Linux on top of OSF MK

François Barbou des Places (barbou@gr.osf.org)
Nick Stephen (stephen@gr.osf.org)
OSF Research Institute - Grenoble

• Objectives:
 • widen the audience for the free OSF micro-kernel
 • provide a complete and free platform to develop new
erswers, applications or kernel extensions
 • provide Apple with a freely redistributable
microkernel-based operating system for the
Apple/PowerMac platform

The Mach3.0 microkernel: Design

• microkernel abstractions
 • task, thread, port, message, memory object
 • resources and services represented as ports
 • interfaces implemented via RPC to an object port

The Mach3.0 microkernel: Benefits

• portability (modular design)
• symmetric multi-processing support
• scalability (from desktop PCs to high-end multi-computers)
• extensibility
• OS-neutrality
• support for OS personalities running as user tasks
 • pageable, preemptable
 • more portable: isolated from hardware
 • simpler: no device drivers, scheduling, VM...
 • external memory managers

OSF MK Improvements

• performance
 • kernel-loaded servers (collocation)
 • thread migration
 • short-circuited RPC

• real-time
 • preemptable kernel
 • real-time RPC, priority inheritance

• distributed system (clusters and multi-computers)
 • DIPC: transparent Distributed IPC
 • XMM: transparent distributed shared memory

• more: MK++, CORDS (xkernel), Fault Tolerance, ...
OSF MK on the Apple/PowerMac

- portability: no changes to machine-independent code
- validated with the MPTS (MK performance test suite)
- initial target: PPC601 (PowerMac 7100 and 8100)
- support from Apple Computer, Inc.
- status
 - supports the Linux server
 - console, SCSI disk, serial port, ethernet drivers
 - X-Window running
- next steps
 - support more hardware (drivers, PPC603 and 604, PCI and CHRP PowerMacs)

Linux Server

Why Linux?

- pleasant and efficient development platform
- evolving very quickly: leverage the effort
- heavily supported by Internet community
- not derived from BSD
- performant dynamic buffer cache

Drawbacks

- portability: still quite biased towards PC
- fast moving target

Linux Server: Design Constraints

- leverage Linux evolution
 - minimize changes to Linux code
 - binary compatibility
- integration into the Linux tree:
 - new "architectures": osfmach3_i386 and osfmach3_ppc
 - machine-independent code in osfmach3 subdirectory
- build on Linux or the Linux server
- serialized multi-threaded single server
- no emulation library
- objective: performance parity with Linux

Linux Server: Code Reuse

<table>
<thead>
<tr>
<th>linux-1.2.13 + server</th>
<th>1117 files</th>
</tr>
</thead>
<tbody>
<tr>
<td>new server files</td>
<td>188</td>
</tr>
<tr>
<td>machine dependent</td>
<td>100</td>
</tr>
<tr>
<td>machine independent</td>
<td>88</td>
</tr>
<tr>
<td>new PPC</td>
<td>20</td>
</tr>
<tr>
<td>modified for server</td>
<td>43</td>
</tr>
<tr>
<td>unmodified</td>
<td>866</td>
</tr>
</tbody>
</table>

~ 50% of those files are in machine-dependent locations, but don’t really need to be ported
Linux Server: Syscall Redirection

emulation library
- emulation library
- unprivileged code
- complexity
- multi-threaded tasks
+ optimized local syscalls

syscall exception
- shared memory
- user task
- OS server
+ safety
+ unique and simple interface
- no optimized local syscalls

Linux Server: Device Access

Linux
- `sys_read`
- `block_read`
- `ll_rw_blockmake_request`

Linux server
- `device_reply_thread`
- `block_read_reply`
- `unlock_buffer`

This code is replicated in each block device driver.

This code is common to all block devices and machine independent.

Linux Server: Memory Management

Linux
- `vm areas`
- `page tables`

Linux Server
- `vm areas`
- `dummy page tables`

Linux Server: Signals and Time

Fake Interrupts
- signals normally processed on returned from interrupt or system call
- force signal delivery on user-mode-bound processes
 - take control of process by suspending and aborting the Mach user thread *if not in a system call*
 - fall back to the exception handling path

Jiffies
- jiffies thread
 - use Mach clock services to sleep 10 milliseconds
 - call `do_timer`
 - simple but inefficient, will be redesigned
Linux Server: Dynamic Buffer Cache

- cooperation between VM (microkernel) and Buffer Cache (Linux server)
- emulate the free_area pool of pages in a memory object
- external memory manager: a Linux server thread
- **advisory pageout** to avoid races and select page to free
 - memory_object_discard_request EMM interface
 - try_to_free_page()
 - memory_object_lock_request: let the MK release the page
 - MK falls back to default pager in case of problem
- also avoids double paging (paging buffer cache pages)

Linux on OSF MK: Status on i*86

- boots from LILO
- 100% binary compatible
- supports virtual consoles, X-Window, gpm and sdoom!
- current overall performance: 93% of Linux's performance
- disk IO performance better than Linux
- biggest performance penalty on syscall path and copyin/out operations

Linux on OSF MK: Apple PowerMac

- runs the available Linux/PPC commands and X-Window

Further Information

http://www.mklinux.apple.com

Availability

- summer 1996

BOF Session at the OSF

- this evening (Sunday Feb 5) from 8:30 to 10:00 PM
- at OSF, 11 Cambridge Center - 100 yards from the Marriott
- demo of Linux on OSF MK on Intel and PowerMac

Linux on OSF MK: Conclusion

Achievements

- OSF MK can support Linux and with good performance
- a free development platform for OSF MK now exists

Next Steps

- complete functionality and improve performance
- integrate Linux device drivers
- take advantage of OSF MK added value
 - multi-threaded tasks, SMP, real-time, clusters

Snapshot Available for i*86

http://www.gr.osf.org/mklinux
Linux on OSF MK: Apple PowerMac

- runs the available Linux/PPC commands and X-Window

Further Information

http://www.mklinux.apple.com

Availability

- summer 1996

BOF Session at the OSF

- this evening (Sunday Feb 5) from 8:30 to 10:00 PM
- demo of Linux on OSF MK on Intel and PowerMac