we desired
would require a complex, interlocking set of capabilities.
Maintaining a television-like viewing experience meant
that video playback must never stop, and playback had
to be perfect at all times, with no glitches or audio/video
synchronization problems. Capture and storage of pro-
grams had to be similarly perfect, with no dropped frames
and accurate tuning and timing. Searching the television
guide or scheduling recordings must not interfere with
these or other operations, such as the daily phone call to
the TiVo servers. This implied the use of a preemptible
multitasking operating system with both realtime and
background processing abilities.

Our earlier focus on Linux turned out to be prescient
when applied to the TCD. Here was an operating system
that was well-developed in multitasking, while optimiz-
ing hardware resource usage. In addition, the availability
of virtual memory made the software far easier to debug

It was assumed that GPL software
tainted everything it touched.

26 July/August 2003 QUEUE rants and raves: queue@acm.org QUEUE July/August 2003 27 more queue: www.acmqueue.com

and validate, and paging allowed us to have a great deal
of functionality available in our limited memory foot-
print of 16 megabytes.

For cost reasons, we used the IBM PowerPC 403GCX
processor in the first TCD. With an external clock of
27 megahertz (clock doubled on chip), this processor
was anemic by current standards, but quite powerful by
embedded-system standards of the mid-1990s. It provided
a simple memory management unit (MMU), allowing us
to run Linux, as well as providing a great deal of embed-
ded-system debugging support. This processor turned out
to be ideal for our needs.

Linux posed some problems, however. A PowerPC port
of Linux was available, but it was not mature and did not
support the IBM 400 series microprocessors. It was also
based on a “development” version of the Linux kernel
(an odd-numbered version 2.1) rather than on a “stable”
version of Linux. But it was enough. With a few months
of effort, we ported Linux to this processor and were able
to boot the first prototype TCD in the lab.

There was yet more work to do. We needed to modify
the kernel to allow direct I/O (bypassing the file system
buffer cache) for moving audio and video data into and
out of user space. We had to change the buffer cache
and paging system to interoperate properly with these
changes. We needed to add extensive logging of kernel
operation to help track down and eliminate realtime per-
formance and scheduling problems. This was in addition
to many minor changes to enhance functionality and
improve performance.

Fortunately, we were able to perform most application
development on Linux-based PCs. This was a great advan-
tage, because the full Linux development environment
was available and we could perform extensive testing
quickly. On the last day of March 1999, we shipped the
first TiVo boxes to retailers, the first commercial DVR ever
shipped in the world. We then published our Linux ker-
nel sources with our changes, many of which have been
incorporated into new versions of the Linux kernel.

OPERATION OF THE TIVO SERVICE
To provide all of its functionality, the TiVo box requires
the TiVo Service, which operates on a large number of
Red Hat Linux-based PC servers. Conceptually, the service

maintains a large database of information
destined for download to TCDs when
they contact the service.

This information is composed of many
different elements:
• Fourteen days of program guide infor-

mation.
• Original software releases for the vari-

ous TiVo DVR devices that have been
produced over time, as well as upgrade
releases.

• TiVo Showcases, which are customized
interactive promotions for networks,
programs, or products. Because the TCD
allows viewers to skip quickly through
regular television advertisements, we
developed the TiVo Showcase technol-
ogy as another avenue for advertisers to
reach consumers. Viewers may choose
to enter a Showcase where they are
presented with in-depth information
about a product, program, or movie.
These viewers are truly “qualified,”
because they make the choice to view
the material, increasing their value to
advertisers.

• Capture requests, which are instructions to the DVR to
record particular programs or video segments. These
may be made directly available to the viewer or inte-
grated into Showcases or other promotions.

• Messages from TiVo concerning aspects of the service or
other information.

• Security keys and related information.
The service also maintains a record of every TCD

manufactured, along with its related security keys. This
allows the service to authenticate a TCD and determine
what level of service to provide.

Each night, this large database is processed to pro-
duce customized packages of data for each zip code in
the country or perhaps other subsets of the active TCD
universe. This minimizes the amount of data downloaded
to each TCD, a desirable feature because in general TiVo
pays the transport costs for the data. This processing is
performed on a parallel array of Linux-based servers; the

From Server Room to Living Room

26 July/August 2003 QUEUE rants and raves: queue@acm.org QUEUE July/August 2003 27 more queue: www.acmqueue.com

result is tens of thousands
of customized packages.

These packages are
then copied onto another
parallel array of Linux
servers called distribution
servers. Their job is to field
connections from TCDs
(which may be via either
broadband connections or
dial-up modems) to
determine if those TCDs
are provided service and
to download all the ap-
propriate information for
that TCD.

At the time of this connection, a TCD may also upload
a file containing anonymous viewing information about
what was watched, as well as when and how the various
trick-play modes were used. This data is uploaded to a
set of backhaul servers running Linux, where additional
steps are taken to guarantee that the data is anonymous.
For example, the names of the files used to store this data
are chosen at random and the file creation times zeroed
out. Periodically, the logs from randomly chosen subsets
of the distributors are copied into a single directory on
another server where the file times are zeroed again. The
logs are then parsed and aggregated into a database of
viewing information.7

OPEN SOURCE AT TIVO INC.
TiVo uses open source products and technologies in
many different ways, both in operations and in the TiVo
DVR itself.

GPL-based software. Fundamental to both the TiVo
Client Device and TiVo Service is the Linux operating
system. Within the TiVo Service, we use standard Linux
distributions, typically from Red Hat.

The client software distribution is a custom configura-
tion built by TiVo. It is important to strictly control the
size and contents of the distribution, as it needs to fit into
a system with limited disk space and memory. TiVo also
needs to ensure that all software is verified and validated.
Thus, we begin with a “bare” Linux 2.4 kernel and popu-
late the user environment with only those commands
and utilities necessary for operation.

We also rely on GNU libc (glibc) and related libraries
for standard C library functionality. We use the Bourne
Again Shell (bash shell) from the Free Software Founda-
tion for many scripting functions on the client device.

Public domain soft-
ware. This is software that
has been made available for
any use, with no restric-
tions. Many public domain
packages are available, the
most notable of which
are the X Window System
and BSD operating system.
Such packages may have
some license limitations;
for example, BSD simply
requires that the University
of California at Berkeley
be acknowledged as a
copyright holder in the

software. At TiVo the main public domain tool we use is
the Tcl scripting language. TiVo developed a proprietary
extension to Tcl for manipulating the database and media
file system on the TCD.

Software development. TiVo performs all develop-
ment for the TiVo Service and TiVo Client Device on Red
Hat Linux-based PCs. Using a cross-compilation environ-
ment built on the GCC compiler suite and GNU make, a
developer can build software for any of the currently sup-
ported microprocessor types (PowerPC, MIPS, and x86)
and client devices (Series 1, Series 2, DirecTV with TiVo,
etc.). Software built for a TCD may then be downloaded
into a particular client device for testing. Interactive
debugging is supported using gdb on the workstation and
remote gdb debugging on the TCD. Generally, the TiVo
application is written in C++.

We build two different flavors of the TiVo application
in parallel: a debug version and a release version. We
attempt to have as little source difference as possible for
each version and rely on macros to turn on or off embed-
ded debugging aids. For example, we make liberal use of
assertion checking during debugging, compiling out such
assertions for the release version. Because of the complex-
ity of the application, we also embed an extensive in-line
logging facility that allows developers to perform detailed
analyses.

Red Hat Linux is also used for build and release man-
agement. Using an array of Linux-based PCs, TiVo per-
forms complete software builds for each client device type
continuously during the day as new changes are made.
As of this writing, seven different releases are under active
development, each built with separate debug and release
versions for the Series 2 TCD and a Red Hat 7.x-based
PC. The source trees for these releases range in size from

We built two
different flavors

of the TiVo application
in parallel.

28 July/August 2003 QUEUE rants and raves: queue@acm.org QUEUE July/August 2003 31 more queue: www.acmqueue.com

650,000 lines of code to nearly 1 million lines, including
GPL and public domain sources. These builds are made
available to developers immediately or as regular pack-
ages after daily automated regression testing. We use the
GCC tool-chain as a cross-compilation environment for
all software and take great advantage of its many features
and enhancements.

All software under active development is maintained
using the commercial Perforce version and configuration
management system, a cross-platform proprietary soft-
ware product. Although we began development six years
ago using the GPL-based Concurrent Versioning System
(CVS), the challenges of source control and configuration
management in the TiVo environment soon dictated the
use of a more robust and externally supported solution.
The actual source trees are maintained on a Red Hat
Linux-based server.

We use the Red Hat Package Manager (RPM) for
packaging software builds for distribution, download, and
installation. Perl and Python are used in development as
scripting and macro-programming languages. Tcl is used
in some cases, as is the Tk windowing package for the
construction of various development support tools.

As is usual in most software development environ-
ments, many programmers rely on the GPL-based emacs
text editor, whereas another large group relies on the
“charityware” vim text editor.

MANAGING OPEN SOURCE
The use of open source in combination with propri-
etary software requires attention to how the software is
combined and maintained. In general, all open source
software in use at TiVo, with the exception of public
domain software, falls under the GNU Public Library
License. GPL-based software is maintained under separate
source directories with the COPYING file prominent in
the base directory for the software. Except for the librar-
ies, the open source software we use is in the form of
utilities (e.g., the bash shell, the Linux modutils package,
or syslogd) or as part of the software build chain (such as
GNU make). Over time, the ratio of open source software
lines in use versus proprietary software has declined. This
is a result of both the increasing amount of proprietary
software and replacement of open source software with

proprietary software that is better tuned
to our needs.

TiVo uses only those libraries released
under the GNU Lesser General Public
License (LGPL). This allows the direct
linking of proprietary software with
those libraries. For example, we rely on
the glibc for standard C and C++ library
routines.

HARDWARE DRIVER SUPPORT
The TiVo Client Device is of necessity a
closed system. As a service provider, we
must prevent theft of service, so TiVo
pays a great deal of attention to security
of the device and resistance to hacking.
Additionally, we sell the TCD at a price
that provides a net margin to retailers,
but no profit to us. Our profits come from
providing service to each device over
time, rather than from up-front costs.

For this reason, it is important that
the devices not be re-purposed and that
our software not be replaced with other
implementations of DVR functionality.
Thus, hardware drivers are kept as proprietary sources
and are built as loadable modules. Our interpretation of
the GPL is that such use is permitted; we are careful to
separate these modules from the Linux kernel sources to
avoid any confusion. In fact, as has been demonstrated
by the very active TiVo hacking community, it is possible
to take our published sources, build a Linux kernel, and
load it on some versions of the TCD. The kernel will run
properly, loading the proprietary modules and executing
the TiVo application, thus staying within the GPL spirit.

This use is somewhat controversial. Advocates of the
GPL and the Free Software Foundation interpret the GPL
more stringently to disallow the use of proprietary mod-
ules. On the other hand, Linus Torvalds has stated that
proprietary loadable modules are acceptable. Regardless,
the use of proprietary modules has contributed greatly
to the explosive growth in the use of Linux and GNU
software in general, and is key to the use of Linux in
embedded systems. Had this ability not been available,

From Server Room to Living Room

28 July/August 2003 QUEUE rants and raves: queue@acm.org QUEUE July/August 2003 31 more queue: www.acmqueue.com

proprietary operating systems would certainly continue to
be the norm for most commercial embedded applications.

GPL software is supposed to be “free, as in free speech
not free beer” (attributed to GNU Project and FSF founder
Richard Stallman). When such speech is not a modifica-
tion of another’s speech, it should also be recognized that
the freedom not to speak must be preserved as a corollary.

MAKING SOURCES AVAILABLE TO SUBSCRIBERS
Under terms of the GPL, if we incorporate GPL-based
sources into commercial products, purchasers of such
products must have access to incorporated GPL sources.

TiVo complies with these terms by publishing on its
Web site (http://www.tivo.com/linux) the GPL and public
domain sources used in each release, along with the tools
used to build those sources. The intention is that any
interested party would be able to re-create the derived bi-
nary versions included in the device using those sources.
No proprietary software is included in these sources.

During development, TiVo may modify these sources.
These modifications are included in the sources made
available on the Web site, again under provisions of the
GPL. From time to time, TiVo also makes some of its
proprietary developments available under the GPL or as
public domain sources for the benefit of the developer
community. For example, TiVo has released a software
development kit as part of its Home Media Option
(HMO), a software application for the TCD that enables
the playback of music or digital photographs across a
home network from a personal computer, allows

transfer of programs among TCDs in the home, and
provides the ability to schedule the recording of programs
from a remote Web browser. This kit documents our
network protocols and provides sample code for a server
application (see http://www.tivo.com/developer).

At TiVo we believe that making our modifications

and enhancements to these sources generally available is
part of our contribution back to the open source com-
munity and is an acknowledgment of the value that open
source has brought to our products. As we neither sell nor
distribute the software used in development and in the
TiVo Service itself, we do not publish the underlying GPL-
based or public domain sources.

TRACKING NEW VERSIONS
Because of the closed nature of the TiVo Client Device,
there is little need or desire for TiVo to keep up with new
versions of the open sources incorporated into the device.
In fact, once a particular component has been debugged
and verified, we want to avoid any changes to that com-
ponent, which would require re-verification of its opera-
tion. Indeed, many of the sources in use are those first
incorporated in the first TCD software release.

There are a few notable exceptions to this philoso-
phy. First, the Linux kernel is a rapidly evolving software
project, with performance enhancements, new capabili-
ties, and bug fixes being added continuously. A great deal
of hardware driver work is also under way, and at TiVo we
wish to take advantage of new hardware and better per-
formance as appropriate. This makes it worthwhile for us
to track the kernel closely. Thus, while a particular kernel
version will be selected, tested, and frozen early in the
software development cycle, new software releases from
TiVo will typically incorporate the latest kernel changes.

Secondly, the GCC tool suite is a critical component
of TiVo’s software development environment. Clearly, it

is important that we verify
and validate the operation
of the GCC tools before
using them, a tremendous
undertaking. This means
that we carefully choose
a particular version of the
tool suite to work with
and validate it by building
all current versions and
releases under develop-
ment followed by exten-
sive testing of the resulting
binaries. Because of the

great effort involved in this testing, we continue to use
the same tools for a considerable time period. Thus, TiVo
has moved to a new GCC version only once in its exis-
tence. Similarly, we rely a great deal on the operation of
the glibc family of libraries, and we typically move to new
libraries coincident with a move to new GCC tools.

The TiVo Client Device is of

necessity a closed system.

32 July/August 2003 QUEUE rants and raves: queue@acm.org

CLOSING REMARKS
The evolution of open source has been remarkable since
Richard Stallman proposed the concept. Today, many
open source projects are recognized as high-quality
undertakings, often exceeding the quality of commercial
offerings while providing greater performance and more
features. This comes naturally from the open nature of
the source code, where many developers can study the
code, find and fix flaws, and validate the security and
proper operation of the code for production use.

Open source has been beneficial to TiVo and will con-
tinue to be in the foreseeable future. Careful management
of our sources to abide by the terms of the GNU General
Public License while protecting our proprietary develop-
ments is a small price to pay for this benefit. Q

REFERENCES AND FOOTNOTES
1. The Unix trademark is registered to and owned by The

Open Group.
2. “Twenty Years of Berkeley Unix: From AT&T-Owned to

Freely Redistributable,” Kirk McKusick,
http://www.oreilly.com/catalog/opensources/book/
kirkmck.html.

3. Yes, I was at this first meeting, representing SGI. I was
also present when the Hamilton Group traveled to New
York to meet with AT&T and hear how AT&T would
work with the remainder of the computer industry.
The arrogance shown by AT&T at that meeting toward
the computer manufacturers assured the creation of an
alternative effort.

4. “Endianess” of microprocessors continues to cause a
great chasm in the computing world. The MIPS micro-
processor architecture supports both little-endian and
big-endian computing paradigms. Because DEC and
Compaq led the ACE initiative, the group focus was on
the little-endian paradigm. This led to the formation of
an opposing effort, the Apache group (think “big
Indian”), which promoted a big-endian alternative,
based on System V Unix.

5. “OSI Position Paper on the SCO-vs.-IBM Complaint,”
Eric Raymond and Rob Landley,
http://www.opensource.org/sco-vs-ibm.html.

6. I am sometimes asked why we didn’t use a BSD-based
operating system. The BSD license would allow us to

keep any modifications to the source
proprietary. BSD was more oriented to-
ward server applications, however, and
the development community around
Linux was very active and growing. This
meant that we could look forward to ag-
gressive driver support for new devices
and capabilities, as well as ongoing
improvements to the kernel. BSD-based
operating systems were mature and on
a much slower development cycle. The
advantages of using Linux outweighed
any loss of proprietary opportunities.

7. A full description of this process may
be found in a whitepaper TiVo submit-
ted to the Federal Trade Commission
describing TiVo’s privacy management
process: http://www.tivo.com/pdfs/
ftc_letter.pdf.

LOVE IT, HATE IT? LET US KNOW:
queue-ed@acm.org or
www.acmqueue.org/forums

JIM BARTON is co-founder, chief techni-
cal officer, and senior vice president of research and
development at TiVo Inc. He is responsible for all product
development,and his area of emphasis is on software and
digital video streaming technologies behind the TiVo Ser-
vice. Prior to co-founding TiVo, Barton was president and
CEO of Network Age Software, a company he founded to
develop software products targeted at managed elec-
tronic distribution. He also held executive positions with
SGI, where he worked to develop the only large-scale
interactive television system to be put into operational
service. He served as CTO of Interactive Digital Solutions,
a joint venture of Silicon Graphics and AT&T Network
Systems to develop interactive television systems. Barton
held positions at Hewlett-Packard and Bell Laboratories
in operating system and networking technology and
product development. He has a bachelor’s degree in
electrical engineering and a master’s degree in computer
science from the University of Colorado at Boulder.
© 2003 ACM 1542-7730/03/0700 $5.00.

From Server Room to Living Room

