

ð

030-7650-A
Developer Press

 Apple Computer, Inc. 1996

ð

Designing PCI Cards and Drivers
for Power Macintosh Computers

Thi d t t d ith F M k 4 0 4

ð

Apple Computer, Inc.

 1995, 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist product developers to
develop products only for Apple Power
Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, Apple SuperDrive,
AppleTalk, GeoPort, HyperCard,
LaserWriter, LocalTalk, Macintosh,
Macintosh Quadra, MPW, PowerBook,
and QuickTime are trademarks of
Apple Computer, Inc., registered in the
United States and other countries.
AOCE, AppleCD, Apple Desktop Bus,
Mac, Power Macintosh, and
QuickDraw are trademarks of Apple
Computer, Inc.
Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
Code Warrior is a trademark of
Metrowerks.
CompuServe is a registered trademark
of CompuServe, Inc.
Ethernet is a registered trademark of
Xerox Corporation.
FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.
Intel is a trademark of Intel Corporation.
Internet is a trademark of Digital
Equipment Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Motorola is a registered trademark of
Motorola Corporation.
NuBus is a trademark of
Texas Instruments.
OpenBoot and Sun are trademarks of
Sun Microsystems, Inc.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
UNIX is a registered trademark of
Novell, Inc. in the United States and
other countries, licensed exclusively
through X/Open Company, Ltd.
Windows is a trademark of Microsoft
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Updated February, 1996

Thi d t t d ith F M k 4 0 4

iii

Contents

Figures, Tables, and Listings xv

Preface

About This Book

xix

Contents of This Book xix
PCI Bus Overview xix
System Startup by Open Firmware xx
Native PowerPC Drivers xx
Appendixes xx

Supplementary Documents xxi
Apple Publications xxi
Other Publications xxiii

Conventions and Abbreviations xxiv
Typographical Conventions xxiv
Notes xxv
Abbreviations xxv

Part One

The PCI Bus

1

Chapter 1

Overview

3

Benefits of PCI 4
PCI and NuBus 5
The Macintosh Implementation of PCI 5

Power Macintosh PCI System Architecture 6
PCI Bus Characteristics 6
PCI Topology 8
PCI Host Bridge Operation 8

I/O Space 9
Configuration Space 10
Interrupt Acknowledge Cycles 10
Special Cycles 10

Maximizing Bus Performance 11
PCI Transaction Error Responses 11
Expansion Card Characteristics 12
Hard Decoding 13
Nonvolatile RAM 13
Access to Apple AV Technologies 14

Thi d t t d ith F M k 4 0 4

iv

Chapter 2

Data Formats and Memory Usage

15

Address Allocations 16
PCI Bus Cycles 17
Addressing Modes 17

Addressing Mode Conversion 18
Addressing Mode Determination 20

Frame Buffers 20
Pixel Storage 21
Frame Buffer Apertures 22

Chapter 3

Data Transfers

23

Data Flow 24
Data Transfer Cycles 26
The PCI Bus and Open Firmware 26

Part Two

The Open Firmware Process

27

Chapter 4

Startup and System Configuration

29

The Open Firmware Startup Process 30
Startup Firmware 30
Device Drivers 31
PowerPC Addressing and Alignment 32

Device Configuration 32
Open Firmware FCode Options 32

Full Open Firmware Support 33
Support for Mac OS 7.5 and Open Firmware 33
Minimum Open Firmware Support 33
No Open Firmware Support 33

Open Firmware Driver Support 34
Startup Sequence 34

Initializing the Hardware 35
Running Open Firmware 35
Starting the Operating System 36

PCI Bus Configuration 36
Configuration Tasks 36
Configuration Registers 37
Register Actions 37

PCI-To-PCI Bridges 41
Configuration Header 42
Register Settings 42

v

Chapter 5

PCI Open Firmware Drivers

47

General Requirements 48
Driver Interfaces 48
Open Firmware Driver Properties 49
Terminal Emulation in Graphics Drivers 49

Color Table Initialization 51
Display Device Standard Properties 52
Display Device Standard Methods 52

Open Firmware User Interface 53
Invoking the User Interface 53
User Interface Commands 54

Sample Driver 55

Part Three

Native PCI Card Drivers

57

Chapter 6

Native Driver Overview

59

Macintosh System Evolution 60
Terminology 61
Concepts 63

Separation of Application and System Services 63
Common Packaging of Loadable Software 64
The Name Registry 64
Families of Devices 66
ROM-Based and Disk-Based Drivers 67
Noninterrupt and Interrupt-Level Execution 67
Symmetric Multiprocessing 67
Generic and Family Drivers 69
Driver Descriptions 70

Generic Driver Framework 70
Device Manager 70
Driver Package 71
Driver Services Library 71

Converting Previous Macintosh Drivers 72
Restricted Access to Services 72
Error Returns 72

Ensuring Future Compatibility 72
Copying Data 73
Synchronous and Asynchronous Driver Operation 74
Sharing Data With Applications 74
Power Management 75

Summary 75
Use the System Programming Interfaces 75
Use the Name Registry 76

vi

Chapter 7

Writing Native Drivers

77

Native Driver Framework 78
Native Container Format 78
Native Driver Data Exports 79
Native Driver Code Exports 79
Native Driver Imports 79
Drivers for Multiple Cards 80
The Device Manager and Generic Drivers 80
Native Driver Differences 80
Native Driver Limitations 82

Concurrent Generic Drivers 82
Completing an I/O Request 83
Concurrent I/O Request Flow 84

Driver Execution Contexts 85
Code Execution in General 85
Driver Execution 86

Writing a Generic Device Driver 87
Native Driver Package 87

Driver Description Structure 88
Driver Type Structure 90
Driver Run-Time Structure 90
Driver Services Structure 91
Driver Services Information Structure 92

DoDriverIO Entry Point 93
DoDriverIO Parameter Data Structures 93
Sample Handler Framework 95

Getting Command Information 97
Responding to Device Manager Requests 98

Initialization and Finalization Routines 98
Open and Close Routines 101
Read and Write Routines 101
Control and Status Routines 102
KillIO Routine 103
Replace and Superseded Routines 104

Handling Asynchronous I/O 104
Installing a Device Driver 105

Driver Gestalt 106
Supporting and Testing Driver Gestalt 106
Implementing Driver Gestalt 107
DCE Flags 108
Using DriverGestalt and DriverConfigure 110

DriverGestalt Selectors 111
Using the 'boot' Selector 113
DriverConfigure Selectors 113

vii

Other Control and Status Calls 113
SetStartupDrive Control Call 114
Low Power Mode Support Calls 115
Device-Specific Status Calls 116

Driver Loader Library 117
Loading and Unloading 119
Installation 127
Load and Install Option 131
Match, Load, and Install 134
Driver Removal 136
Getting Driver Information 136
Searching for Drivers 138

Finding, Initializing, and Replacing Drivers 140
Device Properties 141
PCI Boot Sequence 141
Matching Drivers With Devices 142
Driver Initialization and Resource Verification 145
Opening Devices 149
Driver Replacement 150

Driver Migration 152
Driver Services That Have No Replacement 152

Device Manager 152
Exception Manager 153
Gestalt Manager 153
Mixed Mode Manager 153
Notification Manager 153
Power Manager 153
Resource Manager 153
Segment Loader 154
Shutdown Manager 154
Slot Manager 154
Vertical Retrace Manager 154

New Driver Services 154
Registry Services 154
Operating-System Services 154
Timing Services 155
Memory Management Services 155
Primary Interrupt Mechanisms 156
Secondary Interrupt Services 156
Device Configuration 156

viii

Chapter 8

Macintosh Name Registry

159

Concepts 160
The Name Graph 160
Name Properties 161
How the Registry Is Built 161

Name Registry Overview 162
Scope 162
Limitations 162
Terminology 163
Registry Topology 163
The Device Tree 164
Real and Virtual Devices 165

Using the Name Registry 165
Determining If the Name Registry Exists 165
PCI Bus Identification 166
Name Entry Management 166

Name Entry Identifiers 166
Pathnames 166

Finding Registry Components 167
Using Iterate Routines 167
Using Search Routines 168

Coding Conventions 169
Data Structures and Constants 169
ID Management 170
Name Creation and Deletion 172
Name Iteration and Searching 174

Name Lookup 180
Pathname Parsing 182

Property Management 184
Creation and Deletion 184
Property Iteration 187
Property Retrieval and Assignment 190
Standard Properties 193

Modifier Management 196
Data Structures and Constants 196
Modifier-Based Searching 197
Name Modifier Retrieval and Assignment 198
Property Modifier Retrieval and Assignment 200

Macintosh System Gestalt 202
Code Samples 204

Adding a Device Entry 204
Finding a Device Entry 206
Removing a Device Entry 208
Listing Devices 209

ix

Chapter 9

Driver Services Library

213

Device Driver Execution Contexts 214
Miscellaneous Types 215
Memory Management Services 216

Addressing 216
I/O Operations and Memory 217
Memory Management Types 217
Memory Services Used During I/O Operations 219
Preparing Memory for I/O 219

PrepareMemoryForIO Data Structures 219
IOPreparationTable Options 223
Using PrepareMemoryForIO 224
Logical and Physical Memory Preparation 225
Mapping Tables 225
Scatter-Gather Client Buffers 226
Multiple Transfers 226
Reducing Memory Usage 226
Reducing Execution Overhead 227
DMA Alignment Requirements 227
Partial Preparation 227

Finishing I/O Transactions 228
Cache Operations 229

Getting Cache Information 230
Setting Cache Modes 232
Synchronizing I/O 234
Flushing the Processor Cache 234

Memory Allocation and Deallocation 235
Memory Copying Routines 238

Interrupt Management 240
Definitions 240
Interrupt Model 241
Primary and Secondary Interrupt Levels 241
Interrupt Source Tree Composition 242
Interrupt Registration 243
Interrupt Dispatching 244

Using kIsrIsComplete 245
Using kIsrIsNotComplete 245
Interrupt Priority 246

Interrupt Source Tree Construction 246
Interrupts and the Name Registry 247
Extending the Interrupt Source Tree 248

Automatic IST Extension 248
Automatic IST Extension Operation 249
Explicit IST Extension 249

Basic Data Types 251
Control Routines 252

x

Interrupt Set Creation and Options 255
Control Routine Installation and Examination 257
Software Interrupts 260
Secondary Interrupt Handlers 263

Queuing Secondary Interrupt Handlers 264
Calling Secondary Interrupt Handlers 265

Interrupt Code Example 265
Timing Services 268

Time Base 268
Measuring Elapsed Time 269
Basic Time Types 269
Obtaining the Time 271
Time Conversion Routines 271
Interrupt Timers 272
Canceling Interrupt Timers 275

Atomic Memory Operations 275
Byte Operations 276
Bit Operations 277

Queue Operations 278
String Operations 279
Debugging Support 282
Service Limitations 282

Chapter 10

Expansion Bus Manager

289

Expansion ROM Contents 290
Nonvolatile RAM 290

Typical NVRAM Structure 291
Operating-System Partition 291
Apple-Reserved Partitions 291
Open Firmware Partition 292

Using NVRAM to Store Name Registry Properties 292
PCI Nonmemory Space Cycle Generation 299

I/O Space Cycle Generation 300
Configuration Space Cycle Generation 304
Interrupt Acknowledge Cycle Generation 309
Special Cycle Generation 310
Byte Swapping Routines 311

Card Power Controls 311
Guidelines 312
Sample Code 312

xi

Chapter 11

Graphics Drivers

315

Graphics Driver Description 316
Graphics Driver Routines 316

Control Calls 317
Gamma Table Implementation 319

Correction Data 320
Gamma Table Errors 321

Status Calls 328
Reporting the Frame Buffer Controller’s Capabilities 331
Reporting the Current Sync Status 332

Display Timing Modes 338
Display Manager Requirements 338
Responding to GetConnectionInfo 339

New Field and Bit Definitions 339
Reporting csConnectTaggedType and csConnectTaggedData 340

Connection Information Flags 342
Timing Information 342

Reporting Display Resolution Values 343
Implementing the GetNextResolution Call 343
Implementing the GetModeConnection Call 343
Implementing the GetModeTiming Call 343
Programming the Hardware 344

Supporting the Hardware Cursor 344
Video Services Library 344

Interrupt Services 344
Hardware Cursor Utility 346

Data Structures 351
Replacing Graphics Drivers 359

Chapter 12

Network Drivers

361

Dynamic Loading 362
Finding the Driver 363

Native Port Drivers 363
Installing the Driver 364

Driver Initialization 364
Driver Loading 365

Driver Operation 367
Interrupt-Safe Functions 368
Secondary Interrupt Services 368
Timer Services 369
Atomic Services 370
Power Services 372

xii

CSMA/CD Driver 373
Supported DLPI Primitives 373
Extensions to the DLPI 374

Packet Formats 374
Ethernet Packets 375
802.2 Packets 376
IPX Packets 376

Address Formats 376
Ethernet 376
802.2 376
IPX 377

Binding 377
Ethernet 377
802.2 377
IPX 378

Multicasts 379
Sending Packets 379
Receiving Packets 379
Raw Packets 380
Test and XID Packets 380
Fast Path Mode 380
Framing and DL_INFO_REQ 381
TokenRing and FDDI Drivers 381

Chapter 13

SCSI Drivers

383

The SCSI Expert 384
SIMs for Current Versions of Mac OS 384
Future Compatibility 386
SCSI Device Power Management 387

Appendix A

Development Tools

391

Contents of the Device Driver Kit 391
Parts Supplied With the Kit 391

Tools 391
Code Files 392

Parts Not Included in the Kit 392

xiii

Appendix B

Big-Endian and Little-Endian Addressing

393

Endian Theory 393
Big-Endian Addressing 394
Little-Endian Addressing 395
Scalar Accesses 396
Address Invariance and Byte Swapping 397

Mixed-Endian Systems 397
Transmitting Addresses 398
Byte-Swapping Issues 398
Byte Swapping and Frame Buffers 399
Address Swizzling 399

PowerPC Little-Endian Support 400
Byte-Reversed Load and Store Instructions 401
Little-Endian Processing Mode 401

Appendix C

Graphic Memory Formats

403

RGB Pixel Formats 403
1, 2, 4, and 8 Bits Per Pixel 403
16 Bits Per Pixel 404
24 and 32 Bits Per Pixel 405

YUV Pixel Formats 405
Definitions of Pixel Formats in C 406

Appendix D

PCI Header Files

409

Appendix E

Abbreviations

417

Glossary

421

Index

427

xv

Figures, Tables, and Listings

Chapter 1

Overview

3

Figure 1-1

PCI system architecture for Power Macintosh 6

Table 1-1

Comparison of NuBus and the PCI bus 5

Table 1-2

PCI options chosen for Power Macintosh 7

Table 1-3

Bridge support for PCI cycle types 9

Table 1-4

Bridge master errors 11

Table 1-5

Bridge target errors 12

Chapter 2

Data Formats and Memory Usage

15

Figure 2-1

Big-endian and little-endian addressing 17

Figure 2-2

Big-endian to big-endian bus transfer 18

Figure 2-3

Sample frame buffer format 21

Table 2-1

Power Macintosh memory allocations 16

Listing 2-1

Endian addressing mode test 20

Chapter 3

Data Transfers

23

Figure 3-1

Big-endian data transfers 24

Figure 3-2

Little-endian data transfers 25

Figure 3-3

Mac OS frame buffer contents byte swapped to the PCI bus 25

Chapter 4

Startup and System Configuration

29

Figure 4-1

PCI configuration register map 37

Figure 4-2

PCI-to-PCI bridge register map 42

Table 4-1

PowerPC processor addressing 32

Chapter 5

PCI Open Firmware Drivers

47

Table 5-1

SGR escape sequence parameters 50

Table 5-2

Color table values 51

Listing 5-1

Minimal FCode driver 55

Thi d t t d ith F M k 4 0 4

xvi

Chapter 6

Native Driver Overview

59

Figure 6-1

New system model 64

Figure 6-2

Typical role of the Name Registry 65

Figure 6-3

Uniprocessing and multiprocessing execution 68

Chapter 7

Writing Native Drivers

77

Figure 7-1

Position of Driver Loader Library 118

Figure 7-2

Driver Loader Library functions 119

Table 7-1

Reserved unit numbers 105

Table 7-2

Driver gestalt codes 108

Table 7-3

Bits in flags word 108

Table 7-4

Mask values for flags word 109

Table 7-5

DriverGestalt

 selectors 111

Listing 7-1

Typical driver description 89

Listing 7-2

Driver handler for

DoDriverIO

95

Listing 7-3

Initialization, finalization, and termination handlers 98

Listing 7-4

Enabling PCI spaces 99

Listing 7-5

Device probing 100

Listing 7-6

Managing open and close commands 101

Listing 7-7

Sample driver read routine 101

Listing 7-8

Sample driver control routine 102

Listing 7-9

Sample driver status routine 103

Listing 7-10

Finding file-based driver candidates 123

Listing 7-11

Unloading a driver 127

Listing 7-12

Using the

LookupDrivers

 function 139

Listing 7-13

File-based driver sorting 144

Listing 7-14

Enabling PCI spaces 146

Listing 7-15

Getting a device’s logical address 146

Chapter 8

Macintosh Name Registry

159

Figure 8-1

Using name properties 161

Figure 8-2

Typical Name Registry structure 163

Table 8-1

Reserved Name Registry property names 193

Table 8-2

Gestalt properties 202

Listing 8-1

A typical device tree 164

Listing 8-2

Adding a name entry to the Name Registry 173

Listing 8-3

Finding and removing child entries 177

Listing 8-4

Using

RegistryEntrySearch

179

Listing 8-5

Obtaining an entry ID 181

Listing 8-6

Obtaining a parent entry 184

Listing 8-7

Updating or creating a property 186

Listing 8-8

Iterating through properties 189

Listing 8-9

Obtaining a property value 191

xvii

Listing 8-10

Saving a property to disk 199

Listing 8-11

Sample code to fetch virtual memory gestalt 203

Listing 8-12

Adding a name entry to the Name Registry 204

Listing 8-13

Retrieving the value of a property 207

Listing 8-14

Removing a device entry from the Name Registry 208

Listing 8-15

Listing names and properties 209

Chapter 9

Driver Services Library

213

Figure 9-1

IOPreparationTable

 structure 221

Figure 9-2

Interrupt source tree example 243

Table 9-1

BlockMove

 versions 239

Table 9-2

Services available to drivers 283

Listing 9-1

Adding a

'sysz'

 resource to the system heap 235

Listing 9-2

Disposing of a property 237

Listing 9-3

Interrupt registration 266

Chapter 10

Expansion Bus Manager

289

Table 10-1

Typical NVRAM space allocations 291

Listing 10-1

Sample NVRAM manipulation code 294

Listing 10-2

Determining power consumption 312

Chapter 11

Graphics Drivers

315

Figure 11-1

Luminosity and electron beam strength 319

Figure 11-2

Gamma table structure 319

Figure 11-3

Examples of gamma table correction 321

Table 11-1

Implementing VESA DPMS modes with

SetSync

325

Table 11-2

Sample

csConnectTaggedType

 and

csConnectTaggedData

values 342

Chapter 12

Network Drivers 361

Figure 12-1 Packet formats recognized by the CSMA/CD driver 375
Figure 12-2 Message for enabling a SNAP 377
Figure 12-3 Message for enabling a group SAP 378

Chapter 13 SCSI Drivers 383

Listing 13-1 SIM descriptor 385

xviii

Appendix B Big-Endian and Little-Endian Addressing 393

Figure B-1 Neutral descriptor layout 394
Figure B-2 Big-endian descriptor layout 395
Figure B-3 Little-endian descriptor layout 395
Figure B-4 Byte swapping in NuBus 397
Figure B-5 Little-endian memory image 398
Figure B-6 Big-endian memory image 398
Figure B-7 Big-endian RGB 16-bit pixel format 399
Figure B-8 Little-endian RGB 16-bit pixel format 399
Figure B-9 Little-endian descriptor in memory 400
Figure B-10 Little-endian descriptor with big-endian addresses 400
Figure B-11 Descriptor swizzled by little-endian processing mode 402

Listing B-1 Field value initializer 396
Listing B-2 Endian mode determination code 396

Appendix C Graphic Memory Formats 403

Figure C-1 1-bit-per-pixel formats 404
Figure C-2 16-bits-per-pixel formats 404
Figure C-3 24- and 32-bits-per-pixel formats 405
Figure C-4 YUV pixel formats 406

Listing C-1 C structs for pixel formats 406

Appendix D PCI Header Files 409

Table D-1 Header files for Macintosh PCI development 409
Table D-2 PCI-related functions and data structures 409

xix

P R E F A C E

About This Book

This book describes the Macintosh implementation of the Peripheral
Component Interconnect (PCI) local bus established by the PCI Special
Interest Group. The PCI local bus standard defines a high-performance
interconnection method between plug-in expansion cards, integrated I/O
controller chips, and a computer’s main processing and memory system.

The first generation of Power Macintosh computers—the Power Macintosh
6100, 7100, and 8100 models—supported NuBus

 expansion cards.
Subsequent Power Macintosh models support the PCI standard. This book
contains useful information for product developers who want to design PCI
expansion cards and their associated software to be compatible with the
newer computers.

The information in this book is general. You should also refer to the developer
notes that accompany each Macintosh product release for exact details of that
product’s PCI implementation.

This document is written for professional hardware and software engineers.
You should be generally familiar with existing Macintosh technology,
including Mac OS (the Macintosh system software) and the Apple RISC
technology based on the PowerPC microprocessor. For recommended reading
material about Macintosh and PowerPC technology, see the documents listed
in “Supplementary Documents” beginning on page xxi.

Contents of This Book 0

This book is divided into three parts and contains 13 chapters.

PCI Bus Overview 0

Part 1, “The PCI Bus,” describes the PCI bus and tells you how it works with
Power Macintosh computers:

■

Chapter 1, “Overview,” describes the PCI standard and summarizes the
ways that Power Macintosh computers comply with it.

■

Chapter 2, “Data Formats and Memory Usage,” defines the formats in
which data moves over the PCI bus and the memory spaces reserved for
PCI use.

■

Chapter 3, “Data Transfers,” describes the processes of data movement
over the PCI bus.

Thi d t t d ith F M k 4 0 4

xx

P R E F A C E

System Startup by Open Firmware 0

Part 2, “The Open Firmware Process,” describes the startup process in Power
Macintosh computers that support the PCI bus and run Mac OS:

■

Chapter 4, “Startup and System Configuration,” describes how PCI-
compatible Macintosh computers recognize and configure peripheral
devices connected to the PCI bus.

■

Chapter 5, “PCI Open Firmware Drivers,” discusses Open Firmware drivers,
which control PCI devices during the Open Firmware startup process.

Native PowerPC Drivers 0

Part 3, “Native PCI Card Drivers,” tells you how to design and write run-time
PCI card drivers for the second generation of Power Macintosh computers.
These drivers are called

native

 because they are written for execution by
the native instruction set of the PowerPC microprocessor. Part 3 consists of
these chapters:

■

Chapter 6, “Native Driver Overview,” presents the general concepts and
framework applicable to PCI drivers for PowerPC Macintosh computers.

■

Chapter 7, “Writing Native Drivers,” gives you details of native driver
design and coding, including how to use services provided by the
Macintosh Driver Loader Library.

■

Chapter 8, “Macintosh Name Registry,” describes the Mac OS data
structure that stores device information extracted from the PCI device tree.

■

Chapter 9, “Driver Services Library,” details the general support that
Mac OS provides for device drivers, including interrupt and timing services.

■

Chapter 10, “Expansion Bus Manager,” discusses a collection of PCI bus-
specific system services available to native device drivers.

■

Chapter 11, “Graphics Drivers,” describes the calls serviced by typical
display drivers.

■

Chapter 12, “Network Drivers,” describes the construction of a sample
network driver.

■

Chapter 13, “SCSI Drivers,” describes the construction of a sample native
SCSI Interface Module (SIM) compatible with Macintosh SCSI Manager 4.3.

Appendixes 0

Five appendixes follow the main part of this book, beginning on page 389:

■

Appendix A, “Development Tools,” describes the developer’s kit that
Apple supplies for designing PCI cards and related software compatible
with Power Macintosh computers.

xxi

P R E F A C E

■

Appendix B, “Big-Endian and Little-Endian Addressing,” discusses the
theory and problems of handling mixed-endian formats.

■

Appendix C, “Graphic Memory Formats,” describes the ways that graphic
information and video frames are stored in PCI-based Power Macintosh
computers.

■

Appendix D, “PCI Header Files,” describes the PCI header files and lists all
the routines and data structures documented in this book.

■

Appendix E, “Abbreviations,” lists the abbreviations and acronyms used in
this book.

Supplementary Documents 0

The documents described in this section provide information that complements
or extends the information in this book.

Apple Publications 0

Apple Developer Press publishes a variety of books and technical notes
designed to help third-party developers design hardware and software
products compatible with Apple computers.

Inside Macintosh

 is a collection of books, organized by topic, that describe the
system software of Macintosh computers. Together, these books provide the
essential reference for programmers, software designers, and engineers. They
include the following titles:

Inside Macintosh: AOCE Application Interfaces
Inside Macintosh: AOCE Service Access Modules
Inside

Macintosh: Devices
Inside Macintosh: Files
Inside Macintosh: Imaging With QuickDraw
Inside Macintosh: Interapplication Communication
Inside Macintosh: Macintosh Toolbox Essentials
Inside Macintosh: Memory
Inside Macintosh: More Macintosh Toolbox
Inside Macintosh: Networking
Inside Macintosh: Operating System Utilities
Inside Macintosh: Overview
Inside Macintosh: PowerPC Numerics
Inside Macintosh: PowerPC System Software
Inside Macintosh: Processes
Inside Macintosh: QuickDraw GX Environment and Utilities
Inside Macintosh: QuickDraw GX Graphics
Inside Macintosh: QuickDraw GX Objects
Inside Macintosh: QuickDraw GX Printing

xxii

P R E F A C E

Inside Macintosh: QuickDraw GX Printing Extensions and Drivers
Inside Macintosh: QuickDraw GX Environment and Utilities
Inside Macintosh: QuickTime
Inside Macintosh: QuickTime Components
Inside Macintosh: Sound
Inside Macintosh: Text

Inside Macintosh: Devices

 documents the last version of the Device Manager
before its enhancements to support PowerPC native drivers. It also contains a
full description of SCSI Manager 4.3.

Inside

Macintosh: PowerPC System Software

covers in detail the changes and
extensions to Macintosh system software version 7.1 for Power Macintosh
computers, including new Macintosh Toolbox managers and the run-time
architecture that supports the PowerPC microprocessor.

Building Programs for Macintosh With PowerPC

is a general discussion for
developers of the development and building of application software for
PowerPC microprocessor–based Macintosh systems, including Power
Macintosh computers that use the PCI bus.

Technical Introduction to the Macintosh Family,

 second edition, surveys the
complete Macintosh family of computers from the developer’s point of view.

Macintosh Human Interface Guidelines

 provides authoritative information on
the theory behind the Macintosh “look and feel” and Apple’s standard ways
of using individual interface components. A companion CD-ROM disk,

Making It Macintosh,

 illustrates the Macintosh human interface guidelines
through interactive, animated examples.

Macintosh Developer Note Number 8

 contains two documents:

Power Macintosh
Computers

 describes the Power Macintosh 6100/60, 7100/66, and 8100/80
models;

Macintosh DAV Interface for NuBus Expansion Cards

contains hardware
details of the DAV interface provided for NuBus-based Macintosh computers,
including the Macintosh Quadra 660

AV

 and 840

AV

 and the Power Macintosh
7100/66

AV

 and 8100/80

AV

.

Macintosh Developer Note Number 13

 and later
developer notes provide details of other Power Macintosh DAV interface
implementations.

Display Device Driver Guide

 describes device support for the Macintosh
Display Manager. It was published in electronic form on the December 1994
Developer CD.

Macintosh New Technical Notes HW-30

 describes Apple’s revisions to the way
that Macintosh computers automatically sense video display characteristics.

Technical Note 144 (

Macintosh Color Monitor Connections

), Technical Note 326
(

M.HW.SenseLines

), and

Macintosh New Technical Note HW-30

 provide technical
details of the interfaces to various Apple and third-party monitors.

Most of the Apple publications just listed are available from APDA. APDA is
Apple’s worldwide source for hundreds of development tools, technical
resources, training products, and information for anyone interested in

xxiii

P R E F A C E

developing applications on Apple platforms. Customers receive the

APDA
Tools Catalog

featuring all current versions of Apple development tools and
the most popular third-party development tools. APDA offers convenient
payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Other Publications 0

This book cites several documents that are not published by Apple. They are
available from the organizations listed below.

American National Standards Institute

ANSI has prepared a standard called

ANSI/IEEE X3.215-199x Programming
Languages—Forth.

 It is a useful reference for the Forth language used in the
Open Firmware process. You can contact ANSI at

American National Standards Institute
11 West 42nd Street
New York, NY 10036
Phone 212-642-4900
Fax 212-302-1286

FirmWorks

FirmWorks has issued a book,

Writing FCode Programs for PCI,

 that provides
essential information for programmers designing Open Firmware drivers for
PCI cards. This book is published by FirmWorks and is available by writing to

FirmWorks
480 San Antonio Road, Suite 230
Mountain View, CA 94040-1218
Email info@firmworks.com
Phone 415-917-0100
Fax 415-917-6990

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

xxiv

P R E F A C E

Institute of Electrical and Electronic Engineers

The essential IEEE document for designers of Macintosh-compatible PCI card
firmware is

1275-1994 Standard for Boot (Initialization, Configuration) Firmware

,
IEEE part number DS02683. It is referred to in this book as IEEE Standard
1275. You can order it from

IEEE Standards Department
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331
Phone 800-678-4333 (U.S.)

908-562-5432 (International)

Note

The P1275 Working Group continues to work on new PCI bus and
processor bindings, as well as extensions to

IEEE Standard 1275.

 Current
documents, including

PCI Bus Binding to IEEE 1275-1994,

 are available
on an anonymous Internet FTP site, donated by Sun Microsystems, at
playground.sun.com/pub/p1275.

◆

PCI Special Interest Group

The essential PCI standard document for designers of Macintosh-compatible
PCI cards is

PCI Local Bus Specification,

 Revision 2.0. It is available from

PCI Special Interest Group
P. O. Box 14070
Portland, OR 97214
Phone 800-433-5177 (U.S.)

503-797-4207 (International)
Fax 503-234-6762

The PCI SIG also publishes

PCI Multimedia Design Guide

 and the

PCI to PCI
Bridge Architecture Specification.

SunSoft Press

SunSoft Press has issued a book,

Writing FCode Programs,

 that provides useful
background information about FCode. Its ISBN number is 0-13-107236-6. This
book is published by PTR Prentice Hall and is available at most computer
bookstores.

Conventions and Abbreviations 0

This book uses the following typographical conventions and abbreviations.

Typographical Conventions 0

New terms appear in

boldface

 where they are first defined. These terms also
appear in the glossary that begins on page 421.

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in

Courier

 font.

xxv

P R E F A C E

Hexadecimal numbers are preceded by 0x. For example, the hexadecimal
equivalent of decimal 16 is written as 0x10.

Notes 0

The following three types of notes in this book are set apart from the text:

Note

A general note like this contains information that is interesting but not
essential for an understanding of the subject.

◆

IMPORTANT

Important notes call your attention to information
that you should not ignore.

▲

▲ W A R N I N G

Warnings tell you about potential problems that could
result in system failure or loss of data.

▲

Abbreviations 0

Wherever possible, this book uses standard abbreviations for units of
measure. It also supports readability by using acronyms for many technical
terms. Appendix E, “Abbreviations,” contains a complete list of the
abbreviations and acronyms used in this book.

1

P A R T O N E

The PCI Bus 1

This part of

Designing PCI Cards and Drivers for Power Macintosh Computers

describes the PCI bus and tells you how it works with Power Macintosh
computers. It contains three chapters:

■

Chapter 1, “Overview,” describes the PCI standard and summarizes the
ways that Power Macintosh computers comply with it.

■

Chapter 2, “Data Formats and Memory Usage,” defines the formats in
which data moves over the PCI bus and the memory spaces reserved for
PCI use.

■

Chapter 3, “Data Transfers,” describes the processes of data movement
over the PCI bus.

Later parts of this book cover the following topics:

■

Part 2, “The Open Firmware Process,” describes the startup process in
Power Macintosh computers that support the PCI bus and run Mac OS.
Part 2 begins on page 27.

■

Part 3, “Native PCI Card Drivers,” tells you how to design and write
run-time PCI card drivers for the second generation of Power Macintosh
computers. Part 3 begins on page 57.

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

Overview 1Figure 1-0
Listing 1-0
Table 1-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

Overview

4

Benefits of PCI

The

PCI local bus

 standard defines a method for connecting both ASIC chips and
plug-in expansion cards to a computer’s main memory and processing circuitry. The
second generation of Power Macintosh computers, containing PowerPC micro-
processors, uses PCI buses to communicate both with internal I/O chips and with
plug-in expansion cards. This book discusses Apple’s implementation of the PCI bus for
expansion cards.

Apple’s underlying policy is to support the PCI standard, as expressed in

 PCI Local Bus
Specification,

Revision 2.0, referred to here as the

PCI specification.

 This standard
specifies the logical, electrical, and mechanical interface for expansion cards, so that any
card that conforms to it should be compatible with any computer that supports it. Hence
expansion cards designed to be compliant with the PCI specification are generally
hardware compatible with Power Macintosh computers and with other computers that
comply with PCI, including computers that do not use Mac OS. The PCI specification is
listed under “Supplementary Documents,” in the preface.

Buses conforming to the PCI standard include the following main features:

■

operation independent of any particular microprocessor design

■

32-bit standard bus width with a compatible 64-bit upgrade path

■

either 5 V or 3.3 V signal levels

■

bus clock rate up to 33 MHz

■

up to 132 MB per second transfer rate over the 32-bit bus

A PCI bus is typically connected to the computer’s processor and RAM system by an
ASIC chip called a

PCI bridge.

 Power Macintosh computers contain a proprietary bridge
chip to connect their PCI buses to the PowerPC processor bus.

Benefits of PCI 1

PCI represents a needed standard in the desktop computer industry. Because the PCI bus
uses the same architecture and protocols to communicate with I/O chips and with plug-
in expansion cards, it reduces the cost and complexity of computer hardware. It lets CPU
manufacturers provide expandability at minimum cost.

The establishment of the PCI bus standard has benefits for developers of peripheral
equipment, too. These benefits include

■

delivering a high level of bus performance, enough for most current I/O needs

■

letting peripheral equipment developers produce expansion cards that can operate
with both Macintosh computers and computers that use other operating systems

■

encouraging the large-scale marketing of chips compatible with PCI, which tends to
reduce the component cost of peripheral equipment

■

providing a relatively simple method for automatically configuring external devices
into the user’s system during system startup

C H A P T E R 1

Overview

PCI and NuBus

5

PCI and NuBus 1

The PCI bus exhibits a number of fundamental differences from NuBus

, the previous
Macintosh bus standard. The most important of these differences are listed in Table 1-1.

The Macintosh Implementation of PCI 1

To achieve maximum compatibility with PCI-compliant devices and plug-in cards, the
second generation of Power Macintosh computers is designed to comply with the

PCI
Local Bus Specification,

 Revision 2.0. This support includes, as a minimum, the following
general areas:

■

signal types and pin assignments

■

bus protocols, including arbitration

■

signal electrical characteristics and timing

■

configuration data and card expansion ROM formats

■

plug-in card mechanical specifications

Table 1-1

Comparison of NuBus and the PCI bus

Feature NuBus PCI bus

Bus clock rate 10 MHz 33 MHz

Addressing Geographic Dynamic

Signal loading No enforced rules One load per signal

Transaction length
determination

Determined at start
of transaction

Determined at end
of transaction

Bus termination Resistor network Not required

Bus control arbitration Distributed Centralized

Addressing spaces Memory only Memory, I/O, and configuration

Wait-state generators Slave only Slave and master

Kinds of expansion Cards only Cards and ASIC chips

Timeout 255 bus clocks 5 bus clocks

Burst capability 8, 16, 32, or 64 bytes Any number of bytes

Power allocation 15 W per card 7.5, 15, or 25 W per card

C H A P T E R 1

Overview

6

The Macintosh Implementation of PCI

As explained in “Address Allocations” on page 16, a Power Macintosh computer may
contain as many as four separate PCI buses for expansion cards, although initial models
contain fewer than four.

The next sections contain clarifications and interpretations of the PCI specification that
more fully specify the Macintosh implementation of PCI for expansion cards.

Power Macintosh PCI System Architecture 1

The first implementation of the PCI bus on Power Macintosh computers supports up to
four peer PCI bridge connections to the main processor bus. Figure 1-1 presents a
general block diagram of the Power Macintosh system architecture with the PCI bus.

Figure 1-1

PCI system architecture for Power Macintosh

The ARBus shown in Figure 1-1 is Apple’s implementation of the PowerPC processor
bus for Power Macintosh computers.

PCI Bus Characteristics 1

The PCI bus on Power Macintosh follows the requirements of the PCI specification
described on page xxiv. However, the PCI specification allows certain options. Table 1-2
shows the specification options chosen for the first implementation of the PCI bus in
Power Macintosh computers.

Optional
PCI host
bridge 1

Macintosh
I/O ASICs

Optional
PCI host
bridge 2

Optional
PCI host
bridge 3

ARBus

PowerPC
microprocessor

RAM Memory
controller

PCI
peer

bus 0

PCI
peer

bus 1

PCI
peer

bus 2

PCI
peer

bus 3

Optional
PCI host
bridge 0

Reserved
for expansion

(slots or devices)

Expansion
card slots Reserved

for expansion
(slots or devices)

Reserved
for expansion

(slots or devices)

C H A P T E R 1

Overview

The Macintosh Implementation of PCI

7

Notes

1

 The Power Macintosh implementation does not support devices that address memory
space below 1 MB.

2

 The PCI specification allocates power per slot, but the Macintosh implementation
contains one power allocation for all slots. For example, a three-slot Power Macintosh
computer has 9 A of 5 V power or 6 A of 3.3 V power available for PCI cards, which can
be installed in any combination among the slots. Apple recommends that cards stay
within the proportional allotment: 3 A for 5 V and 2 A for 3.3 V cards. However,
configurations with fewer cards or lower-power cards can support other cards that need
more power. These figures are minimum power allocations; some Power Macintosh
models may provide more power for PCI cards.

3

 While expansion ROMs are optional in the PCI specification, Apple strongly
recommends their inclusion on plug-in cards. True “plug-and-play” operation (plug it in,
turn it on, it works) can be provided only when an expansion ROM contains both startup
firmware and run-time driver code. See Chapter 4, “Startup and System Configuration,”
for more information on expansion ROM benefits, contents, and data formats.

4

 LOCK# is an optional pin in the PCI specification.

Table 1-2

PCI options chosen for Power Macintosh

Option Power Macintosh implementation

PCI clock rate 33 MHz (30 ns cycle time)

Address/data bus width 32 bits

Signal voltage 5 V

PCI address spaces supported Memory,

1

 I/O, and configuration

Minimum power supplied 5 V rail: 3 A (15 W) per slot

2

3.3 V rail: 2 A (6.6 W) per slot

2

PCI bus arbitration Fair, round-robin, all slots master-capable

Mechanical bracket ISA style

Plug-in card expansion ROM Highly recommended

3

IDSEL signals Provided by resistive connections to AD lines

Interrupt routing INTA#, INTB#, INTC#, INTD# wires combined
by OR per slot to provide a unique slot interrupt
for each card

LOCK# Not used by the Macintosh system

4

PERR#, SERR# Not used by the Macintosh system

SBO#, SDONE Not used by the Macintosh system. No cache
coherency (snooping) across the PCI bus

JTAG Not used by the Macintosh system

C H A P T E R 1

Overview

8

The Macintosh Implementation of PCI

Semaphores must be maintained in main system memory through processor control,
using the PowerPC

lwarx

 and

stwcx

 instructions. C programs can access semaphores
by using the routines described in “Atomic Memory Operations” beginning on page 275.
Power Macintosh does not support the use of semaphores in PCI memory space.

PCI Topology 1

The Power Macintosh PCI implementation supports a PCI subsystem with the following
general restrictions:

■

Not more than one PCI-to-ISA bridge can be implemented.

■

In systems with two host bridges, ISA bus DMA masters located behind a PCI-to-ISA
bridge may target only main memory for DMA transactions, not PCI space.

■

In systems with two host bridges, PCI masters located behind one host bridge may
not access PCI locations that are mapped behind a PCI-to-PCI bridge located behind
the second host bridge.

PCI Host Bridge Operation 1

The most basic function of the PCI host bridge is to translate between PowerPC
processor bus cycles and PCI bus cycles. The bridge in the first implementation of PCI
on Power Macintosh provides the following features:

■

It supports asynchronous clock operation up to 50 MHz on the PowerPC bus and up
to 33 MHz on the PCI bus.

■

It supports split-transaction PowerPC bus implementations.

■

It provides dual alternating 32-byte data transaction buffers, one set for bus master
transactions initiated by the PowerPC processor bus and one set for bus master
transactions initiated by the PCI bus.

■

The PowerPC bus can be used in big-endian or little-endian modes. PCI data is
always little-endian, and is correctly translated by the PCI host bridge to and from the
PowerPC bus in conformance to the PowerPC mode setting. Mac OS is big-endian, so
the PowerPC mode setting is big-endian while running Mac OS. For information on
translating big-endian and little-endian data formats, see “Addressing Modes”
beginning on page 17.

■

It supports concurrent PowerPC bus and PCI bus activity.

■

Posted writes are always enabled from both PowerPC and PCI masters.

■

It supports a 32-byte cache line size.

■

It supports and optimizes for the cycle types memory read line and memory write
and invalidate. The bridge also accepts memory read multiple cycles from PCI
masters and treats them the same as memory read line cycles.

■

The longest burst generated as a master or accepted before disconnecting as a target is
32 bytes, the Power Macintosh cache line size.

■

It uses medium device select (DEVSEL) timing when operating as a PCI target.

C H A P T E R 1

Overview

The Macintosh Implementation of PCI

9

Table 1-3 lists the commands that the Macintosh PCI host bridge supports for all PCI
cycle types (all encodings of lines C/BE#[3:0]). The third and fourth columns show
whether the bridge can generate the cycle on the PCI bus as a master and whether it can
respond to the cycle as a target.

PCI memory space is supported through the bridge transparently—it requires no
software abstraction layer to provide functionality. Because the PCI specification defines
cycle types that are not directly supported by the PowerPC processor, the Macintosh PCI
host bridge provides means to create I/O, configuration, interrupt acknowledge, and
special cycles. The bridge generates these cycles in response to the system interface
routines described in “PCI Nonmemory Space Cycle Generation” beginning on page 299.
To ensure compatibility with future Power Macintosh computers, software must use
these routines to access PCI spaces other than PCI memory space.

I/O Space 1

The PCI Specification requires a 16-bit minimum width I/O space. The first implementa-
tion of the PCI bus for Power Macintosh provides a 23-bit I/O space, although the
Macintosh address allocation software tries to fit all I/O address space requests within

Table 1-3

Bridge support for PCI cycle types

Lines
C/BE#[3:0] Command

Supported as
PCI master

Supported as
PCI target

0000 (0x0) Interrupt acknowledge Yes No

0001 (0x1) Special cycle Yes No

0010 (0x2) I/O read Yes No

0011 (0x3) I/O write Yes No

0100 (0x4) Reserved n.a. n.a.

0101 (0x5) Reserved n.a. n.a.

0110 (0x6) Memory read Yes Yes

0111 (0x7) Memory write Yes Yes

1000 (0x8) Reserved n.a. n.a.

1001 (0x9) Reserved n.a. n.a.

1010 (0xA) Configuration read Yes Yes

1011 (0xB) Configuration write Yes Yes

1100 (0xC) Memory read multiple No Yes

1101 (0xD) Dual address cycle No No

1110 (0xE) Memory read line Yes Yes

1111 (0xF) Memory write and invalidate Yes Yes

C H A P T E R 1

Overview

10

The Macintosh Implementation of PCI

the 16-bit minimum width. The interface to I/O space uses a memory-mapped section in
each PCI host bridge’s control space. The system determines which PCI host bridge and
bridge area to use when accessing each specific card.

Note

In the first PCI implementation for Power Macintosh computers, the
bridge posts all PCI write transactions. If the target is in PCI memory
space, the bridge writes data directly; otherwise, the bridge generates
the necessary I/O, configuration, or special cycle to provide write
access. The bridge acknowledges cycle completion even though the
transaction may not have been completed at its destination. To check for
final write completion, a driver may request a read transaction for the
destination device. Verifying that the read transaction has finished will
establish that the previous write cycle was flushed from the bridge,
without the need to compare data.

◆

Because PCI allocations in I/O space are highly fragmented, high-performance interfaces
should try to use the PCI memory space instead of I/O space. The system programming
interface for I/O cycles is described in “I/O Space Cycle Generation” beginning on
page 300.

Configuration Space 1

The PCI host bridge generates configuration cycles in an indirect manner, similar to
mechanism #1 suggested in the PCI specification, using configuration address and
configuration data registers to create a single configuration cycle on the PCI bus. The
system determines which PCI host bridge and bridge area to use when accessing each
specific card. Because configuration cycles must go through a system programming
interface, high performance interfaces should try to use the PCI memory space instead of
configuration space. The system programming interface for configuration cycles is
described in “Configuration Space Cycle Generation” beginning on page 304.

Interrupt Acknowledge Cycles 1

Mac OS does not use interrupt acknowledge cycles, but the Macintosh software supports
their generation in case some PCI bus chips require them. If a driver needs interrupt
acknowledge transactions to control its PCI device, it can use a system programming
interface that invokes an interrupt acknowledge (read) cycle on the PCI bus. The data
returned will be the device’s response, traditionally an Intel-style interrupt vector
number. The system programming interface for interrupt acknowledge cycles is
described in “Interrupt Acknowledge Cycle Generation” beginning on page 309.

Special Cycles 1

Special cycles are generated by using a system programming interface that causes a
special cycle (write) on the PCI bus. The special cycle transmits the data message passed
to the interface. The system programming interface for special cycles is described in
“Special Cycle Generation” beginning on page 310.

C H A P T E R 1

Overview

Maximizing Bus Performance

11

Maximizing Bus Performance 1

The guidelines in this section can help you maximize your PCI card’s performance on
the Power Macintosh platform. As a PCI target, your card should

■

minimize the number of wait states

■

accept burst transactions of cache line size without disconnecting

■

support 8-byte burst transactions if it cannot support cache line size burst transactions

Note

The current PowerPC architecture has a cache line size of 32 bytes.

◆

As a PCI master, your card should

■

minimize the number of wait states for transactions and arbitration

■

support linear burst ordering and be able to read or write at least one whole cache line
of data

■

support the memory read line or memory read multiple cycle types for read
transactions

■

support the memory write and invalidate cycle type for write transactions

PCI Transaction Error Responses 1

The PCI host bridge responds to system error and exception conditions in a manner that
prevents the system from hanging. The bridge tries to signal the error or exception and
terminate the transaction gracefully. Buffers are made available for use after the
exception or error. Error translations when the PCI host bridge acts as a PCI master (that
is, as an agent for the PowerPC bus master) are shown in Table 1-4.

Table 1-4

Bridge master errors

Transaction
PCI target
response Result

Write No DEVSEL
(master abort)

Data discarded after posting. Received master abort
error interrupt generated.

Write Target abort Data discarded after posting. Received target abort
error interrupt generated.

Read No DEVSEL
(master abort)

Machine check exception (bus error) generated.
Received master abort error interrupt generated.

Read Target abort Machine check exception (bus error) generated.
Received target abort error interrupt generated.

C H A P T E R 1

Overview

12

Expansion Card Characteristics

Error translations when the PCI host bridge acts as a PCI target (that is, as an agent for
the PowerPC bus target) are shown in Table 1-5.

Expansion Card Characteristics 1

Every PCI expansion card should contain code in its expansion ROM conforming to
IEEE Standard 1275. Among other tasks, this code helps build a configuration structure
called a

device tree.

 The requirements for this code (and the benefits of its inclusion in
expansion ROMs) are discussed in “The Open Firmware Startup Process” beginning on
page 30.

Frame buffers in PCI video cards must support the existing Macintosh big-endian pixel
ordering. If accessible in more than one data format, frame buffers on cards should also
support multiple views (called

apertures

) by being mapped in different formats to
separate areas of memory. These concepts are described in “Frame Buffers” on page 20.

PCI video display cards in Power Macintosh computers should define certain properties
in the device tree to let the cards function during system startup. These properties are
discussed in Chapter 5, “PCI Open Firmware Drivers.”

PCI video display devices should provide an interrupt to mark vertical blanking
intervals. Mac OS utilizes this interrupt to do cursor and screen updates to avoid flicker.
If the hardware interrupt for vertical blanking is not provided, a Time Manager task may
be installed. For more information on this subject, see Chapter 11, “Graphics Drivers.”

Power Macintosh computers support the ISA bracket for PCI expansion cards.

▲ W A R N I N G

Expansion cards should follow the mechanical specifications given in

PCI Local Bus Specification,

 Revision 2.0, exactly. In particular, short PCI
cards for Macintosh computers should not be longer than the 6.875-inch
(174.63 mm) dimension specified. In some Macintosh models, 6.875 inches
represents the maximum length for a PCI card, while in other models
cards may be any length up to 12.283 inches.

▲

Table 1-5

Bridge target errors

Transaction
PowerPC bus
target response Result

Write Bus error Data discarded after posting. Signaled target abort
error interrupt generated (though target abort is
not signaled because the write was already posted).

Read Bus error Generate target abort. Signaled target abort error
interrupt generated.

C H A P T E R 1

Overview

Hard Decoding

13

Hard Decoding 1

Hard decoding

 is a practice in which a PCI device does not employ the fully relocatable
PCI base address method for defining its address spaces. Instead, it chooses an address
space and decodes accesses to it, with no indication to the system that it has done so.

While hard decoding is not recommended by the PCI specification, certain designs based
on Intel microprocessor architecture have used it—for example, VGA and IDE
applications. Hard decoding cripples the ability of system software to resolve address
conflicts between devices. A problem exists when multiple devices that hard decode the
same address space are plugged into a system, or when a device does not notify the
system that it has hard decoded portions of the address space. If the system knows the
range of addresses that a device hard decodes, addresses can be assigned to fully
relocatable devices around the spaces already taken. However, if two devices that hard
decode the same space are installed in the system, address conflicts can be resolved only
by the system turning off one of the devices.

You can never hard decode addresses below 1 MB (for example, VGA addresses A0000
through BFFFF) because the Power Macintosh implementation of PCI does not support
devices that address this space. Moreover, it is very common for a user to plug in
multiple display cards to use multiple monitors. If more than one of these cards hard
decodes the VGA addresses, only one will be enabled, and it cannot be guaranteed
which device that will be. It is essential, therefore, that devices which hard decode
address spaces after reset provide a method to turn off their hard-decoding logic. The
result of turning off hard decoding must mean that the device responds to accesses only
in the address spaces that are assigned to it through the PCI base register interface. This
method can be executed in FCode during startup, before the device enters its

reg

property into the device tree. See Chapter 4, “Startup and System Configuration,” for
more details.

To summarize, avoid hard decoding to ensure that your card will always be allocated
address space. If a device cannot turn off hard decoding, its FCode must enter a fixed
address

reg

 property entry into the device tree.

Nonvolatile RAM 1

Power Macintosh computers that support the PCI bus contain nonvolatile RAM
(NVRAM) chips with a minimum capacity of 4 KB. A typical allocation of NVRAM
space is described in “Typical NVRAM Structure” on page 291.

An important use of the Power Macintosh NVRAM is to store the little-endian?
variable, discussed in “Addressing Mode Determination” on page 20.

C H A P T E R 1

Overview

14 Access to Apple AV Technologies

Access to Apple AV Technologies 1

Certain PCI-based Power Macintosh models are equipped with a group of advanced
audio and video I/O features called Apple AV technologies. These features include

■ versatile access to voice, fax, and data services through the Apple GeoPort interface

■ video input and output capabilities compatible with both S-video and composite
video in NTSC, PAL, and SECAM formats

■ broadcast-quality 16-bit stereo sound input and output

■ speech recognition and synthesis

Power Macintosh computers with these features include a connector, available to PCI
expansion cards, that supports the Macintosh digital audio/video (DAV) interface. The
DAV interface gives a PCI card direct access to the Macintosh system’s unscaled YUV
video input signal and audio data stream. PCI cards that use the DAV connector can
exchange audio and video signals with the Macintosh system without having to pass
these data through the PCI bus.

The Macintosh DAV interface for PCI expansion cards, including its control software, is
described in the developer notes that cover the second generation of Power Macintosh
computers. For information about Macintosh developer notes see “Apple Publications”
beginning on page xxi.

C H A P T E R 2

Data Formats and

Memory Usage 2

Figure 2-0
Listing 2-0
Table 2-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 2

Data Formats and Memory Usage

16

Address Allocations

This chapter describes the memory allocations that Power Macintosh computers reserve
for PCI use and defines the data formats used with PCI buses. It discusses PCI bus
cycles, big-endian and little-endian addressing modes, and the storage of data in frame
buffers. The processes of data transfer over PCI buses are described in Chapter 3, “Data
Transfers.”

Address Allocations 2

The first implementation of Power Macintosh computers that uses the PCI bus reserves
specific areas of the overall 32-bit address space for use by PCI expansion cards. Address
allocation in the first Macintosh PCI system follows these general principles:

■

A Power Macintosh system may contain up to four peer PowerPC–to–PCI host
bridges. The functions of these bridges are described in “PCI Host Bridge Operation”
beginning on page 8.

■

After each PCI host bridge, PCI-to-PCI bridges may be added in any configuration
to create up to 256 PCI buses in the Power Macintosh hardware, the maximum that
the PCI specification allows. However, properties that must be stored on disk or in
NVRAM between startups can be addressed only to five levels of PCI-to-PCI bridges
behind each host bridge. Therefore the number of hardware PCI buses that the system
software supports fully is limited to six times the number of host bridges, or 24 buses
maximum.

■

More than 1.8 GB of address space is allocated for PCI memory space.

■

Remaining regions of the Macintosh 32-bit address space are allocated to system
RAM, ROM, and control.

The general memory allocation scheme for the first implementation of Power Macintosh
computers with PCI buses is shown in Table 2-1.

Table 2-1

Power Macintosh memory allocations

Address range Usage

0h0000 0000–0h7FFF FFFF System RAM

0h8000 0000–0hEFFF FFFF Available to PCI expansion cards

0hF000 0000–0hF1FF FFFF PCI host bridge 0 control

0hF200 0000–0hF3FF FFFF PCI host bridge 1 control

0hF400 0000–0hF5FF FFFF PCI host bridge 2 control

0hF600 0000–0hF7FF FFFF PCI host bridge 3 control

0hF800 0000–0hF8FF FFFF System control

0hF900 0000–0hFEFF FFFF Available to PCI expansion cards

0hFF00 0000–0hFFFF FFFF System ROM

C H A P T E R 2

Data Formats and Memory Usage

PCI Bus Cycles

17

Because of a bug in early PCI system support, software should not try to allocate exactly
128 MB for PCI memory space. It can allocate 256 MB or any other size.

PCI Bus Cycles 2

Besides defining cycles for PCI memory space, which is directly addressable by the
PowerPC processor, the PCI specification supports four other types of cycles—I/O space,
configuration space, interrupt acknowledge, and special—which are not directly
supported by the PowerPC architecture. To provide a PCI-compliant interface,
Macintosh bridges create these additional address spaces and cycle types by accessing
memory-mapped regions of the bridge control space shown in Table 2-1. Because the
additional spaces and cycle types are manufactured by the bridge, they are abstracted
from driver code and expansion card firmware by the interface routines defined in
Chapter 10, “Expansion Bus Manager.” Using these routines, you can create all types
of data transactions on Macintosh PCI buses in a hardware-independent way.

Addressing Modes 2

There are two ways that multibyte data fields may be addressed:

big-endian

addressing,
where the address for the field refers to its most significant byte, and

little-endian

addressing, where the address for the field refers to its least significant byte.

These two types of data organization are illustrated in Figure 2-1, which shows a region
of memory containing successive fields that are 3, 4, and 2 bytes long. MSB and LSB
indicate the most significant and least significant bytes in each field, respectively.

Figure 2-1

Big-endian and little-endian addressing

MSB

Big-endian

Pointer to
field A

LSB MSB MSB LSBLSB

Pointer to
field B

Pointer to
field C

MSB

Little-endian

Pointer to
field A

LSB MSB MSB LSBLSB

Pointer to
field B

Pointer to
field C

C H A P T E R 2

Data Formats and Memory Usage

18

Addressing Modes

Since data fields are normally stored in RAM by writing from lower to higher addresses,
big-endian addressing also means that the field’s lowest address in physical memory
contains its most significant byte; little-endian addressing means that the field’s lowest
address contains its least significant byte.

If the Macintosh system always wrote and read multibyte data fields in one operation, it
wouldn’t matter whether the fields were addressed in big-endian or little-endian mode.
For example, if the hardware always transferred an 8-byte field in a single transaction,
using 64 bit-lines, it would be immaterial whether the location of the field were defined
by referencing its most significant byte or its least significant byte. But when data fields
are transferred over buses of limited width, they must often be divided into subfields
that fit the capacity of the bus. For a more detailed discussion of endian issues, see
Appendix B, “Big-Endian and Little-Endian Addressing.”

Addressing Mode Conversion 2

With the PCI bus (in the 32-bit version that Power Macintosh uses), fields more than
4 bytes long must be transferred in multiple operations. When writing a field from
one location to another by means of multiple transfers, the bus must take into account
the addressing modes of both the source and destination of the data so that it can
disassemble and reassemble the field correctly. One way to convert data from one
addressing mode to the other is to reverse the order of bytes within each field, so that a
pointer to the most significant byte of a field will point to the least significant byte, and
vice versa. Note that the addresses of the data bytes do not change. This technique,
called

address-invariant byte swapping,

 maintains the address invariance of data bytes.
It is illustrated in Figure 2-2.

Figure 2-2

Big-endian to big-endian bus transfer

Note

The difference between big-endian and little-endian formats applies
only to data; the Macintosh system always transfers addresses as
unbroken 32-bit quantities.

◆

0 Big-endian
source

1 2 3 4 5 6 7

3 2 1 0
Two little-endian
PCI bus transfers

0 Big-endian
destination

1 2 3 4 5 6 7

3 2 1 0

C H A P T E R 2

Data Formats and Memory Usage

Addressing Modes

19

PowerPC processors and processors of the Motorola 68000 family use big-endian
addressing; Intel processors and the PCI bus use little-endian addressing. Different I/O
chips, expansion card memories, and peripheral devices may use one addressing mode
or the other, so data in versatile computing systems such as Power Macintosh must often
be accessed in either form.

Figure 2-2 illustrates what happens when data from a big-endian source passes over the
little-endian PCI bus and is written to a big-endian destination. The bytes in the source
and destination are numbered from 0 to 7.

The Power Macintosh hardware supports both big-endian and little-endian addressing.
To accommodate various combinations of source and destination byte formats, Power
Macintosh systems contain two mechanisms that translate between these addressing
modes:

■

A group of byte-reversed indexed load and store actions are included in the PowerPC
instruction set—for example, the

lwbrx

 (load word byte-reversed index) instruction.
These instructions can convert either big-endian or little-endian data to the other
format, because the two formats are complementary. C programs can perform the
same operations by using endian swap routines.

■

The PowerPC processor supports a little-endian addressing mode that changes the
way in which real addresses are used to access physical storage. It applies a logical
exclusive-OR operation with a constant to the lowest 3 bits of the address, using a
different constant for each size of data. This modifies each address to the value it
would have if the PowerPC processor used little-endian addressing.

The PowerPC system software also contains a pair of utility routines that convert 16- and
32-bit values into the other endian format by means of byte swapping. These utilities are
described in “Byte Swapping Routines” on page 311.

For more detailed information about endian conversion, see Appendix B, “Big-Endian
and Little-Endian Addressing.”

Programs and subsystems that exchange data only internally can usually adopt either
big-endian or little-endian addressing without taking into account the difference
between the two. As long as they operate consistently, they will always store and retrieve
data correctly. Systems that exchange data with other devices or subsystems, however,
including those that communicate over the PCI bus, may need to determine the
addressing mode of the external system and adapt their data formats accordingly.

When designing PCI cards for Power Macintosh computers, including their associated
software, observe the following general cautions about byte formats:

■

The PowerPC microprocessor and the PCI host bridges are set for big-endian
addressing when running a big-endian operating system such as Mac OS.

■

Most compilers do not provide support for switching data from one addressing mode
to another or for using the PowerPC mechanisms that switch modes. Such support
can be provided, for example, by a set of C macros that redefine the access
mechanisms for basic data types.

■

Frame buffers for video and graphics must support the Macintosh big-endian pixel
format, as described in “Frame Buffers,” later in this chapter.

C H A P T E R 2

Data Formats and Memory Usage

20

Frame Buffers

Addressing Mode Determination 2

It is possible to determine whether a system uses big-endian or little-endian addressing
by comparing the way it arranges bytes in order of significance with the way it addresses
fields. For example, the code shown in Listing 2-1 makes this test.

Listing 2-1

Endian addressing mode test

typedef unsigned short half;

typedef unsigned char byte;

union {

half H;

byte B[2];

} halfTrick;

halfTrick ht;

ht.H = 0x2223;

if (ht.B[0] == 0x22)

printf("I'm big-endian");

else

printf("I'm little-endian");

An important global variable that the Power Macintosh startup firmware stores in
nonvolatile RAM is called

little-endian?

. It contains a value of 0 if the last operating
system run on the computer used big-endian addressing or –1 if the last operating
system used little-endian addressing. Each time the Power Macintosh startup firmware
loads an operating system, it checks to see whether the system’s big-endian or little-
endian operation matches the value in

little-endian?

. If the match fails, the Power
Macintosh startup firmware changes the value in

little-endian?

 and begins the
Open Firmware startup process again. The Power Macintosh nonvolatile RAM is
described in “Nonvolatile RAM” on page 13.

Frame Buffers 2

Frame buffers

 in PCI video and graphics cards must support the existing ways that
Power Macintosh computers handle graphical data, including the storage of pixel
information in memory and the presentation of that information in various formats.

C H A P T E R 2

Data Formats and Memory Usage

Frame Buffers

21

Pixel Storage 2

The Macintosh pixel storage format is big-endian. This format has the following general
characteristics:

■

All the bits that define any single pixel on the screen (ranging from 1 to 32 bits) are
adjacent in memory.

■

The bit groups that define each pixel are successive and contiguous in memory,
starting with the pixel at the upper-left corner of the screen and ending with the pixel
in the lower-right corner of the screen.

For example, a frame buffer that defines a screen 640 pixels wide by 480 pixels high
(307,200 pixels), using 1 bit per pixel, contains 38,400 bytes. The most significant bit of
the first byte corresponds to pixel 0, located in the upper-left corner of the screen. The
least significant bit of the last byte corresponds to pixel 307199. This example is
diagrammed in Figure 2-3.

Figure 2-3

Sample frame buffer format

If the same frame buffer had a color depth of 8 bits (thereby containing 307,200 bytes), all
of the first byte would be used to store information about pixel 0 and all of the last byte
would be used to store information about pixel 307199.

Bit that defines
pixel 307199

Bit that defines
pixel 0

C H A P T E R 2

Data Formats and Memory Usage

22

Frame Buffers

For a description of how frame buffer data is transported over the PCI bus, see “Data
Flow” on page 24. For further information about Macintosh pixel formats, see Appendix
C, “Graphic Memory Formats.”

Note

Data in PCI control, status, and configuration registers for PCI video
cards on Power Macintosh computers must be in little-endian format.

◆

Frame Buffer Apertures 2

In some situations, a frame buffer on a PCI expansion card may need to support data
accesses in more than one format. For example, a frame buffer may need to store frame
buffer data from a big-endian source in three different formats—RGB, a little-endian
source in RGB, and a YUV data format. To provide multiple formats on the fly, a PCI
card can create multiple apertures of its frame buffer.

An

aperture

 is a logical view of the data in a frame buffer, organized in a specific way.
The PCI card converts its frame buffer contents into the required format for each
aperture, and maps each aperture into a different range of memory addresses.

Each aperture is defined by specifying its starting address in memory, its width and
height in pixels, and the format and size of each pixel description. The aperture
definition may also include a

row bytes

 value, giving the address offset between
successive rows. Although each aperture normally has a different pixel description, the
arrangement of pixels in the frame is the same for all apertures; this arragement starts
with the upper-left pixel and proceeds as described in the previous section. An aperture
may represent the whole frame buffer or any region within it.

One important use for apertures is to provide both big-endian and little-endian views of
a frame buffer. Providing both views can eliminate the need for the byte-swapping
operations described in “Data Flow” on page 24. For example, in a PCI card’s memory
space of 16 MB, 8 MB could be allocated for a big-endian aperture and registers and
8 MB could be allocated for a little-endian aperture and registers. Mac OS running
on the PowerPC processor would access the big-endian aperture, while a frame-grabber
PCI master card that supported a little-endian pixel format would access the little-
endian aperture.

Apertures are supported by the device drivers associated with a PCI card, which must
respond to calls that query and select the card’s aperture capabilities. Each aperture can
be treated as a virtual device, to be opened and closed separately from other apertures. A
driver can treat the physical organization of the frame buffer as an aperture as well,
without subjecting it to mapping or format conversion.

For more information on apertures see

PCI Multimedia Design Guide,

published by the
PCI SIG. You can contact the PCI SIG at the address given on page xxiv.

C H A P T E R 3

Data Transfers 3Figure 3-0
Listing 3-0
Table 3-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 3

Data Transfers

24

Data Flow

This chapter explains how Power Macintosh computers accomplish the processes of data
movement described in the PCI specification, including the ways that PCI bus cycles
work in the Power Macintosh environment.

Data Flow 3

As discussed in Chapter 2, the PowerPC processor bus in Power Macintosh computers
uses big-endian addressing when running a big-endian operating system such as
Mac OS. The PCI bridge chip that interconnects the PowerPC processor bus and the
little-endian PCI bus performs the necessary byte swapping, using the mechanisms
described in “Addressing Modes” beginning on page 17. Based on the addressing mode
of the operating system, the bridge chip can be configured by system software to be run
with the PowerPC set in either big-endian or little-endian mode. In either setting, the
bridge correctly maintains address invariance with respect to the little-endian PCI bus.

Open Firmware configures the processor and PCI bridges to match the endian mode of
the current operating system, so driver or other code does not need to perform any
explicit configuration. In general, endian issues are important when accessing hardware
registers or constructing direct memory access (DBDMA) descriptors. When accessing
graphic data, software must also handle GIB-endian formats and perform hardware byte
swapping when necessary. For a discussion of GIB-endian format, see Appendix C,
“Graphic Memory Formats.”

Figure 3-1 shows the data transfer pattern that takes place in big-endian processor mode,
where the numbers in the boxes identify both byte ordering and physical (hardware)
byte lanes. The figure shows how the PCI bridge swaps multibyte scalar data bytes to
maintain address invariance. When accessing memory other than frame buffers via the
PCI bus, software must explicitly swap data bytes. For write actions it must swap bytes
before the bus access; for read actions it must do it after.

Figure 3-1

Big-endian data transfers

Figure 3-2 shows the equivalent data transfer pattern in little-endian processor mode.
This mode is shown only for completeness; it is not used when Macintosh computers
run Mac OS. In little-endian mode, multibyte scalars maintain their original byte

0PowerPC
processor bus

1 2 3 4 5 6 7

3 2 1 0PCI bus

Cycle 0 Cycle 1

3 2 1 0

630

31 0 31 0

C H A P T E R 3

Data Transfers

Data Flow

25

ordering. In effect the processor renumbers the physical byte lanes as they are viewed by
software, using the process described in “Address Swizzling” on page 399.

Figure 3-2

Little-endian data transfers

When interpreting Figures 3-1 and 3-2, remember these points:

■

The PowerPC architecture consistently uses big-endian bit ordering. Bit 0 is always
the most significant bit in both big-endian and little-endian modes, regardless of byte
order.

■

To maintain address invariance in both big-endian and little-endian modes, values
that the processor writes to address

n

 always appear in byte lane

n

.

When accessing video and graphics frame buffers, Mac OS assumes that they store data
in the big-endian pixel format described in “Frame Buffers” on page 20. Figure 3-3 shows
Mac OS RGB and grayscale formats after the PCI host bridge has performed big-endian
to little-endian byte swapping.

Figure 3-3

Mac OS frame buffer contents byte swapped to the PCI bus

7PowerPC
processor bus

6 5 4 3 2 1 0

3 2 1 0 0123PCI bus

Cycle 0 Cycle 1

630

31 0 31 0

B[7:0]

31

G[7:0] R[7:0]

16 15

A[7:0]

0

24-bit RGB with alpha—32 bits per pixel, 1 pixel per bus transfer

G[2:0]

31

R[4:0] G[2:0]

16 15

R[4:0]

0

15-bit RGB with alpha—16 bits per pixel, 2 pixels per bus transfer

Pixel n+1

AB[4:0] G[4:3] B[4:0] A G[4:3]

31

P[7:0]

16 15

P[7:0]

0

8-bit pseudocolor or grayscale—8 bits per pixel, 4 pixels per bus transfer

Pixel n+3

P[7:0] P[7:0]

Pixel n

Pixel n+2 Pixel n+1 Pixel n

C H A P T E R 3

Data Transfers

26

Data Transfer Cycles

Endian issues are discussed further in Appendix B, “Big-Endian and Little-Endian
Addressing.” Frame buffer organization is discussed in Appendix C, “Graphic Memory
Formats.”

Data Transfer Cycles 3

The PCI bus transfers data by means of memory, I/O, configuration, interrupt
acknowledge, and special cycles, in accordance with the PCI specification. Power
Macintosh computers generate PCI memory cycles for all the address spaces listed as
available to PCI expansion cards in Table 2-1 on page 16. They also generate I/O,
configuration, interrupt acknowledge, and special cycles through reserved memory-
mapped spaces in the PCI host bridge control spaces. The Power Macintosh
implementation of these cycles is discussed in more detail in the next sections.

Note

To ensure future compatibility, designers of drivers and expansion card
firmware must use the calls described in Chapter 10 to create I/O,
configuration, interrupt acknowledge, and special cycles.

◆

The PCI Bus and Open Firmware 3

Adopting the PCI bus gives Power Macintosh computers a new level of compatibility
with third-party hardware devices. To provide equivalent software compatibility, Power
Macintosh computers that implement the PCI bus also support the IEEE standard Open
Firmware process of system startup.

During the Open Firmware process, startup firmware in the Macintosh computer’s ROM
searches the PCI buses and generates a data structure that lists all available peripheral
devices. This data structure also stores the support software, including drivers, provided
by each PCI expansion card. The startup firmware then finds an operating system in
ROM or on a mass storage device, loads it, and starts it running. The operating system
does not need to be Mac OS. Hence it is possible for PCI-compatible Power Macintosh
computers to operate PCI peripheral devices using either Macintosh or third-party
system software.

The Open Firmware process in the second generation of Power Macintosh computers is
described in the next part of this book.

27

P A R T T W O

The Open Firmware Process 2

This part of

Designing PCI Cards and Drivers for Power Macintosh Computers

describes the Open Firmware process and tells you how it works with Power
Macintosh computers running Mac OS. It contains two chapters:

■

Chapter 4, “Startup and System Configuration,” describes how PCI-
compatible Macintosh computers recognize and configure peripheral
devices connected to the PCI bus.

■

Chapter 5, “PCI Open Firmware Drivers,” discusses Open Firmware
drivers, which control PCI devices during the Open Firmware start-
up process.

Thi d t t d ith F M k 4 0 4

C H A P T E R 4

Startup and System

Configuration 4

Figure 4-0
Listing 4-0
Table 4-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 4

Startup and System Configuration

30

The Open Firmware Startup Process

This chapter describes the Open Firmware startup process by which PCI-compatible
Power Macintosh computers recognize and configure peripheral devices connected to
the PCI expansion card bus. As explained in “The PCI Bus and Open Firmware” on
page 26, the Open Firmware process provides flexibility in system software to match
the flexibility that the PCI bus provides for expansion hardware.

The PCI bus architecture described in the PCI standard supports the

autoconfiguration

concept of system configuration because it includes mechanisms for configuring devices
during system startup and defines expansion ROMs for plug-in expansion cards. The
two code types currently defined for PCI expansion card ROMs are an Intel-compatible
BIOS code type and the Open Firmware type. Apple has chosen the Open Firmware type
because it has wide industry acceptance and will let Power Macintosh computers run
nearly any operating system.

A PCI card that wants to participate in the startup process of any operating system must
include an expansion ROM containing Open Firmware FCode. Cards that need to
operate I/O devices during the Open Firmware startup process, before an operating
system is running, require more than the minimum level of FCode support. The
alternatives are described in “Open Firmware FCode Options” beginning on page 32.

The Open Firmware Startup Process 4

The

Open Firmware startup process

 in PCI-compatible Power Macintosh computers
conforms to IEEE Standard 1275 and to the

 PCI Bus Binding to IEEE 1275-1994

specification. These standards evolved from the OpenBoot firmware architecture
introduced by Sun Microsystems. The

 PCI Bus Binding to IEEE 1275-1994

specification is
currently available on request from AppleLink address DEVSUPPORT; IEEE Standard
1275 is described in “Supplementary Documents” beginning on page xxi.

Note

The P1275 Working Group continues to update the

 PCI Bus Binding to
IEEE 1275-1994

specification. For latest information, you can access the
FTP site listed in the note under “Institute of Electrical and Electronic
Engineers” on page xxiv.

◆

Startup Firmware 4

The Open Firmware startup process is driven by

startup firmware

 (also called

boot

firmware

) in the Power Macintosh ROM and in memory chips on PCI cards, called

expansion ROMs.

 While the startup firmware is running, the Power Macintosh
computer starts up and configures its hardware (including peripheral devices)
independently of any operating system. The computer then finds an operating system
in ROM or on a mass storage device, loads it into RAM, and terminates the Open
Firmware startup process by giving the operating system control of the PowerPC
processor. The operating system may be Mac OS or a different system, provided it
uses the PowerPC instruction set.

C H A P T E R 4

Startup and System Configuration

The Open Firmware Startup Process

31

The Open Firmware startup process includes these specific features:

■

Startup firmware is written in the Forth language, as defined by IEEE Standard 1275.
Firmware code is stored in an abbreviated representation called

FCode,

 a version of
Forth in which most Forth words are replaced by single bytes or 2-byte groups. The
startup firmware in the Power Macintosh ROM provides an FCode loader that installs
FCode in system RAM so that drivers can run on the PowerPC main processor.
Expansion card firmware can modify the Open Firmware startup process by
supplying FCode that the computer’s startup firmware loads and runs before
launching an operating system.

■

The startup firmware creates a data structure of nodes called a

device tree,

 in which
each device is described by a

property list.

 The device tree is stored in system RAM.
The operating system that is ultimately installed and launched can search the device
tree to determine what hardware is available. For example, Mac OS extracts
information from the device tree to create the device portion of the Macintosh Name
Registry, described in Chapter 8. The full list of standard device tree properties is
given in IEEE Standard 1275; the properties that Mac OS uses are listed in Table 8-1 on
page 193. An example of the device part of a device tree is given in Listing 8-1 on
page 164.

■

Device drivers that are required during system startup (called

Open Firmware
drivers

) are also written in FCode. Plug-in expansion cards for startup devices must
contain all the driver code required during startup in the expansion ROM on the card
and may also need to provide drive support resources such as fonts. The startup
firmware in the Power Macintosh ROM installs Open Firmware drivers in system
RAM and lets them execute on the PowerPC main processor. Examples of devices
needed during system startup include display, keyboard, and mouse devices; storage
devices such as SCSI, IDE, floppy disk, and magneto-optical drives; and network
interfaces if the target OS supports network booting.

■

The startup firmware in the Power Macintosh ROM contains debugging facilities for
both FCode and some kinds of operating system code. These facilities can help expan-
sion card designers develop the firmware for new peripheral devices compatible with
Macintosh computers.

You can write PCI expansion ROM code in standard Forth words and then reduce the
result to FCode by using an

FCode tokenizer,

 a program that translates Forth words into
FCodes one to one. The Forth vocabulary that you can use is presented in IEEE Standard
1275. For a list of some of the Apple and third-party tools available to help you write PCI
card firmware in Forth, see Appendix A, “Development Tools.”

Device Drivers 4

The Open Firmware startup process and all possible operating systems constitute
separate

device environments.

 A separate driver is normally required for each device
environment in which a device is expected to work. In rare cases, an operating system
may be written so that it uses an Open Firmware driver or a driver for another operat-
ing system.

C H A P T E R 4

Startup and System Configuration

32

Device Configuration

The following rules govern the requirements for device drivers in Power Macintosh
computers that support the Open Firmware startup process:

■

As explained in the previous section, Open Firmware drivers must be stored as FCode
in a card’s expansion ROM and must conform to IEEE Standard 1275.

■

A card’s expansion ROM should also contain all the run-time drivers for different
operating systems that might use or support the card.

■

If an operating system preserves and uses the Open Firmware device tree or a data
structure derived from it, it should store all device drivers specific to that environ-
ment in the device tree as properties of the devices they support. Otherwise the
operating system must load device drivers as part of its initialization.

■

Drivers that work with Mac OS must be compiled to native PowerPC code. For
further information, see Chapter 7, “Writing Native Drivers.”

Chapter 5, “PCI Open Firmware Drivers,” provides guidelines for writing device drivers
to operate with the Open Firmware startup process.

PowerPC Addressing and Alignment 4

In general, PCI expansion cards that run code directly on PowerPC processors in Power
Macintosh computers must use 32-bit mode even when the processor supports 64-bit
mode. PCI cards must observe the access sizes and byte alignments shown in Table 4-1.

Device Configuration 4

PCI cards should supply Open Firmware boot code in PCI type 1 containers in their
expansion ROMs, as defined in the PCI specification. This section describes how the
contents of PCI expansion ROMs contribute to the Open Firmware startup process.

Open Firmware FCode Options 4

Cards that may be required during Open Firmware startup include display, keyboard,
and mouse devices, storage devices such as SCSI, IDE, floppy disk, and magneto-optical
drives, and network interfaces. But if Open Firmware boot code is not included in such a

Table 4-1

PowerPC processor addressing

Address type
Access size
(bits)

Alignment
(bytes)

a-addr

32 4

q-addr

32 4

w-addr

16 2

C H A P T E R 4

Startup and System Configuration

Device Configuration

33

card’s expansion ROM, the card will not be usable until the operating system loads its
supporting software from a mass storage device after startup.

This section describes the possible ways that a device with a valid PCI expansion ROM
can be configured. They range from full Open Firmware support, in which the card is
usable during startup, to no support.

Full Open Firmware Support 4

The recommended option is for every PCI card to include an expansion ROM containing
run-time drivers and full Open Firmware support, including Open Firmware properties
and software that supports the startup process. With this option, the associated device
can be used at startup time by Open Firmware and by any operating system for which
the PCI card’s expansion ROM provides a run-time driver. This option is mandatory if a
PCI card is to work during system startup with versions of Mac OS after version 7.5. It
delivers these benefits:

■

full plug-and-play performance with any operating system for which the card
provides a run-time driver

■

unambiguous matching of each run-time driver to its device

Support for Mac OS 7.5 and Open Firmware 4

A less desirable option is for the PCI card to include an expansion ROM containing a
Mac OS run-time driver and minimum Open Firmware support, including Open
Firmware properties. This option lets the card work during startup with Mac OS 7.5
running on the first PCI-based Power Macintosh computers, where startup is controlled
by the Macintosh ROM. The card will not work during startup on future Power
Macintosh models or with future Mac OS versions. This option delivers these benefits:

■

full plug-and-play performance with Mac OS version 7.5

■

unambiguous matching of the Mac OS run-time driver to the device

Minimum Open Firmware Support 4

A possible option is for the PCI card to include an expansion ROM that provides
minimum Open Firmware support, including Open Firmware properties. This option
gives the device a name property that is guaranteed to be unique, so Mac OS can match
it unambiguously to a run-time driver that it loads from the Extensions folder in the
System Folder.

No Open Firmware Support 4

The least desirable option is for the PCI card to include an expansion ROM with no
FCode or even no expansion ROM at all. At system startup time, the card is recognized
and address space is allocated for the device, but no peripheral initialization or driver
code is loaded. The operating system must load driver code from a mass storage device
before the card can be used. Most importantly, there is no distinct name property for the
device; this makes unambiguous run-time driver matching less certain when several

C H A P T E R 4

Startup and System Configuration

34

Startup Sequence

card manufacturers support the same device. Driver matching issues are discussed in
“Matching Drivers With Devices” beginning on page 142.

Note

Because future Macintosh computers will run a variety of operating
systems, full Open Firmware support is particularly important for
PCI-based graphics devices. If a PCI device is the user’s only display, it
should operate during the Open Firmware startup process and should
deliver plug-and-play performance with the user’s choice of operating
system. The Open Firmware driver does not need to be sophisticated; if
it can initialize the device to 8-bit mode and publish the frame buffer
address, Open Firmware in the Macintosh ROM will control the device
and perform the required image rendering.

◆

Open Firmware Driver Support 4

As explained in “Startup Firmware” on page 30, Open Firmware drivers are stored as
FCode in expansion ROMs and copied into system RAM during the Open Firmware
startup process. When the startup firmware in the Power Macintosh ROM opens an
Open Firmware driver, it acquires a handle to the driver code so it can communicate
directly with it. The Power Macintosh firmware provides three kinds of memory for the
driver to use:

■

The device tree stores properties and routines that are intrinsic to the driver; these
permanent attributes are always available to the driver and other code.

■

Each node of the device tree has its own static variables, available to drivers, which
are preserved throughout the Open Firmware startup process.

■

Memory for buffers and other driver requirements is allocated each time a driver is
opened and is maintained until the driver is closed.

Open Firmware drivers are expected to perform their work (such as drawing characters
on a screen) without operating-system support. In addition, the Macintosh startup
firmware does not provide hardware interrupts; Open Firmware drivers must detect
external events by polling devices. However, the startup firmware in some Power
Macintosh ROMs may contain hardware-specific support packages that Open Firmware
drivers can use for common tasks.

Startup Sequence 4

Although the startup sequence for PCI-based Power Macintosh computers is different
for each model, a typical sequence for a Power Macintosh computer running Mac OS can
be summarized as follows, starting with power coming on:

1. System-specific firmware performs initialization and self-testing on memory and
other hardware systems.

C H A P T E R 4

Startup and System Configuration

Startup Sequence

35

2. The startup firmware in the Power Macintosh ROM probes each PCI bus, generates a
device tree node for each device, and executes the FCode (if any) found in each PCI
card’s expansion ROM.

3. The startup firmware in the Power Macintosh ROM finds an operating system in
ROM or on a mass storage device; it loads it into RAM and transfers processor control
to it.

4. Mac OS completes the startup sequence.

The rest of this section describes these steps in more detail.

Initializing the Hardware 4

In response to power coming on, firmware in the Power Macintosh ROM performs
initialization and self-testing on the basic system memory, including RAM and
cache memory.

Running Open Firmware 4

The Open Firmware Process begins as the startup firmware builds the device tree for
built-in I/O devices and then searches expansion areas for other devices. The firmware
polls the computer’s PCI buses, interrogating addresses where devices might be found.
Each time it finds an Open Firmware expansion ROM, it copies the FCode from that
ROM into system RAM and executes it, using the system’s FCode loader. As it runs, the
FCode program from the PCI card enters the properties of the device it represents into
the current device tree node established by the Open Firmware program and stored in
system RAM. These properties always include the device name and usually also include
some or all of the information specified by IEEE Standard 1275.

An important set of device tree properties include Open Firmware drivers for PCI
devices. Run-time drivers, which are stored as properties of the device node in the
device tree, may be required for the startup process and for each operating system that
may be launched. Other properties include operating characteristics of video cards and
information used to install interrupt handlers.

Open Firmware queries PCI cards that contain no FCode to create basic entries for them
in the device tree. These entries contain only the properties that can be generated by
accessing a card’s standard PCI configuration registers. Open Firmware creates

reg

 and

assigned-addresses

 properties, making the card accessible to operating-system code
(although not to Open Firmware). These properties provide the card’s unit address and
permit address space allocation based on the card’s PCI base register support. PCI
properties are discussed in “Standard Properties” beginning on page 193.

C H A P T E R 4

Startup and System Configuration

36

PCI Bus Configuration

Starting the Operating System 4

After constructing the device tree in system RAM, the Power Macintosh startup firmware
selects some or all of the following startup devices, based on an order of priority stored
in the system hardware and on the presence of suitable device properties in the
device tree:

■

a keyboard (or other input device)

■

a display (or other output device)

■

a boot device (mass storage or ROM, indicated by the boot path environment
variable) that contains operating-system code

The Open Firmware code normally loads the operating system into memory and starts it
going, using the Forth

go

 command. In the case of Mac OS it transfers processor control
to the Macintosh ROM, which begins the Mac OS startup process. If the Open Firmware
user interface is invoked, however, the Open Firmware code will continuously poll the
input device for characters and write output characters to the display, using the FCode
drivers previously installed. This can let the user choose an operating system or perform
other OS-independent configuration tasks. For further details, see “Open Firmware User
Interface” beginning on page 53.

For further details of the normal Macintosh startup sequence, see Chapter 10 of

Technical
Introduction to the Macintosh Family,

 described in “Supplementary Documents,” in
the preface.

PCI Bus Configuration 4

This section describes how the Power Macintosh Open Firmware code configures the
computer’s PCI buses during the Open Firmware startup process.

Configuration Tasks 4

Macintosh Open Firmware code performs the following tasks to help the PCI system
support the devices previously found by the Open Firmware startup process:

■

It programs certain configuration bits in the 64-byte standard PCI header portion of
PCI configuration space.

■

It determines the resource requirements (memory and I/O space) of each device,
based on the device’s

reg

 property created by executing the FCode in its card’s
expansion ROM. If FCode is not present, the system Open Firmware code creates a

reg

 property for the device by querying the device’s PCI configuration base registers.

■

After accumulating the resource requirements for all devices in the system, the system
Open Firmware code constructs a conflict-free address map and adds the resulting

assigned-addresses

 property to each PCI device’s node in the device tree.

C H A P T E R 4

Startup and System Configuration

PCI Bus Configuration

37

Configuration Registers 4

Figure 4-1 presents a map of the PCI configuration registers that system firmware reads
or writes to during the Open Firmware startup process. In Figure 4-1, read-only registers
are shaded; all other registers are read/write. The next section describes the actions
taken for each register.

Figure 4-1

PCI configuration register map

Register Actions 4

This section describes the actions that the Macintosh system firmware performs on the
PCI configuration registers listed in Figure 4-1 during Open Firmware startup.

Vendor ID 4

The Vendor ID register is read and its value stored in the property

vendor-id

. If the
card has no FCode and no subsystem vendor ID, the Vendor ID value makes up the

xxxx

portion of the

"pci

xxxx,yyyy

"

 default name property for the node.

Device ID 4

The Device ID register is read and its value stored in the property

device-id

. If the
card has no FCode and no subsystem ID, the Device ID value makes up the

yyyy

 portion
of the

"pci

xxxx,yyyy

"

 default name property for the node.

Device ID

31 16 15 0

Status

Vendor ID 00h

04h

Class code Revision ID 08h

BIST Latency timer Cache line size 0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

Cardbus CIS pointer

Base address registers

Subsystem ID Subsystem Vendor ID

Expansion ROM base address

Reserved

Reserved

Max_Lat Min_Gnt Interrupt lineInterrupt pin

Command

Header type

C H A P T E R 4

Startup and System Configuration

38 PCI Bus Configuration

Command 4

The following bits in the Command register are set with the meanings shown:

■ Bit 9, Fast Back-to-Back Enable, is set to 1 if all PCI devices are fast back-to-back
capable (if all devices have a fast-back-to-back property stored in their device node);
otherwise, it is cleared to 0.

■ Bit 8, SERR Enable, is cleared to 0 for all devices because the Power Macintosh system
doesn’t respond to SERRs.

■ Bit 7, Wait Cycle Control, is cleared to 0 for all devices.

■ Bit 6, Parity Error Response, is cleared to 0 for all devices.

■ Bit 5, VGA Palette Snoop, is cleared to 0 for all devices.

■ Bit 4, Memory Write and Invalidate Enable, is set to 1 for all devices because the
Power Macintosh system fully supports this command type and optimizes for it.

■ Bit 3, Special Cycle Enable, is set to 1 for all devices because the Power Macintosh
system can generate special cycles.

■ Bit 2, Bus Master Enable, is set to 1 for all devices because the Power Macintosh
system supports masters in all PCI locations.

■ Bit 1, Memory Space Enable, is cleared to 0 for all devices before an operating system
is loaded. Hence, the initialization routines of all run-time drivers must set this bit to 1
if they wish to access their device in memory space. However, the decision to write a 1
in this location must be made after checking that the memory resources required for
correct operation appear in the device’s assigned-addresses property; otherwise,
the driver should leave this bit to cleared to 0.

■ Bit 0, I/O Space Enable, is cleared to 0 for all devices before an operating system is
loaded. Hence, the initialization routines of all run-time drivers must set this bit to 1 if
they wish to access their device in I/O space. However, the decision to write a 1 in
this location must be made after checking that the I/O space resources required for
correct operation appear in the device’s assigned-addresses property; otherwise,
the driver should leave this bit to cleared to 0.

Status 4

The following bits are read in the Status register:

The value of bits 10–9, DEVSEL Speed, is stored in the node’s devsel-speed property.

The value of bit 7, Fast Back-to-Back Capable, is noted for each PCI device. If the value is
nonzero, the property fast-back-to-back is created for the node. See the previous
section for information about the Fast Back-to-Back Enable bit.

No specific action is taken for the remaining bits in the Status register.

Revision ID 4

The Revision ID register is read and its value stored in the property revision-id.

C H A P T E R 4

Startup and System Configuration

PCI Bus Configuration 39

Class Code 4

The Class Code register is read and its value stored in the property class-code.

Cache Line Size 4

The Cache Line Size register is written 0x08 for all devices. This value corresponds to the
PowerPC family cache line size of 32 bytes.

Latency Timer 4

The Latency Timer register is written 0x20 for all devices. This value corresponds to 32
PCI clocks.

Header Type 4

The Header Type register is read, starting with bits 6–0. If the value of bits 6–0 is
0x00, the configuration space has a standard header layout for configuration addresses
0x10 through 0x3F; if the value is 0x01, it has a PCI-to-PCI bridge header layout for
that section.

Note
The PCI bus behavior described in this section is that
corresponding to a standard header. ◆

If bit 7 of the Header Type register is set to 1, the system Open Firmware probes for
multiple functions; otherwise, it assumes the device is a single-function device.

BIST 4

No action is taken on the BIST register.

Base Registers 4

If FCode is present in the card’s expansion ROM, the system Open Firmware creates
an assigned-addresses property for the node, provided the card’s FCode presents
a reg property with entries referencing at least one base register and the system was
able to provide the resources requested in the reg property corresponding to the base
registers referenced. For each base register that has a corresponding entry in the
assigned-addresses property, the system Open Firmware programs that base
register with the address value stored in the assigned-addresses property.

If FCode is not present for the node, the system Open Firmware creates a reg property
for the device. To create a reg entry for each base register that is implemented, the
system Open Firmware writes all 1s to each base register location. It then reads the
locations to see how many of the 1s are still there. If the register reads back as all 0s, then
the register is not implemented and a reg entry is not made for it. If the register contains
a value other than 0, the system Open Firmware notes which bits are 1s and thereby
determines whether the register is of type memory or I/O, the amount of address space
required, whether it is a 64-bit address, whether it is prefetchable, and whether it must
be located below 1 MB. This information is then encoded appropriately into the reg

C H A P T E R 4

Startup and System Configuration

40 PCI Bus Configuration

entry for the base register. After all base registers are queried in this manner, the full reg
property is stored in the device’s node. Refer to the PCI specification and PCI Bus Binding
to IEEE 1275-1994 (described in “Other Publications” beginning on page xxiii) for more
details. Once the reg property is stored in the node, Open Firmware clears the Base
registers to all 0s. It then follows the process of writing the registers with
assigned-addresses values, as described above for devices that have FCode.

Subsystem Vendor ID 4

If the value of the Subsystem Vendor ID register is nonzero, a subsystem-vendor-id
property is created with the register’s value. If the property is created and no FCode is
present on the card, the Subsystem Vendor ID value makes up the xxxx portion of the
"pcixxxx,yyyy" default name property for the node.

The Subsystem Vendor ID register is described in Revision 2.1 of the PCI Specification.

Subsystem ID 4

If the value of the Subsystem ID register is nonzero and a subsystem-vendor-id
property exists for the device, a subsystem-id property is created with the register’s
value. If the property is created and no FCode is present on the card, the Subsystem
Vendor ID value makes up the yyyy portion of the "pcixxxx,yyyy" default name
property for the node.

The Subsystem ID register is described in Revision 2.1 of the PCI Specification.

Expansion ROM Base 4

The system Open Firmware uses the Expansion ROM Base register at probe time to
determine whether a card has FCode present. It queries the register to see whether the
register is implemented, following the procedure described above for other base
registers. If the register is implemented, Open Firmware temporarily maps in an amount
of memory space equal to the requirement found from the base register query and then
programs that value into the base register. It also enables the expansion ROM by an OR
operation with 1 on bit 0 of the register and enables the card’s memory space by writing
a 1 to the correct bit in the Command register. It then reads the expansion ROM’s first
locations, by accessing the space temporarily mapped in, looking for the PCI signature
(0x55AA). If it finds the signature, it continues to look for an Open Firmware ROM
image signature. If it finds that signature, it locates the FCode, copies it to RAM, and
executes it. After the card’s FCode has finished executing, or if it was determined that
there was no FCode, the system Open Firmware disables the card’s memory space and
expansion ROM and clears the Expansion ROM Base register to 0s.

If FCode was present in the card’s expansion ROM and the FCode presented a reg
property with an entry for the Expansion ROM Base register, and if the system was able
to provide the resources for this entry, then the system Open Firmware creates a
corresponding entry in the assigned-addresses property and writes the address
value to the Expansion ROM Base register.

C H A P T E R 4

Startup and System Configuration

PCI-To-PCI Bridges 41

If FCode is not present for the node, the system Open Firmware creates a reg property
for the device and determines whether to create an entry for the Expansion ROM Base
register following the procedure for other base registers described above. The procedure
for writing the register if FCode is present is the same as that in the preceding paragraph.

IMPORTANT

Bit 0 of the Expansion ROM Base register, which is defined as the
Expansion ROM Enable bit, is left as 0 (disabled) by the system
Open Firmware. If the run-time driver is interested in accessing
the PCI Expansion ROM, it must first check that it has received an
assigned-addresses entry, and then it must enable both its memory
space (Memory Space Enable bit of the Command register) and its ROM
(Expansion ROM Enable bit of the Expansion ROM Base register).
As with all writable configuration registers, such operations must be
performed with read-modify-write code sequences so as not to disturb
the existing values of other bits in the registers. ▲

Interrupt Line 4

No action is taken on the Interrupt Line register. It has no meaning for Power Macintosh
computers because interrupts are OR-combined per slot in hardware, creating a unique
interrupt for each PCI card accessible to the system interrupt controller. This register
contains no useful information for drivers.

Interrupt Pin 4

The Interrupt Pin register is read. If its value is nonzero, the value appears in the
property interrupts. This register contains no useful information for drivers for
the reasons explained in the previous section.

Min_Gnt 4

The Min_Gnt register is read and its value stored in the property min-grant.

Max_Lat 4

The Max_Lat register is read and its value stored in the property max-latency.

PCI-To-PCI Bridges 4

The second generation of Power Macintosh computers implements PCI-to-PCI bridges
in conformance with the PCI specification listed in “PCI Special Interest Group” on
page xxiv.

C H A P T E R 4

Startup and System Configuration

42 PCI-To-PCI Bridges

Configuration Header 4
For PCI-to-PCI bridges, the standard PCI configuration header (the first 64 bytes of PCI
configuration space) is different from that of standard PCI devices. Figure 4-2 gives a
map of the registers in the portion of a PCI-to-PCI bridge’s configuration space defined
by the PCI specification. In Figure 4-2, read-only registers are shaded; all other registers
are read/write.

Figure 4-2 PCI-to-PCI bridge register map

Register Settings 4
PCI-to-PCI bridges have specific configuration needs that are different from those of
standard PCI devices. The system Open Firmware code is responsible for configuring the
PCI-to-PCI bridge components. The following field descriptions list the standard settings
for the registers shown in Figure 4-2.

Field descriptions

Vendor ID Read by system Open Firmware and stored in property vendor-id.
The name property for PCI-to-PCI bridges defaults to pci-bridge,
based on the class code matching PCI-to-PCI bridge encoding. This
is unlike standard PCI devices, whose default name property is
pcixxxx,yyyy. See “Vendor ID” on page 37.

Device ID Read by system Open Firmware and stored in property device-id.

31 16 15 0

00h

Memory limit

Prefetchable memory limit

Memory base

Prefetchable memory base

04h

08h

BIST Latency timer Cache line size 0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

Prefetchable base upper 32 bits

Base address registers

Reserved

Expansion ROM base address

Interrupt lineBridge control

Prefetchable limit upper 32 bits

Secondary
bus number

Primary
bus number

Subordinate
bus number

I/O limit upper 16 bits I/O base upper 16 bits

I/O limit I/O base

Device ID

Status

Vendor ID

Command

Class code

Header type

Revision ID

Secondary status

Secondary
latency timer

Interrupt pin

C H A P T E R 4

Startup and System Configuration

PCI-To-PCI Bridges 43

Command Written by system Open Firmware. Bit specifics:
Bit 9, Fast Back to Back Enable, is written 1 if all PCI devices are Fast
Back to Back capable (if all devices have a fast-back-to-back
property stored in their device nodes); otherwise written 0.
Bit 8, SERR Enable, is written 0 for all devices; the Power Macintosh
system doesn’t respond to SERRs.
Bit 7, Wait Cycle Control, is written 0 for all devices.
Bit 6, Parity Error Response, is written 0 for all devices.
Bit 5, VGA Palette Snoop, is written 0 for all devices.
Bit 4, Memory Write and Invalidate Enable. PCI-to-PCI Bridges
consider this a read-only bit and will always return 0 when read.
They act only as agents for masters behind them and will propagate
Memory Write and Invalidate commands if a PCI Master on either
side generates such a cycle.
Bit 3, Special Cycle Enable. PCI-to-PCI Bridges consider this a
read-only bit and will always return 0 when read, because they
cannot respond to Special Cycles.
Bit 2, Bus Master Enable, is written 1 for all devices; the Power
Macintosh system supports masters in all PCI locations.
Bit 1, Memory Space Enable, is written 1 for PCI-to-PCI bridges to
enable memory cycles to pass through the bridge transparently,
based on the programming of the Memory Base and Limit registers.
Bit 0, I/O Space Enable, is written 1 for PCI-to-PCI bridges to enable
I/O cycles to pass through the bridge transparently based on the
programming of the I/O Base and Limit registers.

Status The following bits are read in the Status register:
Bits 10-9, DEVSEL speed, value stored in the node’s
devsel-speed property.
Bit 7, Fast Back to Back Capable, value noted for each PCI device. If
the value is nonzero, the property fast-back-to-back is created
for the node (see Command register explanation of Fast Back to
Back Enable bit).
No specific action taken based on values of the remaining bits in the
Status Register.

Revision ID Read by system Open Firmware and stored in property
revision-id.

Class Code Read by system Open Firmware and stored in property class-code.
The name property for PCI-to-PCI bridges defaults to pci-bridge,
based on the class code matching PCI-to-PCI bridge encoding
(0x060400).

Cache Line Size Written by system Open Firmware. Written 0x08 for all devices,
which corresponds to the PowerPC family cache line size of
32 bytes.

Latency Timer Written by system Open Firmware. Written 0x20 for all devices,
which corresponds to 32 PCI clock intervals.

C H A P T E R 4

Startup and System Configuration

44 PCI-To-PCI Bridges

Header Type Read by system Open Firmware. First, bits 6 through 0 are
examined. If the value is 0x00, the configuration space has a
standard header layout for configuration addresses 0x10–0x3F;
if the value is 0x01, it has a PCI-to-PCI bridge header layout for
that section. Described in this section is the behavior taken for a
PCI-to-PCI header.

BIST No action is taken by the system Open Firmware on this register.
base registers 0-1 Open Firmware does not set the Base Registers for PCI-to-PCI

bridges. It is assumed that they are programmed only through PCI
configuration space.

Primary Bus Number
Written by system Open Firmware with the appropriate PCI Bus
number corresponding to this bridge’s primary bus location (closer
to main memory side) in the system topology.

Secondary Bus Number
Written by system Open Firmware with the appropriate PCI Bus
number corresponding to this bridge’s secondary bus location
(farther from main memory side) in the system topology. This value
is stored in the device tree as the first datum in the PCI-to-PCI
Bridge’s bus-range property.

Subordinate Bus Number
Written by system Open Firmware with the appropriate PCI Bus
number corresponding to the highest numbered PCI bus that is
located behind (subordinate to, or farthest from main memory) this
PCI-to-PCI bridge. This value is stored in the device tree as the
second datum in the PCI-to-PCI Bridge’s bus-range property.

Secondary Latency Timer
Written by system Open Firmware. Written 0x20 for all devices,
which corresponds to 32 PCI clock intervals.

I/O Base Written by system Open Firmware. If devices found behind the
PCI-to-PCI bridge require I/O space address allocation, this
byte-wide register is written with the appropriate values
corresponding to the base of I/O space located behind the
PCI-to-PCI bridge. See the the PCI-to-PCI bridge architecture
specification (described in “PCI Special Interest Group” on
page xxiv) for details on this register. If no I/O space is requested
behind the PCI-to-PCI Bridge, the I/O Base Register is written with
a value greater than the I/O Limit value, thereby disabling any
decoding of I/O space behind a PCI-to-PCI bridge.

I/O Limit Written by system Open Firmware. If devices found behind the
PCI-to-PCI bridge require I/O space address allocation, this
byte-wide register is written with the appropriate values
corresponding to the base of I/O space plus the amount of space
required located behind the PCI-to-PCI bridge. See the PCI-to-PCI
bridge architecture specification for details on this register. If no
I/O space is requested behind the PCI-to-PCI Bridge, the I/O Base
Register is written with a value greater than the I/O Limit value,
thereby disabling any decoding of I/O space behind a PCI-to-
PCI bridge.

C H A P T E R 4

Startup and System Configuration

PCI-To-PCI Bridges 45

Secondary Status Read by system Open Firmware. Bit specifics:
Bits 10-9, DEVSEL speed, value stored in the node’s devsel-speed
property.
Bit 7, Fast Back to Back Capable, value noted for each PCI device. If
the value is non-zero, the property "fast-back-to-back" is created for
the node (see Command register explanation of Fast Back to Back
Enable bit).
No specific action taken based on values of the remaining bits in the
Secondary Status Register.

Memory Base Written by system Open Firmware. If devices found behind the
PCI-to-PCI bridge require memory space address allocation, this
byte-wide register is written with the appropriate values
corresponding to the base of memory space located behind the
PCI-to-PCI bridge. See the PCI-to-PCI bridge architecture
specification for details on this register. If no memory space is
requested behind the PCI-to-PCI bridge, the Memory Base Register
is written with a value greater than the Memory Limit value,
thereby disabling any decoding of memory space behind a
PCI-to-PCI bridge.

Memory Limit Written by system Open Firmware. If devices found behind the
PCI-to-PCI bridge require memory space address allocation, this
byte-wide register is written with the appropriate values
corresponding to the base of memory space plus the amount of
space required located behind the PCI-to-PCI bridge. See the
PCI-to-PCI bridge architecture specification for details on this
register. If no memory space is requested behind the PCI-to-PCI
bridge,the Memory Base Register is written with a value greater
than the Memory Limit value, thereby disabling any decoding of
memory space behind a PCI-to-PCI bridge.

Prefetchable Memory Base
Written by system Open Firmware. All memory space allocated
behind a PCI-to-PCI bridge in PCI Power Macintosh systems is
defined as non-prefetchable. Therefore, the Prefetchable Memory
Base register is always written with a value that is greater than the
Prefetchable Memory Limit value. This disables any decoding of
Prefetchable Memory behind a PCI-to-PCI bridge.

Prefetchable Memory Limit
Written by system Open Firmware. All memory space allocated
behind a PCI-to-PCI bridge in PCI PowerMac systems is defined as
non-prefetchable. Therefore, thPrefetchable Memory Base register is
always written with a value that is greater than the Prefetchable
Memory Limit value. This disables any decoding of Prefetchable
Memory behind a PCI-to-PCI bridge.

Prefetchable Base Upper 32 bits
Written by system Open Firmware with all 0s, because the PCI
PowerMacs have a 32-bit address space.

C H A P T E R 4

Startup and System Configuration

46 PCI-To-PCI Bridges

Prefetchable Limit Upper 32 bits
Written by system Open Firmware with all 0s, because the PCI
PowerMacs have a 32-bit address space.

I/O Base Upper 16 bits
Written by system Open Firmware with all 0s, because the PCI
PowerMacs utilize a 16-bit I/O address space behind PCI-to-
PCI bridges.

I/O Limit Upper 16 bits
Written by system Open Firmware with all 0s, because the PCI
PowerMacs utilize a 16-bit I/O address space behind PCI-to-
PCI bridges.

Expansion ROM Base Register
Open Firmware takes no action with this register. It is assumed that
PCI-to-PCI bridges have no FCode in their ROMs.

Interrupt Line No action taken on this register. It has no meaning for the Power
Macintosh system, as interrupts are ORed together in hardware for
per slot, creating a unique interrupt for each PCI card presented to
the system interrupt controller. No useful information for Power
Mascintosh driver writers exists in this register.

Interrupt Pin Read by system Open Firmware. If the value is nonzero, it appears
in the property interrupts. It has no meaning for Power
Macintosh, for the reasons given in the preceding paragraph.

Bridge Control Written by system Open Firmware. Bit specifics:
Bit 7, Fast Back to Back Enable, is written 1 if all PCI devices on the
secondary side of the PCI-to-PCI bridge are Fast Back to Back
capable (if all devices have a fast-back-to-back property stored in
their device node); otherwise, it is written 0.
Bit 6, Secondary Bus Reset, is written 0 so as not to cause a separate
reset on the secondary bus from the regular PCI hardware reset,
which is passed automatically by the PCI-to-PCI bridge hardware.
Bit 5, Master Abort Mode, is written 0 so that all Master Aborts on
the Secondary bus return all Fs on read actions.
Bit 4, Reserved.
Bit 3, VGA Enable, is written 0, which disallows the forwarding of
VGA hard decoding addresses to the secondary bus.
Bit 2, ISA Enable, is written 1, which blocks forwarding of
traditional hard-decoded addresses (top 768 bytes for each 1K block
of I/O space) from the primary to the secondary PCI bus.
Bit 1, SERR# Enable, is written 0, because the Power Macintosh
system doesn’t respond to SERR signals.
Bit 0, Parity Error Response, is written 0.

C H A P T E R 5

PCI Open Firmware Drivers 5Figure 5-0
Listing 5-0
Table 5-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 5

PCI Open Firmware Drivers

48

General Requirements

As explained in Chapter 4, “Startup and System Configuration,” PCI expansion cards in
Power Macintosh computers may need to operate during the Open Firmware startup
process, before any operating system is present. The drivers for such cards are called

Open Firmware drivers.

 Other drivers, called

 run-time drivers,

 are used only after an
operating system has been loaded and has taken control of the main processor. Read
“Open Firmware FCode Options,” beginning on page 32, for help in deciding whether or
not your PCI card needs an Open Firmware driver.

This chapter discusses the general technical requirements for Open Firmware drivers for
PCI devices—drivers that are used with the Open Firmware startup process. Run-time
drivers for PCI devices used with Mac OS and other operating systems are discussed in
Part 3, “Native PCI Card Drivers.”

General Requirements 5

Any Open Firmware driver must be stored in a PCI card’s expansion ROM so that the
Macintosh firmware can load and run it in the absence of an operating system. Open
Firmware drivers are written in FCode. For further information about FCode, see

Writing
FCode Programs for PCI

. This book is listed in “Other Publications,” beginning on
page xxiii.

Other general requirements for Open Firmware drivers include the following:

■

They must be able to acquire any software resources they need from the PCI card’s
expansion ROM or from the Macintosh firmware. For example, a display card must be
able to access a font in the expansion ROM if it is required to write characters on the
screen during startup.

■

The card hardware may not address system space below 1 MB. In Power Macintosh
computers, PCI cards that request space below 1 MB in a

reg

 property will not
receive a corresponding

assigned-addresses

 entry.

■

PCI expansion cards and their drivers should avoid hard address decoding, as
discussed in “Hard Decoding” on page 13.

Driver Interfaces 5

Open Firmware driver code typically supports two interfaces:

■

a hardware interface, through which the driver controls its associated device

■

a client interface, through which the driver cooperates with an operating system

Discussion of the hardware interface for Open Firmware driver code is beyond the scope
of this book; it is assumed that the relation between a driver and its associated hardware
is entirely controlled by the internal design of the PCI expansion card.

This book also does not try to discuss the general client interface for Open Firmware
drivers, which is of interest primarily to engineers designing an operating system. For

C H A P T E R 5

PCI Open Firmware Drivers

Open Firmware Driver Properties

49

details about the specific client interface between drivers and Mac OS, see Part 3, “Native
PCI Card Drivers,” beginning on page 57.

The next section discusses how PCI card expansion ROMs export properties to the Open
Firmware device tree. This process lets the card’s Open Firmware drivers (if any) work
with the Power Macintosh firmware during the computer’s startup process, before an
operating system is present.

Open Firmware Driver Properties 5

When the Open Firmware startup process finds a PCI expansion card, it looks in the
card’s expansion ROM for an Open Firmware signature and succeeding FCode. When it
finds FCode, the Open Firmware startup process loads it into RAM and interprets and
executes it. The code must fill in the part of the device tree applicable to its device node;
it must also create property nodes required by the startup firmware and by any operating
system that may use the driver in the future.

The standard property nodes for PCI devices working with the Open Firmware startup
process are defined in

PCI Bus Binding to IEEE 1275-1994.

For information about
obtaining this document see the note under “Institute of Electrical and Electronic
Engineers” on page xxiv.

The call interface to PCI Open Firmware drivers and the data format for the Open
Firmware signature are defined in IEEE Standard 1275. This book is listed in
“Supplementary Documents,” beginning on page xxi.

Standard device properties for PCI expansion cards and run-time drivers used with
Mac OS are listed in Table 8-1 on page 193. The same properties are used with boot
devices and Open Firmware drivers for Power Macintosh computers. Other properties,
described in IEEE Standard 1275, may be required if a PCI card is to support operating
systems other than Mac OS or be compatible with computers besides Power Macintosh.

Terminal Emulation in Graphics Drivers 5

For details of Open Firmware driver design for most standard boot devices, including
Open Firmware graphics drivers, see IEEE Standard 1275 and

 Writing FCode Programs.

These books are listed in “Other Publications,” beginning on page xxiii.

Besides their generic requirements, Open Firmware drivers for PCI graphics cards in
Power Macintosh computers must provide terminal emulation support. IEEE Standard
1275 defines the behavior of a terminal emulator support package, including the
implementation of certain escape sequences defined by ANSI Standard X3.64. The
Macintosh package, described here, conforms to ISO Standard 6429-1983. The Macintosh
implementation of Open Firmware for PowerPC supports additional graphic renditions,
through Select Graphic Rendition (SGR) escape sequences, beyond those specified in the
Open Firmware standard.

C H A P T E R 5

PCI Open Firmware Drivers

50

Terminal Emulation in Graphics Drivers

For the Macintosh terminal emulation extensions to be used, the FCode device driver for
a display device (a device whose

device_type

 property has the value

display

) must
initialize the first 16 entries of its color table to appropriate values, as described below.
These values assume that the color is represented by the low-order 3 bits of the color
index and that the bit corresponding to a value of 8 represents the intensity. The ISO
Standard 6429-1983 provides parameter values to control the color of foreground (30–37)
and background (40–47) independently. The intensity is set separately (1–2), and must be
issued before the color control; 1 -> color, 2 -> color+8.

In the Macintosh terminal emulator, there are current background and foreground colors
whose values range from 0 through 15, corresponding to the first 16 entries of the color
table. In positive image mode, pixels corresponding to a font or logo bit set to a value of
1 are set to the foreground color; pixels corresponding to a font or logo bit cleared to 0
are set to the background color. When in negative image mode, the roles of foreground
and background are reversed.

The default rendition is positive image mode, with background set to 15 and the
foreground set to 0, thus producing black characters on a bright white background.

Table 5-1 lists the effects of executing SGR escape sequences with various parameters.

Table 5-1

SGR escape sequence parameters

Parameter Interpretation

0 Default rendition

1 Bold (increased intensity)

2 Faint (decreased intensity)

7 Negative image

27 Positive image

30 Black foreground

31 Red foreground

32 Green foreground

33 Yellow foreground

34 Blue foreground

35 Magenta foreground

36 Cyan foreground

37 White foreground

40 Black background

41 Red background

42 Green background

43 Yellow background

continued

C H A P T E R 5

PCI Open Firmware Drivers

Terminal Emulation in Graphics Drivers

51

The next sections define the additional behavior of display devices for Open Firmware
implementations that support the terminal emulator extensions.

Color Table Initialization 5

The core specification of Open Firmware defines a terminal emulation support package
that does not include support for colors. The Macintosh Open Firmware implementation
supports additional SGR parameters to allow client programs to display characters and
logos in a 16-color model.

For this expanded terminal emulation support to work, Open Firmware device drivers
for display devices must initialize the first 16 entries of their color table to values defined
in Table 5-2, where values are defined in terms of the fraction of full saturation required
for each of the primary red-green-blue (RGB) colors.

44 Blue background

45 Magenta background

46 Cyan background

47 White background

Table 5-2

Color table values

Index Red Green Blue Color

0 0 0 0 Black

1 0 0 2/3 Blue

2 0 2/3 0 Green

3 0 2/3 2/3 Cyan

4 2/3 0 0 Red

5 2/3 0 2/3 Magenta

6 2/3 1/3 0 Brown

7 2/3 2/3 2/3 White

8 1/3 1/3 1/3 Gray

9 1/3 1/3 1 Light blue

10 1/3 1 1/3 Light green

11 1/3 1 1 Light cyan

12 1 1/3 1/3 Light red

continued

Table 5-1

SGR escape sequence parameters (continued)

Parameter Interpretation

C H A P T E R 5

PCI Open Firmware Drivers

52

Terminal Emulation in Graphics Drivers

Display Device Standard Properties 5

In addition to the standard properties defined by Open Firmware for display devices, the
following device properties, encoded as with

encode-int

, must be supported:

width

Visible width of the display, in pixels.

height

Visible height of the display, in pixels.

linebytes

Address offset between a pixel on one scan line and the same
horizontal pixel position on the next scan line.

depth

Number of bits in each pixel.

Display Device Standard Methods 5

This section defines additional methods that display devices should implement to be
compliant with the Macintosh terminal emulator extensions. These methods assume that
the device supports at least 16 colors using the RGB color model and that a color lookup
table (CLUT) exists that can be read and written to. The model assumes 8-bit values
for each of the RGB components of the colors, where 0x00 implies no color and 0xFF
indicates full saturation of the component. If fewer bits are available, the corresponding
entries should be scaled appropriately.

Individual color entries are specified by their RGB values, using 8 bits for each. Each
color is represented by an index. The index values for the 16-color extension are in the
range 0 through 15; however, most display hardware will support at least 256 colors.

The following methods allow access to the CLUT from client programs, as well as the
user interface described in the next section.

set-colors (adr index #indices --)

Allows setting a number of consecutive colors, starting at

index

, for

#indices

colors. The

adr

 parameter is the address of a table of packed RGB components.

get-colors (adr index #indices --)

Allows reading a number of consecutive colors, starting at

index

, for

#indices

colors. The

adr

 parameter is the address of a table that will be filled in with packed
RGB components.

color! (r g b index --)

Allows setting a single color value, specified by

index

. The

r

,

g

, and

b

 parameters
are values to be placed into the red, green, and blue components, respectively.

color@ (index -- r g b)

Allows reading the color components of a single color value, specified by

index

.
The

r

,

g

, and

b

 parameters are the values of the red, green, and blue components,
respectively.

13 1 1/3 1 Light magenta

14 1 1 1/3 Light yellow

15 1 1 1 Bright white

Table 5-2

Color table values (continued)

Index Red Green Blue Color

C H A P T E R 5

PCI Open Firmware Drivers

Open Firmware User Interface

53

Open Firmware User Interface 5

The Macintosh implementation of Open Firmware includes the user interface described
in IEEE Standard 1275. The user interface provides an interactive terminal environment
that is useful in viewing and manipulating Open Firmware data structures and other
system-level resources, such as memory and device registers, in the absence of a running
operating system. The current implementation operates from a remote terminal
connected by a serial communication link to the modem port of the target PCI-based
Power Macintosh computer. The serial link’s default settings are as follows:

38400 baud
No parity
8 data bits
1 stop bit
XON/XOFF handshake
ANSI/VT102 terminal protocol

Invoking the User Interface 5

To enter the Open Firmware user interface, restart the target Power Macintosh computer
while you immediately and simultaneously press the Command, Option, O, and F keys
on its keyboard. Release the keys after you hear the boot sound from the computer and
see the Open Firmware prompt on the remote terminal. If you see the Mac OS boot
message on the target computer, you may have failed to press the keys quickly enough
and should try again.

The key action just described causes the Macintosh startup firmware to enter the Open
Firmware user interface at the point just before initiating an operating system startup
process. At this point all FCode that was present on PCI cards has been executed and the

assigned-addresses

 and other standard properties have been added to the device
tree. When the user interface is invoked, it sends a bell character and a string identifying
Open Firmware and its version number to the remote terminal. It then awaits input from
the terminal. The default routes for both output and input devices are through the serial
terminal connection.

If the Open Firmware configuration variable

auto-boot?

 is set to

false

, the
Macintosh startup firmware enters the user interface automatically after subsequent
system restarts. This makes the Command-Option-O-F key combination unnecessary.

Note

The Open Firmware user interface makes it possible for you to modify
system settings to a state that prevents the computer from starting an
operating system. To return the computer to its default settings, as
stored in NVRAM, simultaneously press the Command, Option, P, and
R keys on its keyboard immediately after a system restart.

◆

C H A P T E R 5

PCI Open Firmware Drivers

54

Open Firmware User Interface

The user interface operates as an interactive Forth environment, with necessary
omissions and additions as appropriate to Open Firmware. The interface should be used
to develop and debug the Forth source code that will eventually be converted into
FCode and stored in a PCI card’s expansion ROM. To create FCode, which is a tokenized
representation of the Forth source, you must use an FCode tokenizer. Apple provides
such a tool as part of the development kit described in Appendix A, “Development
Tools.” The Apple tokenizer runs as an MPW tool under the CForth93 environment.
Special tokenizer words automatically generate a ROM image with the correct signatures
and formats for a PCI card expansion ROM with FCode.

User Interface Commands 5

Here is a short list of commands available through the Open Firmware user interface.
Note that several of them are combinations of commands that can be used separately.

assign-addresses

Emulates the regular Open Firmware startup process of
querying the system for resource requirements and adding
an

assigned-addresses

 property to the node that is the
current package.

boot

Performs the startup process, using the currently chosen
device.

dev / ls

Selects the root node and lists its children recursively,
effectively dumping a name view of the device tree.

dev /bandit/gc
.properties

Selects

gc

 (the node representing the Bandit ASIC, which
controls many Macintosh I/O features) as the active package
and displays its properties. Bandit is used in the first
PCI-based Power Macintosh models but may not be present
in future models. For an illustration of its position in the
device tree, see Listing 8-1 on page 164.

dl

Sets the terminal emulator for downloading Forth code to
RAM. Press Control-D to end the downloading process.

dump-device-tree

Lists properties and methods of all the device tree nodes.

FFC00000 100 dump

Dumps 0x100 bytes from virtual address 0xFFC00000, if that
address is currently mapped in.

init-nvram Resets data in NVRAM to default values.

make-properties Emulates the regular Open Firmware startup process of
querying the device’s configuration space and adding the
standard PCI properties to the node that is the current
package.

printenv Lists current and default settings of Open Firmware
configuration variables stored in NVRAM.

pwd Displays the pathname of the active package.

reset-all Resets the target computer.

see word Displays the Forth source code for the word entered.

C H A P T E R 5

PCI Open Firmware Drivers

Sample Driver 55

Sample Driver 5

Listing 5-1 shows a minimal FCode driver for a PCI SCSI card. The driver provides
identifying information in its device node and creates a property that contains
the run-time driver to be loaded into the Macintosh system heap by the Expansion
Bus Manager.

Listing 5-1 Minimal FCode driver

// push arguments on the stack for pci-header:
// *** THESE MUST MATCH THE CONFIG REGISTERS FOR YOUR ***
// *** FCODE TO BE RECOGNIZED BY OPEN FIRMWARE ***
// vendor #, device #, class-code = SCSI bus controller

tokenizer[hex 1000 0003 010000 decimal]tokenizer
pci-header // generate proper PCI image header

 fcode-version2 // generate proper FCode header (within PCI image)

 "AAPL,NCR8250S" device-name // Apple is card vendor
 "scsi" device-type
 "8250S" model

// generate a "reg" property which lists our configuration space at the start of
// our assigned space, with 0 size (as required by the PCI Binding Supplement)

 0 0 my-space encode-phys
 0 encode-int 0 encode-int encode+ encode+ // config space

 0 0 my-space h# 02000014 or encode-phys
 0 encode-int h# 00000100 encode-int encode+ encode+ // memory space
 encode+ " reg" property

// generate a "power-consumption" property which lists standby and full-on power
// consumtion for various power rails in microwatts; if we don't create this
// property, Open Firmware will create one by filling in the "unspecified" rail
// entries from the PRSNT pins (since we know our power consumption, we fill the
// "unspecified" entries with zeros)

setenv auto-boot?
false

Sets the environment variable auto-boot? stored in
NVRAM to false. This conditions the computer to invoke
the user interface automatically after subsequent restarts.

shut-down Powers down the computer.

words Lists variables, constants, and methods of the active package
(as in Forth, but in the scope of the current package only).

C H A P T E R 5

PCI Open Firmware Drivers

56 Sample Driver

 0 encode-int 0 encode-int encode+ // "unspecified"
 d# 7500000 encode-int d# 7500000 encode-int encode+ encode+ // +5V
 0 encode-int 0 encode-int encode+ encode+ // +3V
 d# 8100000 encode-int d# 8100000 encode-int encode+ encode+ // I/O power
 // remaining entries are 0 and can be omitted
 0 encode-int 0 encode-int encode+ encode+ // reserved
 "power-consumption" property

// the following properties will be automatically generated for this card:
// "has-fcode"
// "vendor-id" - from PCI configuration register
// "device-id" - from PCI configuration register
// "revision-id" - from PCI configuration register
// "class-code" - from PCI configuration register
// "interrupts" - from PCI configuration register
// "min-grant" - from PCI configuration register
// "max-latency" - from PCI configuration register
// "devsel-speed" - from PCI configuration register
// "fast-back-to-back" - from PCI configuration register
// "assigned-addresses"

// we don't need to define any methods here; there is enough information for the
// runtime driver to be able to locate the card, but a complete FCode implementation
// would provide boot-time I/O services

// include an image of the runtime driver, and have it assigned as the value of a
// property that the Expansion Bus Manager will read at startup

// the name of the property takes the form, "driver,<company>,<osname>,<isa>"
// NOTE: in the following example, the given <osname> (for Macintosh System 7)
// is preliminary and subject to change

// use encode-file to create a driver… property, which saves space in
// copies of the device tree that an OS may keep because it contains a pointer to
// your driver that the OS can use to find the image and copy if from your
// onboard ROM

// encode-file is now supported in the A7 Mac ROM
 encode-file NCRDriver "driver,AAPL,MacOS,PowerPC" property

 fcode-end // terminate normal FCode
pci-end // complete the PCI image

57

P A R T T H R E E

Native PCI Card Drivers 3

This part of

Designing PCI Cards and Drivers for Power Macintosh Computers

tells you how to design and write run-time PCI card drivers for the second
generation of Power Macintosh computers. These drivers are called

native

because they are written for execution by the native instruction set of the
PowerPC microprocessor. This part consists of the following chapters:

■

Chapter 6, “Native Driver Overview,” presents the general concepts and
framework applicable to PCI drivers for PowerPC Macintosh computers.

■

Chapter 7, “Writing Native Drivers,” gives you details of native driver
design and coding, including how to use services provided by the
Macintosh Driver Loader Library.

■

Chapter 8, “Macintosh Name Registry,” describes the Mac OS data
structure that stores device information extracted from the PCI device tree.

■

Chapter 9, “Driver Services Library,” details the general support that
Mac OS provides for device drivers, including interrupt and timing
services.

■

Chapter 10, “Expansion Bus Manager,” discusses a collection of PCI bus-
specific system services available to native device drivers.

■

Chapter 11, “Graphics Drivers,” describes the calls serviced by typical
display drivers.

■

Chapter 12, “Network Drivers,” describes the construction of a sample
network driver.

■

Chapter 13, “SCSI Drivers,” describes the construction of a sample native
SCSI Interface Module (SIM) compatible with SCSI Manager 4.3.

Thi d t t d ith F M k 4 0 4

C H A P T E R 6

Native Driver Overview 6Figure 6-0
Listing 6-0
Table 6-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 6

Native Driver Overview

60

Macintosh System Evolution

This chapter presents an overview of the PCI driver environment and services, or

I/O
architecture,

 available in the Macintosh system software for the second generation of
Power Macintosh computers. It covers concepts and terminology that are introduced
with this I/O architecture. It also provides a high-level summary of the new driver
interfaces, packaging, and support. The discussion in this chapter applies to run-time
drivers, which run after the system startup steps detailed in Chapter 4, “Startup and
System Configuration.”

The previous Macintosh I/O architecture was based on resources of type

'DRVR'

 and
their associated system software, including the Device Manager. Mac OS now supports a
more general concept of driver software. In the new I/O architecture, a

driver

 is any
PowerPC native code that controls a physical or virtual device. This definition includes
resources of type

'ndrv'

 but excludes resources of type

'DRVR'

, protocol modules,
control panels, resources of type

'INIT'

, and application code. The Device Manager is
being changed; future releases of Mac OS will support older Device Manager operations
only for drivers written in 68LC040 microprocessor code running in emulation mode.

Native device drivers are now isolated from application-level interfaces and services;
in particular, main driver code must run without access to the Macintosh Toolbox. This
concept is discussed further in “Separation of Application and System Services” on
page 63.

To understand this chapter, you should have some experience developing drivers or
similar software designed to work with Mac OS. For recommended reading material
about Macintosh technology, see the documents listed in “Supplementary Documents”
beginning on page xxi.

Macintosh System Evolution 6

For their the second generation, Power Macintosh computers are switching from NuBus
to the more standard PCI bus. This change means that many useful new PCI-based
peripheral devices will become available for Macintosh computers. Meanwhile, Mac OS
is undergoing fundamental changes that provide better memory protection, preemptive
scheduling of tasks, and improved I/O support.

To provide improved I/O support in Mac OS, Apple is introducing a

native I/O
framework

 that includes a set of driver services and mechanisms separate from those
available to previous Macintosh device drivers. The native I/O framework includes
these features:

■

native PowerPC execution of all driver code

■

support for PCI bus operations

■

new Device Manager support for concurrent operations

■

improved interrupt mechanisms

■

new driver support services

■

a Name Registry

C H A P T E R 6

Native Driver Overview

Terminology

61

Mac OS provides these features only for PCI native device drivers. Existing drivers
written in code for MC68000-family microprocessors (called

68K drivers

) will continue to
work as they have in the past, but inclusion of the new I/O framework marks the
beginning of the transition of all Macintosh drivers to the native model described in this
chapter. The model standardizes Macintosh driver design so that PCI and non-PCI
device drivers can be written to a single specification. Except for SCSI Interface Modules
(SIMs), drivers that conform to the new driver framework will work unchanged in
future releases of Mac OS. SIMs are discussed in Chapter 13, “SCSI Drivers.”

Terminology 6

The following list defines new terms used in the rest of this book:

■

Application programming interface (API):

 The API is the rich set of Mac OS services
available to application-level software, including the Macintosh Toolbox routines.
Drivers do not have access to this set of services.

■

Code Fragment Manager (CFM):

 The CFM is the part of Mac OS that loads code
fragments into RAM and prepares them for execution. The CFM is fully described in

Inside Macintosh: PowerPC System Software.

■

Disk-based driver:

 Disk-based drivers are drivers that are stored in the Macintosh file
system, in the Extensions folder. Disk-based drivers are CFM fragments in files of type

'ndrv'

 with an unknown creator. A disk-based driver may replace a ROM-based
driver if it is a newer version. Disk-based drivers are not available during system
startup, before the file system is working.

■

Expert:

The code that connects a class or family of devices to the operating system is
called an

expert.

Low-level experts

 and

family experts

 are defined below.

■

Family:

 A device family is a collection of devices that provide the same kind of I/O
functionality. One example of a family is the set of Open Transport devices with their
corresponding Open Transport Data Link Provider Interface (DLPI) drivers. Another
example is the family of display devices.

■

Family administrator:

 A family administrator is a high-level system component that
communicates configuration information to a device, using whatever mechanism is
appropriate. Configuration information may be known only to the user or may be
stored in a file system, and it may not be available when an entry is first added to the
Name Registry. A family administrator can communicate with a family expert, a
driver, or the Name Registry to install and retrieve configuration information. Mac OS
currently contains no family administrators; it may include them in the future, or
third parties may supply them.

■

Family expert:

 A family expert, or

high-level expert,

 is the code responsible for locating,
initializing, and monitoring all entries in the Name Registry that are associated with
devices in its family or service type. Hence, a family expert is the device administrator
for a family. Family experts run when devices are connected to the system (usually at
system startup time), but they are not part of the primary data paths to the devices.

C H A P T E R 6

Native Driver Overview

62

Terminology

■

Family programming interface

(FPI):

An FPI is a set of services used between a
family expert and the devices in the expert’s family. For example, Open Transport
exports the routine

freemsg

 as part of its FPI. This routine returns a STREAMS buffer
to the general memory pool maintained by the Open Transport subsystem. The

freemsg

 call is not accessible to software outside the Open Transport family. Each
FPI is supported by routines in a

family library.

■

Low-level expert:

 Low-level experts are software utilities that install entries in the
Name Registry for specific devices. Low-level experts may reside in system firmware,
PCI card firmware, or Mac OS and may run at any time. A low-level expert’s task is
to install enough information in each Name Registry entry to permit device control
and driver matching. The information must be presented to Registry clients in a
generalized form, independent of hardware configuration. Primary clients of the
Registry at present are run-time device drivers and family experts (defined below).

■

Name Registry:

 The Name Registry is a high-level Mac OS service that stores the
names and relations of hardware and software components in the system that is
currently running. In the second generation of Power Macintosh, the Name Registry
is used only for I/O device and driver information, serving as a rendezvous point
between low-level or hardware-specific experts and family experts. The Registry
supports both name entry management and information retrieval.

■

Physical device:

 A physical device is a piece of hardware that performs an I/O
function and is controlled by a device driver. An example of a physical device is a
video accelerator card.

■

Property:

 Each piece of information associated with an entry in the Name Registry is
called a

property

. For example, a

driver-description

 property is associated in the
Registry with each device that has a unique associated driver. It contains the driver
description data structure described in “Native Driver Package” beginning on page 87.

■

ROM-based driver:

 ROM-based drivers are drivers that are stored in a PCI expansion
ROM. They are the only kind of drivers that are usable when the system is starting up
and the file system is not yet available, as described in Chapter 5, “PCI Open
Firmware Drivers.” PCI ROMs usually also contain native run-time drivers for
Mac OS, stored as CFM fragments; they are described in Chapter 7, “Writing Native
Drivers.”

■

Scanning:

 Scanning is the process of matching a device with its corresponding driver.
Scanning to determine device location and driver selection is one of the problem areas
discussed in this chapter.

■

System programming interface (SPI):

 The SPI is the set of services that Mac OS
provides for drivers or other pieces of software that are installed and run in the
operating system. For example,

QueueSecondaryInterruptHandler

 is an SPI
routine in Mac OS that defers interrupt processing. Application-level software does
not generally have access to the SPI. For more information about the Macintosh SPI
for PCI cards, see Chapter 9, “Driver Services Library.”

■

Virtual device:

 A virtual device is a piece of code that provides an I/O capability
independently of specific hardware. An example of a virtual device is a RAM disk. A
RAM

disk performs disk drive functions but is actually just code that reads and writes
data in the system’s physical memory.

C H A P T E R 6

Native Driver Overview

Concepts

63

Concepts 6

To prepare for changes in current and future releases of Mac OS, Apple is introducing
several new or modified concepts in the second generation of Power Macintosh
computers. The concepts include

■

separation of application and system services

■

common packaging of loadable software

■

the Name Registry

■

families of devices

■

ROM-based and disk-based drivers

■

noninterrupt and interrupt-level execution

■

generic and family drivers

■

driver descriptions

These concepts are discussed in the next sections.

Separation of Application and System Services 6

Previous versions of Mac OS had only one kind of operating-system interface, an
application programming interface (API). This meant that all Mac OS services were
available to all varieties of Macintosh software. With the second generation of Power
Macintosh computers, Apple starts distinguishing between APIs and system programming
interfaces (SPIs). The distinction must be made because programming contexts are
becoming increasingly specialized as Mac OS evolves.

In present and future Mac OS releases, Toolbox services (for example, the

ModalDialog

function and Menu Manager calls) are not available to drivers. Drivers operate outside
the user interface and the application software environment.

Note

Commands available through the concurrent Device Manager still
constitute an API for generic drivers, as described in “Generic and
Family Drivers” on page 69.

◆

Family services required by device drivers are provided by family experts, using family
libraries. These services are not available to applications.

The separation of application and system services in Mac OS is a big change that starts
with the second generation of Power Macintosh computers. The difference between the
old API model and the new API/SPI model is diagrammed in Figure 6-1 on page 64.

C H A P T E R 6

Native Driver Overview

64

Concepts

Figure 6-1

New system model

Common Packaging of Loadable Software 6

Native device drivers and SIMs are created as CFM fragments. Each CFM fragment
exports a driver description structure that the system uses to locate, load, and initialize
the driver or SIM. Previously, device drivers were created as Macintosh resources.

Hence native drivers are packaged differently from previous Macintosh drivers. Because
they are CFM fragments, they are allowed to have persistent global data storage in
specific locations, and they can be written in a high-level language without assembly-
language headers. Each instance of a single driver or SIM has private static data and
shares code with every other instance of that driver or SIM. The CFM is responsible
for maintaining the driver context (similar to the “A5 world” in previous Macintosh
programming). A device driver no longer locates its private data by means of a field in
its device unit table entry.

One consequence of drivers and SIMs as CFM code fragments is that a single device
driver no longer controls multiple devices. Normally there is a driver instance for each
device, although only one copy of the driver’s code is loaded into memory.

The Name Registry 6

The Mac OS

Name Registry

 is a database of system information. The native I/O
framework uses the Registry as a general storage and retrieval mechanism for family
experts and low-level experts. Device scanning code and the Name Registry help
separate system initialization and device driver initialization in a well-defined way, as
illustrated in Figure 6-2. The Name Registry is more fully described in Chapter 8.

Application

Macintosh Toolbox

Device driver

Old model

Application

New model

Macintosh Toolbox

Macintosh Operating System

Device driver

System programming
interface

C H A P T E R 6

Native Driver Overview

Concepts

65

Figure 6-2

Typical role of the Name Registry

Although it does not drive the startup process, the Name Registry assists system startup
by providing a structure for storing information. It does this in several ways:

■

During the computer’s startup process, low-level experts in the Macintosh ROM and
in PCI card expansion ROMs install and update system information in the Registry.

■

Other software in the startup process can then use the Registry to locate devices
required to initialize the system.

■

System firmware installs disk-based drivers and other system components in the
Registry when the file system becomes available.

■

Disk-based experts can then use information in the Registry to locate and initialize
family devices.

■

When device initialization driver code is called, the Registry provides configuration
information for device drivers and family experts.

These processes are marked by steps in Figure 6-2. In Step 1, low-level experts scan the
PCI bus for their device types and create name entries in the Name Registry that identify
device properties and contain device drivers. In Step 2, family experts locate all name
entries that match their service categories. In Step 3, family experts obtain device drivers
and call the drivers’ initialization routines.

To make driver design easier, the Name Registry lets all types of device drivers be
written identically, whether they are located in PCI expansion ROMs, system firmware,
or elsewhere. Drivers can expect basic hardware information to be available in the
Registry and are not required to locate or hard code this data.

Family experts

Name Registry

PCI video
card

Driver Driver

PCI network
card

PCI SCSI
card

Low-level experts

Driver

Video
family expert

Open Transport
family expert

PCI
low-level
expert

SCSI
low-level
expert

Step 1

Step 2 Step 3

C H A P T E R 6

Native Driver Overview

66

Concepts

The Registry supports a comprehensive driver replacement capability, described in
“Finding, Initializing, and Replacing Drivers” beginning on page 140. All device entries
and their corresponding code (drivers or SIMs) exist in the device portion of the Name
Registry and are available for this process.

Families of Devices 6

Families are groups or categories of devices that provide similar or the same function-
ality and have the same basic software interface requirements. An example of a device
family is the set of devices that provide networking services to the system. These devices
are not the same—for example, Ethernet is not the same as LocalTalk—but they all run
within the Open Transport family and use the Open Transport libraries to augment the
SPI provided by Mac OS. A second example of a device family is the set of all display
devices. The concept of device family is critical to the Power Macintosh general-purpose
I/O interconnection scheme because it allows the needs of each device family to be
met independently of the needs of other families. The Name Registry helps PCI card
developers group devices together and provide family services for those devices.

Mac OS for PCI-based Power Macintosh computers provides built-in support for device
families such as the display family and the network family. Each of these families has
access to services that isolate system and application software from particular device
characteristics. For example, the

Display Manager

 provides a uniform programming
interface—a family programming interface (FPI)—for display devices regardless of their
physical form. Similarly, the Open Transport subsystem isolates the remainder of the
system and applications from the particular characteristics of network devices. These
FPIs are provided by family libraries in Mac OS.

The Display Manager and PCI video drivers illustrate how a family of devices can
provide and utilize family-specific services. These services are complementary to the
services provided by the system software, because they are used by the family but are
not duplicated by the system and are not available to other components of the system or
to Macintosh applications. For a fuller discussion, see Chapter 11, “Graphics Drivers.”

A family expert such as the Open Transport expert interrogates the Registry for devices
of a certain service category, verifying only that they are of the right category. For
example, a software loopback device could appear in the Registry, the driver for which
would take data from a source and return it back to the same source. To install a loop-
back Registry entry, the loopback configuration software would call the Registry to
create an entry and to add the driver descriptor property with its driver information
containing the appropriate service category. In networking, the service category for a
loopback device is

'OTAN'

. Installing the loopback entry would be the work of a low-
level expert for loopback devices; there would be no bus associated with the loopback
device. The family expert for Open Transport would locate the loopback entry using
Registry calls, and it would initialize the driver in the Open Transport subsystem using
family-specific initialization mechanisms.

C H A P T E R 6

Native Driver Overview

Concepts

67

ROM-Based and Disk-Based Drivers 6

ROM-based drivers are stored in PCI expansion ROMs. Disk-based drivers are located in
the Macintosh file system, in the Extensions folder.

ROM-based drivers with the correct information in their driver description structures are
installed and opened by the Macintosh firmware, acting as the driver’s client. These are
the only drivers available at the beginning of system startup.

Disk-based drivers are located and opened as needed. Once the file system is working,
Mac OS can replace outdated ROM-based drivers with disk-based drivers. Experts that
control disk-based drivers locate and initialize their drivers soon after. Drivers that are
disk-based but not under expert control, and that are not needed by Mac OS during
startup, remain uninitialized and unopened until a specific client requests access to the
device associated with the driver.

Noninterrupt and Interrupt-Level Execution 6

In prior releases of Mac OS there has been no clear distinction between application-level
programming and system-level programming. Restrictions about when certain system
services can be used and when they cannot are not fully defined.

In Mac OS releases starting with the second generation of Power Macintosh computers,
different execution levels will have different restrictions. Noninterrupt (task level)
execution may make use of nearly any operating-system or Toolbox service. Secondary
interrupt routines and hardware interrupt handlers are allowed only a small subset of
those services.

The discussion in this book uses the following definitions:

■

Task level:

 the noninterrupt level on which most code, including applications, is
executed.

■

Hardware interrupt level:

 the execution level of concern to driver writers. Hardware
interrupt-level execution happens as a direct result of a hardware interrupt request.
The software executed at hardware interrupt level includes installable interrupt
handlers for PCI and other devices as well as interrupt handlers supplied by Apple.

■

Secondary interrupt level:

 the execution level similar to deferred task execution in
previous versions of Mac OS. The secondary interrupt queue is filled with requests to
execute subroutines that are posted for execution by hardware interrupt handlers. The
handlers need to perform certain actions but choose to defer the execution of those
actions to minimize interrupt-level execution. Unlike hardware interrupt handlers,
which can nest, secondary interrupt handlers always run serially.

Symmetric Multiprocessing 6

In future PCI-based Power Macintosh computers that feature symmetric multiprocessing
(SMP), a device driver will not be able to assume that hardware or secondary interrupt
level execution preempts all task level execution. In a four-processor system, for
example, one processor might be running a hardware interrupt handler, another running

C H A P T E R 6

Native Driver Overview

68

Concepts

a secondary interrupt handler, and the other two running tasks. This behavior is
different from that of a uniprocessor system, where an interrupt handler normally runs
to completion between two task-level instructions. The difference is illustrated in
Figure 6-3.

Figure 6-3 Uniprocessing and multiprocessing execution

Symmetric multiprocessing changes some of the programming rules for driver writers.
Observe these cautions:

■ If you use an atomic operation to reference a particular memory location at task level
(such as an atomic increment to a counter), you must also use atomic instructions
when referencing that location at hardware and secondary interrupt level.

■ If you disable interrupts and use secondary interrupt level following the rules in this
book, you shouldn’t have any problems. If you assume that no task can be running
while your interrupt handler runs, your code will break on a multiprocessor system.

■ If your driver disables interrupts for its device while running at task level, an inter-
rupt for a different device can still occur. The second interrupt may run concurrently
with your task-level device driver as shown in Figure 6-3.

Disabling hardware interrupts for synchronization purposes works safely in an SMP
environment. Disabling hardware interrupts on one processor guarantees that interrupts
are off on every processor and that no other processor can execute code that runs with
interrupts off. If another processor tries to disable interrupts, it will loop while waiting
for the first processor to turn interrupts on again. This feature makes it critical that
interrupts be disabled for very short periods of time.

Similarly, in an SMP environment only one processor at a time can run at secondary
interrupt level. Other processors trying to run at secondary interrupt level will do no
useful work until the first processor exits that level. For this reason, secondary interrupt
level should be used as sparingly as possible.

Instruction 1

Task-level
driver code

Interrupt
handler code

Instruction 2

Instruction 3

Instruction 4

Instruction 1Interrupt

Instruction 2

Instruction 3

Instruction 1

Task-level
driver code

Uniprocessor system Multiprocessor system

Interrupt
handler code

Instruction 2

Instruction 3

Instruction 4

Instruction 1Interrupt

Instruction 2

Instruction 3

C H A P T E R 6

Native Driver Overview

Concepts 69

Generic and Family Drivers 6
The Macintosh native driver model defines a new driver packaging format, described in
“Driver Package,” later in this chapter. The driver package may contain a generic driver
or a driver that is specific to a family of devices. Generic drivers have a family type of
'ndrv' and are controlled by the Device Manager (described in Inside Macintosh:
Devices). Family drivers have other type designations and do not act as Device Manager
clients. They are not installed in the Device Manager unit table and do not export the
generic driver call interface. The generic driver call interface and runtime framework are
described in “Generic Driver Framework” beginning on page 70.

Currently most drivers are generic, but this will not be true in future versions of the
Mac OS. Some drivers belong to device families with special characteristics that do not
fit into the generic driver model; they are drivers controlled by family experts. An
example of this type of driver is a networking device driver for the Open Transport
environment. Networking device drivers under Open Transport are STREAMS drivers
that provide industry standard STREAMS/DLPI interfaces to the Macintosh system.
They are discussed in Chapter 12, “Network Drivers.”

Drivers controlled by family experts use family programming interfaces (FPIs), which
are defined for each family and are accessible to Macintosh applications.

Note
FPIs are different in this way from SPIs. Should an application discover
an SPI and try to make an SPI call, the application is likely to fail. In the
next release of Mac OS software, the application will probably crash
with an access violation because the device driver services are in a
different address space than Macintosh applications. ◆

All drivers with family-private FPIs must export well-defined family FPI names for both
FPI data and FPI functions. Clients of family drivers load the CFM-based driver and call
the exported names. The CFM connects the driver client to the CFM device driver
exports. PCI device drivers and SIMs that provide private family interfaces need not
provide an additional native driver interface to the Macintosh system.

As an example of a family interface, Open Transport requires a family data structure
called install_info and an FPI function whose name is GetOTInstallInfo. The
install_info structure is used by Open Transport to link STREAMS modules to
STREAMS device drivers. The Open Transport family expert calls the device driver FPI
GetOTInstallInfo function as part of the installation process for native drivers of the
'OTAN' service category. See Chapter 12, “Network Drivers,” for more details on Open
Transport driver requirements.

Other family drivers are described in Chapters 11 and 13.

Note
Device drivers need to provide only one programming interface. If
a device driver chooses to provide more than one service category
programming interface, however, it must conform to the standards
of each interface. ◆

C H A P T E R 6

Native Driver Overview

70 Generic Driver Framework

Driver Descriptions 6
Drivers are CFM code fragments and must export driver description structures to
characterize their functionality and origin. The structures must be exported through
the CFM’s symbol mechanism, using the symbol name TheDriverDescription. The
complete structure is defined in “Driver Loader Library” beginning on page 117. It is
based on the driver-description property associated with device entries in the
Name Registry, described in Chapter 8.

The DriverDescription structure is used by scanning code to

■ match Registry entries to drivers

■ identify device entries by service type or family

■ provide driver version information

■ provide driver initialization information

■ allow replacement of ROM-based drivers with newer disk-based drivers

By providing a common structure to describe drivers, the system is able to regularize the
mechanisms used to locate, load, initialize, and replace them. Details of how this works
are given in “Finding, Initializing, and Replacing Drivers” beginning on page 140.

Mac OS treats any CFM code fragment that exports a driver description structure as a
native driver.

Generic Driver Framework 6

This section describes the system software framework in the second generation of Power
Macintosh for generic run-time drivers—that is, drivers of family type 'ndrv'.

Device Manager 6
The traditional Macintosh Device Manager controls the exchange of information
between applications and hardware devices by providing a common programming
interface for applications and other software to use when communicating with generic
device drivers. Normally, applications don’t communicate directly with generic drivers;
instead, they call Device Manager functions or call the functions of another manager that
calls the Device Manager.

In the second generation of Power Macintosh, two significant additions have been
made to the Device Manager. First, drivers can now process more than one request
simultaneously. Such drivers are called concurrent drivers. Second, a new entry point
has been added, similar to IODone. It is called IOCommandIsComplete. Details on
concurrent drivers and their use of IOCommandIsComplete are given in “Completing
an I/O Request” beginning on page 83.

C H A P T E R 6

Native Driver Overview

Generic Driver Framework 71

Driver Package 6
The native driver model defines a new driver packaging format. This package may
contain generic drivers or family drivers, as explained in “Generic and Family Drivers,”
earlier in this chapter.

The native driver package is a CFM code fragment that may reside in the Macintosh
ROM, in a PCI expansion ROM, or in the data fork of a Preferred Execution Format
(PEF) file. File-based generic and family driver fragments have no resource fork, have a
file type of 'ndrv', and have an unspecified file creator. ROM-based PCI drivers may be
replaced by disk-based versions of the driver located in the Extensions folder. PEF and
the CFM are described in Inside Macintosh: PowerPC System Software.

A native driver package must define and export at least one data symbol through the
CFM’s export mechanism. This symbol must be named TheDriverDescription; it is
a data structure that describes the drivers type, functionality, and characteristics. This
data structure is described in “Driver Description Structure” beginning on page 88.

Depending on the type of driver, additional symbols may need to be exported. The
generic 'ndrv' driver type requires that the CFM package export a single code entry
point called DoDriverIO, which passes all driver I/O requests. DoDriverIO must
respond to the Open, Close, Read, Write, Control, Status, KillIO, Initialize,
and Finalize commands. Other driver types for device families export and import
symbols and entry points defined by the device family or device expert.

Driver Services Library 6
The native PCI driver framework includes a Driver Services Library (DSL) that supplies
the SPI required by most generic drivers. SPIs are described in “Separation of
Application and System Services” beginning on page 63. The driver loader links the DSL
automatically to each generic driver at load time. Mac OS may provide additional
services to drivers in certain families or categories.

The types of services represented in the Driver Services Library include

■ request processing services

■ memory management services

■ interrupt management services

■ secondary interrupt handlers

■ atomic operation services

■ timing services

■ operating system utilities

The calls supplied by the DSL and the family support libraries constitute the complete
set of services provided to device drivers. The calls in the DSL are the only driver
interfaces guaranteed to be maintained in subsequent releases of Mac OS. Calls to
services outside of the DSL and the family support libraries (for example, calls to
Toolbox traps, low-memory globals, and similar vectors) will result in driver failure.

C H A P T E R 6

Native Driver Overview

72 Converting Previous Macintosh Drivers

Converting Previous Macintosh Drivers 6

Previous Macintosh drivers have used standard ways of handling scheduling, memory
management, interrupts, and configuration. Macintosh drivers have also had the
freedom to call a set of services that are not available in the native driver model.

Restricted Access to Services 6
As mentioned in “Separation of Application and System Services” beginning on page 63,
future releases of Mac OS will distinguish between APIs and SPIs. Services such as
modal dialog displays or Menu Manager calls will not be available to drivers; instead,
drivers will use only the interfaces provided by the Driver Services Library. Those parts
of a driver that require services provided by the Macintosh Toolbox must be written to
run at noninterrupt (task) level.

In addition to restricting the types of Toolbox calls drivers are able to make, there are
changes to existing mechanisms that will allow drivers written for the second generation
of Power Macintosh to be used unchanged in the subsequent releases of Mac OS.

The section “Driver Migration” beginning on page 152 documents the programming
interface changes between previous Mac OS driver calls and the native driver services
provided for PCI drivers. It also lists the replacement calls for existing mechanisms.

Error Returns 6
As is always the case with programming interfaces, native driver code should check the
error returns from calls to system services. The new driver model includes the following
32-bit error return type:

typedef long OSStatus;

The lower 16 bits of OSStatus are equivalent to the existing OSErr type, described in
Inside Macintosh: Overview. In current versions of Mac OS, the upper 16 bits contain the
sign extension of the lower 16 bits. At present there are just two possible values for the
upper 16 bits, all 1s or all 0s; other values are reserved for future use by Apple.

Ensuring Future Compatibility 6

Several important environmental differences between the current release of Mac OS and
future releases affect native drivers. Three of them are the following:

■ Substantial changes in task execution and interrupt handling affect native drivers. The
tasking model and interrupt handling mechanisms will be increasingly hidden behind
the Driver Services Library, the Driver Loader Library, and the Name Registry. Drivers

C H A P T E R 6

Native Driver Overview

Ensuring Future Compatibility 73

that do not use the native libraries provided with the current release of Mac OS will
not work with subsequent releases.

■ In the current Mac OS environment there is one address space, which all applications,
Toolbox services, and drivers share. In future versions of Mac OS there will be many
address spaces, and applications and their associated data may exist outside the
address space in which the kernel, driver services, and drivers exist. It is not possible
to verify correct address space usage using the current version of Mac OS, but strict
adherence to the rules outlined below will guarantee success with future releases.

■ SCSI SIMs for current releases of Mac OS will not be compatible with future releases.
SIMs are discussed in Chapter 13, “SCSI Drivers.”

Task execution and interrupt handling are discussed in detail in various sections of
Chapters 7 through 9. Toolbox services that are not available to native drivers are listed
in “Driver Services That Have No Replacement” beginning on page 152. Addressing
problems are discussed next.

Note
The issues discussed here do not apply to 68K drivers, even though such
drivers are also called through the Device Manager. All 68K drivers are
executed by Macintosh emulation software. ◆

Copying Data 6
To allow compatible driver development on the current version of Mac OS, future
releases of Mac OS will give drivers that are managed by the Device Manager a
restricted set of facilities for mapping address spaces and copying data from one space
to another. Device families, such as video displays, will have additional family-specific
facilities to address their data transfer needs. Hence, drivers that exchange data with
applications via the Device Manager must do so via PBRead and PBWrite calls.
Depending on the size of the data buffer, the Device Manager will copy or map the
IOParamBlockRec data structure for these calls and will copy or map the associated
ioBuffer up to ioReqCount bytes.

PBOpen, PBClose, PBControl, PBStatus, and PBKillIO calls will keep the
IOParamBlockRec and CntrlParam data structures accessible; however, no
referenced data will be copied or mapped. This means that the csParam fields of
the CntrlParam block must not contain buffer pointers to additional data, and the
ioBuffer field will be ignored for Device Manager calls (such as PBOpen and
PBClose) for which it is not a documented input parameter. The Device Manager
will not copy or map data pointed to by either of these fields.

In the past, applications and device drivers have extended the size of the
IOParamBlockRec and CntrlParam structures to tag additional information into
a device driver request. This was possible because applications and device drivers
shared a single address space. In future releases of Mac OS, the Device Manager
will copy only the IOParamBlockRec and CntrlParam structures as defined in
Inside Macintosh: Devices.

C H A P T E R 6

Native Driver Overview

74 Ensuring Future Compatibility

Synchronous and Asynchronous Driver Operation 6
As a result of tasking and addressing issues in future releases of Mac OS, synchronous
and asynchronous driver calls will handle data buffers differently. Synchronous calls to
native drivers through the Device Manager will run in the execution context of the
calling application. This will allow direct accessibility to all data in IOParamBlockRec
or CntrlParam structures and their associated substructures.

Asynchronous calls to native drivers will make I/O operations within the device driver
run in a separate task context. This means that only data that has been copied or mapped
by the Device Manager will be available to the native code that processes the I/O request.

One result of the different behavior of asynchronous and synchronous drivers is that the
writer of a native driver must make careful implementation choices. The driver may be
completely synchronous and do minimal data copying or mapping, but the application
calling the driver will halt until the I/O request is complete. Alternatively, the driver
may be completely asynchronous and concurrent. This will free the application from
waiting for I/O operations to finish, but will require that all data be transferred in an
IOParamBlockRec or CntrlParam structure, or via PBRead and PBWrite call buffers
pointed to by the ioBuffer field of an IOParamBlockRec structure.

A driver can also support a mix of asynchronous and synchronous calls. This option is
straightforward for nonconcurrent drivers and is possible (with restrictions) for
concurrent drivers. Mixing asynchronous and synchronous calls results in a more
complex driver call interface but may allow for special-purpose optimizations.
Nonconcurrent drivers must use Device Manager queueing and expect to handle no
more than one outstanding I/O request at a time. This mechanism lets the Device
Manager handle address mapping or copying invisibly.

To support a mix of synchronous and asynchronous commands within a concurrent
driver, the driver must ensure that PBRead and PBWrite calls are the only asynchronous
calls. All other calls must be synchronous. Concurrent drivers supporting a mix of
synchronous and asynchronous calls that result in queued I/O requests are not possible
with the current version of Mac OS because the driver would have to be aware of task
switching primitives that are not available. A concurrent driver that allows only
synchronous control and status calls, and never queues these requests, can make use of
data that is available through the IOParamBlockRec structure.

Sharing Data With Applications 6
A concurrent or nonconcurrent driver wishing to share a data buffer with an application
should do the following. The application should issue an asynchronous read or write
command to the driver supplying the data buffer address and byte count in the
ioBuffer and ioReqCount fields in the IOParamBlockRec structure.

To indicate to the Device Manager that the ioBuffer field to be shared must be mapped
(not copied), the ioMapBuffer flag must be set in the ioPosMode field of the
IOParamBlockRec structure. The driver and the application can share the buffer for the
duration of the asynchronous call. When sharing is complete, the driver should complete
the asynchronous call using the IOCommandIsComplete service described on page 84.

C H A P T E R 6

Native Driver Overview

Summary 75

Note
The issues discussed here are separate from the concurrent program-
ming issues and requirements discussed in “Concurrent Generic
Drivers” beginning on page 82. The addressing issues detailed
here affect only the movement of data between applications and
device drivers. ◆

Power Management 6
The Macintosh Power Manager API is still being defined and is likely to change in future
releases of Mac OS. You are encouraged to make use of the power management facilities
in family experts instead; these are described in later chapters of this book. If you must
use the Power Manager, be careful to use only its published API.

Summary 6

The I/O architecture defined in this chapter sets a durable standard for writing
Macintosh device drivers. This standard will be supported in future releases of Mac OS,
and device drivers that conform to it will work unmodified and efficiently with those
releases. Successful execution of this strategy, which allows native device drivers to work
portably and effectively across future Mac OS releases, depends upon the successful
adoption of the guidelines summarized in this section.

Use the System Programming Interfaces 6
The use of SPIs is essential to a driver’s portability to future Mac OS releases. These are
the programming interfaces for device drivers that are guaranteed to be common across
Mac OS system versions. They consist of

■ The Name Registry library NameRegistryLib

■ The Driver Services library DriverServicesLib

■ A service library specific to each high-level device family

When writing a device driver, never use Toolbox API calls. Doing so will prevent your
device driver from being compatible with future Mac OS releases. Instead, use the
functionality provided by the corresponding SPIs. These sets of calls let you deal more
naturally with device driver issues that the Toolbox API does, because the Toolbox is
intended for applications.

You can ensure compliance with the foregoing rule by not letting your driver link with
application libraries such as InterfaceLib, MathLib, StdCLib, and so on. Any
necessary Toolbox functionality, such as driving a graphical user interface, should be
accomplished by separate application-level software on behalf of the device driver.

C H A P T E R 6

Native Driver Overview

76 Summary

Use the Name Registry 6
The Name Registry provides a unified way of identifying or obtaining information about
many system resources, not just about devices. When writing a device driver, never
acquire information from low memory or through Toolbox API calls because doing so
will prevent your driver from being compatible with future Mac OS releases. Instead,
use the Name Registry to acquire the information. During driver initialization, family
experts facilitate this process by passing each driver a RegEntryID representing its
physical device. By using the RegEntryID and the Name Registry a device driver can
find all the information it is likely to need.

For further information about the Name Registry, see Chapter 8, “Macintosh Name
Registry.”

C H A P T E R 7

Writing Native Drivers 7Figure 7-0
Listing 7-0
Table 7-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 7

Writing Native Drivers

78

Native Driver Framework

This chapter tells you about Macintosh native run-time drivers in the second generation
of Power Macintosh computers. It covers the following subjects:

■

how generic native drivers interact with the Device Manager

■

how native drivers operate concurrently

■

the context in which driver code is executed

■

how to write a native device driver

■

the Driver Loader Library

■

finding, initializing, and replacing drivers

■

migrating driver code from the 68000 environment to the PowerPC environment

You need to understand the information in this chapter if you are going to write or adapt
a driver to work with Mac OS. This chapter assumes that you are generally familiar with
programming Power Macintosh computers, particularly with using the Device Manager
and the Code Fragment Manager.

Note

The discussions of the Device Manager and the Driver Loader Library in
this chapter apply only to generic drivers. For a description of generic
drivers, see “Generic Driver Framework” beginning on page 70.

◆

Native Driver Framework 7

All native (PowerPC) device drivers are Code Fragment Manager (CFM) fragments with
the following general features:

■

CFM container format

■

CFM programming interfaces exported from the driver to Mac OS

■

CFM programming interfaces imported by the driver from Mac OS

Generic drivers are CFM fragments that work with the Device Manager and the Driver
Loader Library; family drivers are CFM fragments that use other mechanisms. Generic
and family drivers are distinguished in “Generic and Family Drivers” beginning on
page 69. The general characteristics of both kinds of native drivers are briefly summarized
in the next sections.

Native Container Format 7

The container format for native PowerPC device drivers is the container format
supported by the Code Fragment Manager. The CFM format provides all mechanisms
necessary for drivers, is integrated with Mac OS, and is documented in

Inside Macintosh:
PowerPC System Software.

Previous device drivers for use with 68000-family microprocessors (called

 68K

drivers

)
were located in

'DRVR'

 resources, as described in

Inside Macintosh: Devices.

C H A P T E R 7

Writing Native Drivers

Native Driver Framework

79

Native Driver Data Exports 7

All native drivers, both generic and family, must export a single data symbol
that characterizes the driver’s functionality and origin. This symbol, called

TheDriverDescription

, is exported through the CFM’s symbol mechanism.
It is documented in “Driver Description Structure” beginning on page 88.

Driver description information helps match drivers with devices. It also lets the
Device Manager pick the best driver among multiple candidates. For example, it
lets a newer driver on disk override a ROM-based driver.

Native Driver Code Exports 7

Previous Macintosh drivers exported five callable routines:

Open

,

Close

,

Prime

,

Control

, and

Status

. Native device drivers export a single code entry point, called

DoDriverIO

, that handles all Device Manager operations. It is a selector-based entry
point with command codes that specify the I/O action to be performed. The device
driver can determine the nature of the I/O request from the command code
(

Initialize

,

Finalize

,

Open

,

Close

,

Read

,

Write

,

Control

,

Status

,

KillIO

,

Replace

, or

Superseded

) and command kind (

Synchronous

,

Asynchronous

, or

Immediate

).

DoDriverIO

 is described in “DoDriverIO Entry Point” beginning on
page 93.

Native Driver Imports 7

The CFM requires that fragment imports be identified in some manner. With generic
drivers, this is done by linking the device driver fragment code to the Driver Services
Library; family drivers may also be linked to family libraries. The linking lets the
fragment’s symbols be bound at execution time. The Driver Services Library or a family
library should be used instead of a Toolbox-based library when linking a device driver.

IMPORTANT

Native device drivers should use the CFM’s import library mechanism
to share code or data. With this technique, the CFM creates an import
library fragment when the first driver is loaded. When another driver is
loaded, it establishes a connection to the existing library, letting the two
drivers share code or data. For further information about the CFM, see

Inside Macintosh: PowerPC System Software.

 This book is listed in “Apple
Publications” beginning on page xxi.

▲

In the past, driver imports have not always been rigidly characterized. The reason
for now explicitly specifying the system entry points available to native drivers is
to guarantee compatibility of drivers with future releases of Mac OS. For a further
discussion, see “Driver Services Library” beginning on page 71. See also the family-
specific information in Chapters 11, 12, and 13.

C H A P T E R 7

Writing Native Drivers

80

Native Driver Framework

Drivers for Multiple Cards 7

Drivers that support more than one PCI expansion card (or multiple sections on one
card) should use the Code Fragment Manager to import a shared library for both code
and data. The CFM links instances of the native driver on the fly when the driver is
loaded by the Driver Loader Library. Follow these design guidelines:

■

Put the shared library in the Extensions folder in the System Folder.

■

Separate your code and data into card-specific and card-independent portions.
Card-specific portions go into the driver, and card-independent portions go into
the library.

■

Load the driver multiple times with the functions

InstallDriverFromDisk

 or

InstallDriverFromFile

, passing the

RegEntryID

 of each device as a parameter.
(If the driver is in ROM, use

InstallDriverFromMemory

.) Instances of the driver
for each card will be installed in the unit table with different

RefNum

 values.

You can construct a driver that exports services for different families, such as both

'ndrv'

 and

'otan'

, using a driver description structure with multiple service
categories defined.

Note

The driver is responsible for synchronizing accesses to the shared library
in such a way that it protects shared data structures. You can use DSL
mechanisms to help with synchronization.

◆

The Device Manager and Generic Drivers 7

The Device Manager is part of the Macintosh system software that provides communica-
tion between applications and devices. The Device Manager calls generic device drivers;
it doesn’t manipulate devices directly. Generic drivers accept calls from the Device
Manager and either cause device actions or respond by sending back data generated by
devices. For further general information about drivers and the Device Manager, see

Inside Macintosh: Devices.

The Device Manager has traditionally been the gateway for device drivers to use the
Macintosh Toolbox. For 68K drivers, the Device Manager’s capabilities and services
remain unchanged. For generic drivers compatible with the PowerPC microprocessor,
the Device Manager has changed to support PowerPC driver code and to permit drivers
to operate concurrently.

Native Driver Differences 7

For detailed information about constructing native device drivers, see “Writing a Generic
Device Driver,” later in this chapter. If you are already familiar with writing 68K device
drivers, using former versions of the Device Manager, the following are highlights of the
principal differences:

■

A native driver receives its parameters through the single

DoDriverIO

 entry point,
subject to the calling conventions specified by the PowerPC run-time architecture. If a

DoDriverIo

 routine is written in C, the correct behavior is guaranteed. This is a
fundamental change from the way 68K drivers received parameters.

C H A P T E R 7

Writing Native Drivers

Native Driver Framework

81

■

A native driver doesn’t have access to its driver control entry (DCE) in the unit table.

■

ImmediateIOCommandKind

 is passed in the

ioKind

 parameter to specify that a
request must be executed immediately. If so, the driver must process the request
completely and the result of the process must be reflected in the return value from the
driver.

Initialize

,

Finalize

,

Open

,

Close

,

KillIO

,

Replace

, and

Superseded

calls are always immediate.

■

If the

ioKind parameter is either SynchronousIOCommandKind or
AsynchronousIOCommandKind, the return value from the driver is ignored.
The driver must call IOCommandIsComplete at some future time.

■ The Initialize and Finalize commands are sent to the driver as its first and last
commands. Initialize gives the driver information it needs to start up. Finalize
informs the driver that the system needs to unload it.

■ Drivers now receive all Open and Close calls, which connect the driver independently
of initialization and finalization. In the past, the first (and only) Open and Close calls
were used as the initialization and finalization mechanism.

■ All native drivers must accept and respond to all command codes. The Read_Enable,
Write_Enable, Control_Enable, and Status_Enable bits in the DCE are
ignored. Native drivers must keep track of I/O permissions for each instance of
multiple open actions and return error codes if the permissions are violated.

■ The existing Device Manager processes zero-length reads and writes on behalf of the
driver. New drivers must accept zero-length read and write commands and respond
to them in an intelligent way without crashing.

■ KillIO is no longer a control call; it is now its own command. For backward
compatibility, the Device Manager converts KillIO traps into KillIO commands.
It passes the old csKillcode control call (csCode = 1) without acting on it.

■ The Code Fragment Manager sends CFM initialization and termination calls to a
driver when the driver is loaded and unloaded. The CFM initialization routine, if
present, will run prior to the driver being initialized by the Device Manager. It is
possible that the driver will be loaded and its CFM initialization routine run even
though it is never opened and, therefore, never closed. It is important that any
processing done by a CFM initialization routine be undone by the CFM termination
routine. The Device Manager may load a number of drivers looking for the best
candidate for a particular device. Only the best driver is opened and remains loaded.
All other CFM connections are closed, causing the CFM termination routine to run.

■ Native drivers never jump to the IODone routine. To finish processing an I/O request,
a generic native driver must call IOCommandIsComplete to notify the Device
Manager that a given request has been completed.

■ To determine the kind of request or kind of command, the ioTrap field of the old
Device Manager parameter block has been replaced with routine parameters called
theCode and theKind.

■ A native driver must be reentrant to the extent that during any call from the driver to
IOCommandIsComplete the driver may be reentered with another request.

■ A native device driver does not have any sort of header. It must however, export
a data symbol called TheDriverDescription. A driver uses this data structure
to give header-like information to the Device Manager. The Device Manager uses

C H A P T E R 7

Writing Native Drivers

82 Concurrent Generic Drivers

the information in TheDriverDescription to set the dCtlFlags field in the
driver’s DCE.

■ A native device driver cannot make use of the dCtlEMask and dCtlMenu fields of its
driver control block.

■ If you set the ioBuffer field in an I/O parameter block to NULL, the Device Manager
will not pass the buffer to a native driver (but it will not return an error either).

■ Native drivers cannot be used for creating desk accessories.

IMPORTANT

Native drivers may use only those services provided by the Driver
Services Library or family libraries. The Driver Services Library is
described in Chapter 9. ▲

Native Driver Limitations 7
The ability of Mac OS to support generic native drivers does not mean that Mac OS
contains a fully native I/O subsystem; at present the Device Manager still runs in
68K code. In addition, the 68K emulator can service interrupts only on 68K instruction
boundaries. As a result, the performance of a native device driver may be greater or
less than the performance of its 68K equivalent. At this time, Apple has made no
commitment to furnish either a native version of the Device Manager or a combined
native-68K version.

The discussions of generic native drivers in the previous sections apply only to drivers
managed by the Device Manager. Other driver-like things, such as Apple Desktop Bus
drivers, which are not managed by the Device Manager, realize no benefit from the
Device Manager’s concurrency features. These features are discussed in the next section.

Concurrent Generic Drivers 7

Previously, the Device Manager let drivers process only one request at a time. Although
multiple requests could be pending for a driver, the Device Manager passed each new
request only when the it was certain that the driver was idle.

Many clients of the present Device Manager contain workarounds that let the driver
handle multiple requests concurrently. The Device Manager now lets native PowerPC
device drivers handle concurrent tasks more simply.

Drivers that support simultaneous requests should set the kdriverIsConcurrent bit
of the driverRuntime flags word in the driver description structure. In concurrent
mode, the Device Manager alters its request management as follows:

■ All I/O requests it receives are immediately forwarded to the appropriate driver.

■ The drvrActive bit (bit 7) in the dCtlFlags field of the device control block is
never set.

C H A P T E R 7

Writing Native Drivers

Concurrent Generic Drivers 83

■ When a driver chooses to do standard Device Manager queuing, the parameter blocks
corresponding to its requests are placed onto the device’s request queue rooted by the
dCtlQHdr field of the device control block.

■ A driver that chooses to queue requests to an internal queue should set the
kdriverQueuesIOPB bit in the driverRuntime flags word in the
DriverDescriptor structure. This bit prevents the Device Manager from
queueing the request to the DCE request queue. Drivers using the
kdriverQueuesIOPB option bit must dequeue the I/O parameter block (IOPB)
from any internal queues before calling IOCommandIsComplete.

■ A driver must use the IOCommandIsComplete service to complete a request. It
may not use the original IODone service. IOCommandIsComplete is described in
the next section.

■ A driver is responsible for ensuring that all requests have been completed prior to
returning from a Finalize request. Once a Finalize request has been made to a
concurrent driver, no further requests will be made to the driver until the driver has
completed the Finalize request and the driver is again initialized.

Completing an I/O Request 7
To replace the IODone routine and its associated vector jIODone, a new routine has
been added to the Device Manager called IOCommandIsComplete. The difference
between IODone and IOCommandIsComplete is that while IODone initiates request
completion processing for a request that is implicitly designated by the request queue
head, a caller of IOCommandIsComplete must explicitly specify the request that is to
be completed.

After a nonimmediate IOCommandKind command has been accepted, the driver
performs the actions implied by the command and the IOPB contents. When the
command has been processed, the driver must complete the command.

The driver must identify the command it is completing; this is done by passing the
command ID to IOCommandIsComplete. The command ID is provided to a driver
as the first parameter to its I/O entry point, as well as being stored in the IOPB’s
ioCmdAddr field (ThePb -> ioParam.ioCmdAddr).

As a result of a completion, the Device Manager takes several actions. If the command
was performed synchronously, the I/O trap finishes. If the command was performed
asynchronously, the requested I/O completion routine is invoked. The routine
IOCommandIsComplete stores the status value in the IOPB result field. The driver
should never try to modify result.

C H A P T E R 7

Writing Native Drivers

84 Concurrent Generic Drivers

IOCommandIsComplete 7

IOCommandIsComplete lets a driver tell the Device Manager that an I/O request has
been completed.

OSStatus IOCommandIsComplete (IOCommandID ID,

 xSErr result);

ID Specifies the ID of a command.

result Returns the status value to place in the IOPB.

DESCRIPTION

The parameter ID specifies the ID of a command being completed. The value of this ID is
opaque and may be dependent on the operating system version, as discussed in the note
on page 216. The parameter result specifies the status value to place in the IOPB. The
driver must make sure that the request that corresponds to Command is not queued
internally when it calls IOCommandIsComplete, and it may not access the parameter
block afterward.

EXECUTION CONTEXT

IOCommandIsComplete may be called from task level or software interrupt level, but
not from hardware interrupt level. For a list of the execution contexts of other system
routines that support native drivers, see “Service Limitations” beginning on page 282.

RESULT CODES

Note
The OSStatus type is described in “Error Returns” on page 72. ◆

Concurrent I/O Request Flow 7
The movement of multiple driver I/O requests from clients through the Device Manager
to concurrent drivers and back again follows these steps:

1. A client issues an I/O request.

2. The request (in the form of an IOPB) is passed to the Device Manager.

3. The Device Manager uses the refNum in the IOPB to locate the appropriate driver.

4. The Device Manager checks the kdriverQueuesIOPB option bit. If the value of
the bit is false, the Device Manager adds the IOPB to the driver’s DCE-based
request queue.

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 7

Writing Native Drivers

Driver Execution Contexts 85

5. The Device Manager invokes the driver’s DoDriverIO entry point.

6. The driver may choose to leave the request on the DCE queue; alternately, if it is
using the kdriverQueuesIOPB bit, the driver may post the request to a privately
managed queued.

7. The driver starts the I/O action; if it is truly asynchronous, it returns to the Device
Manager without calling IOCommandIsComplete.

8. If the client issued the request synchronously, the Device Manager waits for the
completion of the request; otherwise, it returns control to the client.

9. Some time later, the driver determines (through a primary or secondary interrupt
routine) that the device I/O action has finished. At this time, the driver scans its
private queue looking for the IOPB representing the I/O action.

10. The driver uses the IOPB commandID stored at (ThePb -> ioParam.ioCmdAddr) to
issue an IOCommandIsComplete call. Drivers using the kdriverQueuesIOPB bit
must make sure the IOPB is not on any queue when calling IOCommandIsComplete.

11. The Device Manager places the result in the IOPB.

12. If the I/O request was issued synchronously, control returns to the client. If the I/O
request was issued asynchronously, the Device Manager invokes the client’s
completion routine.

13. Control returns to the driver. The driver should not attempt to access the IOPB after
calling IOCommandIsComplete.

Driver Execution Contexts 7

This section discusses the general concepts and rules covering driver execution in
Mac OS. You must understand these rules to ensure that your code will be compatible
with future versions of Mac OS.

Code Execution in General 7
Future versions of Mac OS will enforce strict run-time execution limitations based upon
execution contexts. Considerable effort has been spent on normalizing these contexts to
ensure that high-level language software can run directly with no interface glue. The
environments in which code execution can occur are described in “Noninterrupt and
Interrupt-Level Execution” beginning on page 67 and may be summarized as follows:

■ Task level is where applications and most other code are executed.

■ Hardware interrupt level execution occurs as a direct result of a hardware interrupt
request. The software executed at hardware interrupt level includes installable
interrupt handlers for PCI and other devices as well as Apple-supplied interrupt
handlers.

C H A P T E R 7

Writing Native Drivers

86 Driver Execution Contexts

■ Secondary interrupt level is similar to the deferred task environment in System 7.
The secondary interrupt queue is filled with requests to execute subroutines posted
for execution by hardware interrupt handlers. Secondary interrupt handlers always
execute sequentially. For synchronization purposes, code running at task level may
also post secondary interrupt handlers for execution; these are processed synchronously
from the perspective of the task level, but are serialized with all other secondary
interrupt handlers.

IMPORTANT

Hardware interrupt handlers can nest in the second generation of Power
Macintosh computers but may not be able to in future products. ▲

Different execution levels have different restrictions. Task-level execution may make use
of nearly any operating-system or Toolbox service, but secondary interrupt tasks and
hardware interrupt handlers are allowed only a subset of those services.

Note
Some confusion in System 7 programming results from ad hoc rules
governing execution contexts. In System 7, applications have one set of
rules while their VBL tasks, Time Manager tasks, and I/O completion
routines all have their own rules. Rules that establish when certain
system services can and cannot be used are difficult to understand and
are not fully established. ◆

Driver Execution 7
The System 7 asynchronous I/O model requires that a generic driver’s responses to its
Read, Write, Control, and Status entry points comply with the requirements of
hardware interrupt level execution. This is because the System 7 Device Manager
initiates requests that have been queued for the driver only after previously queued
requests finish. Routine initiation and completion are both possible at the hardware
interrupt level.

IMPORTANT

A driver’s Open, Close, Initialize, Finalize, Replace, and
Superseded entry points are always invoked at task level. This is the
only opportunity that a driver has to allocate memory or use other
services that are only available at the task level. For memory allocation
guidelines, see “Memory Management Services” beginning on
page 216. ▲

“Service Limitations” beginning on page 282 indicates which Mac OS services are
available to drivers at hardware interrupt level and at secondary interrupt level. It is the
responsibility of the driver writer to conform to these limitations. Drivers that violate the
limitations will not work with future releases of Mac OS.

C H A P T E R 7

Writing Native Drivers

Writing a Generic Device Driver 87

Writing a Generic Device Driver 7

This section discusses writing a generic native driver—one that can respond to Device
Manager requests in the second generation of Power Macintosh computers. Although
drivers may contain PowerPC assembly-language internal code, a native driver’s
interface should be written in C.

Before you decide to write your own device driver, you should consider whether your
task can be more easily accomplished using one of the standard Macintosh drivers
described in Inside Macintosh. In general, you should consider writing a device driver
only if your hardware device or system service needs to be accessed at unpredictable
times or by more than one application. For example, if you develop a new output device
that you want to make available to any application, you might need to write a custom
driver.

This section describes the Native Driver package and tells you how to

■ create a driver description structure

■ write native driver code to respond appropriately to Device Manager requests

■ handle the special requirements of asynchronous I/O

■ install and initialize the driver

Note
Generic drivers alone interact with the Device Manager. The only part of
this section that applies to family drivers is “Driver Description
Structure” beginning on page 88. ◆

Native Driver Package 7
The driver model in the second generation of Power Macintosh defines a new driver
packaging format. This package may contain generic drivers that have the generic driver
call interface or may contain device family drivers that have call interfaces specific to the
device family.

The Native Driver package is a CFM code fragment. It may reside in the Macintosh
ROM, in a PCI expansion ROM, or in the data fork of a file. File-based native driver code
fragments contain no resource fork and have a file type of 'ndrv'. The Macintosh file
system ignores the file’s creator; by specifying a custom creator value assigned by Apple,
you can use this value to distinguish one driver from another. For a discussion of this
technique, see “Using NVRAM to Store Name Registry Properties” beginning on
page 292.

C H A P T E R 7

Writing Native Drivers

88 Writing a Generic Device Driver

The Native Driver package may house various types of drivers. The driver is expected
to support services defined for the particular device family. One predefined driver type
is a generic type and is called 'ndrv' (not to be confused with the Native Driver file
type 'ndrv').

The Native Driver package requires that at least one symbol be defined and exported by
the CFM’s export mechanism. This symbol must be named TheDriverDescription; it
is a data structure that describes the driver’s type, functionality, and characteristics.

Depending on the type of driver, additional symbols must be exported. The generic
'ndrv' driver type requires that the CFM package export a single code entry point,
DoDriverIO, which passes all driver I/O requests. DoDriverIO must respond to the
Open, Close, Read, Write, Control, Status, KillIO, Initialize, Finalize,
Replace, and Superseded commands. Native drivers must also keep track of I/O
permissions for each instance of multiple open actions and return error codes if
permissions are violated. Other driver types that support device families must export
the symbols and entry points defined by the device family or device expert.

IMPORTANT

Native drivers must handle a new type of error return code, OSStatus.
This data type is described in “Error Returns” on page 72. ▲

Driver Description Structure 7

The structure DriverDescription is used to match drivers with devices, set up and
maintain a driver’s run-time environment, and declare a driver’s supported services.

struct DriverDescription {

OSType driverDescSignature;

DriverDescVersion driverDescVersion;

DriverType driverType;

DriverOSRuntime driverOSRuntimeInfo;

DriverOSService driverServices;

};

typedef struct DriverDescription DriverDescription;

typedef struct DriverDescription *DriverDescriptionPtr;

enum {

kTheDescriptionSignature = 'mtej' /*first long word of

 DriverDescription*/

};

typedef UInt32 DriverDescVersion;

enum {

kInitialDriverDescriptor = 0 /*version 1 of DriverDescription*/

};

C H A P T E R 7

Writing Native Drivers

Writing a Generic Device Driver 89

Field descriptions

driverDescSignature
Signature of this DriverDescription structure;
currently 'mtej'.

driverDescVersion
Version of this driver description structure, used to distinguish
different versions of DriverDescription that have the same
driverDescSignature value.

driverType Structure that contains driver name and version.
driverOSRuntimeInfo

Structure that contains driver run-time information, which
determines how a driver is handled when Mac OS finds it. This
structure also provides the driver’s name to Mac OS and specifies
the driver’s ability to support concurrent requests.

driverServices Structure used to declare the driver’s supported programming
interfaces.

The driverType, driverOSRuntimeInfo, and driverServices structures are
described in the next sections. A typical driver description is shown in Listing 7-1.

Listing 7-1 Typical driver description

DriverDescription TheDriverDescription =

{

// signature info

kTheDescriptionSignature, // signature always first

kInitialDriverDescriptor, // version second

// type info

{

"\pAAPL,Viper", // device's name (must match

name in Name Registry)

0x1,0x0,0x40,0x2, // Rev 1.0.0a2

},

// OS run-time requirements

{

kdriverIsUnderExpertControl // run-time options

+ kdriverIsOpenedUponLoad,

"\p.Display_Video_Apple_Viper",

},

// OS run-time info

{

1, // number of service categories

C H A P T E R 7

Writing Native Drivers

90 Writing a Generic Device Driver

{

kServiceCategoryNdrvDriver,// we support 'ndrv' categor

kNdrvTypeIsVideo, // video type

// Version of service

1, 0, 0, 0 // major, minor, stage, rev

}

}

};

Driver Type Structure 7

The DriverType structure contains name and version information about a driver,
which is used to match the driver to a specific device. For further information about
driver matching, see “Matching Drivers With Devices” beginning on page 142.

struct DriverType {

Str31 nameInfoStr;

NumVersion version;

}

typedef UInt32 DeviceTypeMember;

typedef struct DriverType DriverType;

typedef struct DriverType *DriverTypePtr;

Field descriptions

nameInfoStr Name used to identify the driver and distinguish between various
versions of the driver when an expert is searching for drivers. This
string of type Str31 is used to match the PCI name property in the
Name Registry.

version Version resource used to obtain the newest driver when several
identically named drivers (that is, drivers with the same value of
nameInfoStr) are available on disk.

Driver Run-Time Structure 7

The DriverOSRuntime structure contains information that controls how the driver is
used at run time.

struct DriverOSRuntime {

RuntimeOptions driverRuntime;

Str31 driverName;

UInt32 driverDescReserved[8];

};

typedef OptionBits RuntimeOptions;

typedef struct DriverOSRuntime DriverOSRuntime;

C H A P T E R 7

Writing Native Drivers

Writing a Generic Device Driver 91

typedef struct DriverOSRuntime *DriverOSRuntimePtr;

enum { /*DriverOSRuntime bit constants*/

kdriverIsLoadedUponDiscovery = 1, /*auto-load driver when

 discovered*/

kdriverIsOpenedUponLoad = 2, /*auto-open driver when

 it is loaded*/

kdriverIsUnderExpertControl = 4, /*I/O expert handles

 loads and opens*/

kdriverIsConcurrent = 8, /*supports concurrent

 requests*/

kdriverQueuesIOPB = 0x10 /*Device Manager doesn't

 queue IOPB*/

};

Field descriptions

driverRuntime Options used to determine run-time behavior of the driver. The bits
in this field have these meanings:

Bit Meaning

0 System loads driver when driver is discovered.
1 System opens driver when driver is loaded.
2 Device family expert handles driver loads and opens.
3 Driver is capable of handling concurrent requests.
4 The Device Manager does not queue the IOPB to the DCE

request before calling the driver.
driverName Driver name used by Mac OS if driver type is ndrv. Mac OS copies

this name to the area pointed to by the dNamePtr field of the DCE.
This field is unused for other driver types.

driverDescReserved
Reserved for future use.

Driver Services Structure 7

The DriverOSService structure describes the services supported by the driver that are
available to applications and other software. Each device family has a particular set of
required and supported services. A driver may support more than one set of services. In
such cases, nServices should be set to indicate the number of different sets of services
that the driver supports.

struct DriverOSService {

ServiceCount nServices;

DriverServiceInfo service[1];

};

typedef UInt32 ServiceCount;

typedef struct DriverOSService DriverOSService;

typedef struct DriverOSService *DriverOSServicePtr;

C H A P T E R 7

Writing Native Drivers

92 Writing a Generic Device Driver

Field descriptions

nServices The number of services supported by this driver. This field is used
to determine the size of the service array that follows.

service An array of DriverServiceInfo structures that specifies the
supported programming interface sets.

Driver Services Information Structure 7

The DriverServiceInfo structure describes the category, type, and version of a
driver’s programming interface services.

struct DriverServiceInfo {

OSType serviceCategory;

OSType serviceType;

NumVersion serviceVersion;

};

typedef struct DriverServiceInfo DriverServiceInfo;

typedef struct DriverServiceInfo *DriverServiceInfoPtr;

enum { /*used in serviceCategory*/

kServiceCategoryDisplay = 'disp',/*display*/

kServiceCategoryopentransport = 'otan',/*Open Transport*/

kServiceCategoryblockstorage = 'blok',/*block storage*/

kServiceCategorySCSISim = 'scsi',/*SCSI SIM*/

kServiceCategoryndrvdriver = 'ndrv' /*generic*/

};

Note
Current display devices use the generic device type 'ndrv'. ◆

Field descriptions

serviceCategory Specifies driver support services for given device family. The
following device families are currently defined:

Name Supports services defined for

'blok' block drivers family
'disp' video display family
'ndrv' generic native driver devices
'otan' Open Transport
'scsi' SCSI Interface Module

serviceType Subcategory (meaningful only in a given service category).
serviceVersion Version resource ('vers') used to specify the version of a set of

services. It lets interfaces be modified over time.

C H A P T E R 7

Writing Native Drivers

Writing a Generic Device Driver 93

DoDriverIO Entry Point 7
Generic 'ndrv' drivers must provide a single code entry point DoDriverIO, which
responds to Open, Close, Read, Write, Control, Status, KillIO, Initialize,
Finalize, Replace, and Superseded commands.

OSErr DoDriverIO (AddressSpaceID spaceID,

 IOCommandID ID,

 IOCommandContents contents,

 IOCommandCode code,

 IOCommandKind kind);

typedef KernelID AddressSpaceID;

spaceID The address space containing the buffer to be prepared. Mac OS 7.5
provides only one address space, which it automatically passes to
native drivers. Otherwise, specify kCurrentAddressSpaceID.

ID Command ID.

contents An IOCommandContents I/O parameter block. Use the
InitializationInfo union member when calling to initialize
the driver, FinalizationInfo when removing the driver,
DriverReplaceInfo when replacing, DriverSupersededInfo
when superseding, and ParmBlkPtr for all other I/O actions.

code Selector used to determine I/O actions.

kind Options used to determine how I/O actions are performed. The bits
in this field have these meanings:

DoDriverIO Parameter Data Structures 7

The data types and structures that the DoDriverIO entry point uses have the following
declarations:

typedef struct OpaqueRef *KernelID;

enum{

kInvalidID = 0

};

typedef KernelID IOCommandID;

Type KernelID is a 32-bit opaque identifier used to identify various operating system
resources. Any Mac OS I/O service that creates or allocates a resource return an ID. The
ID is later used to specify the resource to perform operations on it or delete it. With type

Bit Meaning

0 synchronous I/O

1 asynchronous I/O

2 immediate I/O

C H A P T E R 7

Writing Native Drivers

94 Writing a Generic Device Driver

OpaqueRef, the value of the ID tells you nothing—you can’t tell which resource it
identifies without calling Mac OS. You also can’t tell what ID you’ll get back the next
time you create a resource, and you can’t tell the relationship between any two resources
by the relationship between their IDs. When a resource is deleted, its ID becomes invalid
for a long time. If you accidentally use an ID for a resource that has been deleted,
chances are you’ll get an error instead of accessing a different resource.

union IOCommandContents { /* contents are command specific*/

ParmBlkPtr pb;

DriverInitInfoPtr initialInfo;

DriverFinalInfoPtr finalInfo;

DriverReplaceInfoPtr replaceInfo;

DriverSupersededInfoPtr supersededInfo;

};

typedef union IOCommandContents IOCommandContents;

typedef UInt32 IOCommandCode;

enum{ /*'ndrv' driver services*/

kOpenCommand, /*open command*/

kCloseCommand, /*close command*/

kReadCommand, /*read command*/

kWriteCommand, /*write command*/

kControlCommand, /*control command*/

kStatusCommand, /*status command*/

kKillIOCommand, /*kill I/O command*/

kInitializeCommand, /*initialize command*/

kFinalizeCommand, /*finalize command*/

kReplaceCommand, /*replace driver command*/

kSupersededCommand /*driver superseded command*/

};

typedef UInt32 IOCommandKind;

enum{

kSynchronousIOCommandKind = 1,

kAsynchronousIOCommandKind = 2,

kImmediateIOCommandKind = 4

};

struct DriverInitInfo {

DriverRefNum refNum;

RegEntryID deviceEntry;

};

C H A P T E R 7

Writing Native Drivers

Writing a Generic Device Driver 95

struct DriverFinalInfo {

DriverRefNum refNum;

RegEntryID deviceEntry;

};

typedef struct DriverInitInfo DriverInitInfo, *DriverInitInfoPtr;

typedef struct DriverInitInfo DriverReplaceInfo,

*DriverReplaceInfoPtr;

typedef struct DriverFinalInfo DriverFinalInfo,

*DriverFinalInfoPtr;

typedef struct DriverFinalInfo DriverSupersededInfo,

*DriverSupersededInfoPtr;

struct InitializationInfo {

refNum refNum;

RegEntryID deviceEntry;

};

struct FinalizationInfo {

refNum refNum;

RegEntryID deviceEntry;

};

typedef struct InitializationInfo InitializationInfo;

typedef struct InitializationInfo *InitializationInfoPtr;

typedef struct FinalizationInfo FinalizationInfo;

typedef struct FinalizationInfo *FinalizationInfoPtr;

Sample Handler Framework 7

A typical driver code framework for responding to DoDriverIO is shown in Listing 7-2.

Listing 7-2 Driver handler for DoDriverIO

OSErr

DoDriverIO(AddressSpaceID SpaceID,
 IOCommandID theID,
 IOCommandContents theContents,
 IOCommandCode theCode,
 IOCommandKind theKind)
{

 OSErr result;

C H A P T E R 7

Writing Native Drivers

96 Writing a Generic Device Driver

 switch (theCode)
 {
 case kInitializeCommand:
 case kReplaceCommand:
 result = DoInitializeCmd
 (theContents.initialInfo->refNum,
 &theContents.initialInfo->deviceEntry);
 break;
 case kFinalizeCommand:
 case kSupersededCommand:
 result = DoFinalizeCmd
 (theContents.finalInfo->refNum,
 &theContents.finalInfo->deviceEntry);
 break;

 case kOpenCommand:
 result = DoOpenCmd (theContents.pb);
 break;
 case kCloseCommand:
 result = DoCloseCmd (theContents.pb);
 break;
 case kKillIOCommand:
 result = DoKillIOCmd (theContents.pb);
 break;

 case kReadCommand:
 result = DoReadCmd (theContents.pb);
 break;
 case kWriteCommand:
 result = DoWriteCmd (theContents.pb);
 break;

 case kControlCommand:
 result = DoControlCmd (theContents.pb);
 break;
 case kStatusCommand:
 result = DoStatusCmd (theContents.pb);
 break;
 default:
 result = paramErr;
 break;
 }

C H A P T E R 7

Writing Native Drivers

Writing a Generic Device Driver 97

 // if an immediate command make sure result = a valid result
 if ((ioCommandKind & kImmediateIOCommandKind) != 0) {

 return (result);/* immediate commands return the

 operation status */

 }

 else if (status == kIOBusyStatus) {

 /*

 * An asynchronous operation is in progress. The driver

 * handler promises to call IOCommandIsComplete when the

 * operation concludes.

 */

 return (noErr);

 }

 else {

 /*

 * Normal command that completed synchronously. Dequeue the

 * user's parameter block.

 */

 return (IOCommandIsComplete(ioCommandID, status));

 }

Getting Command Information 7
Any command in progress that the Device Manager has sent to a native driver can be
examined using GetIOCommandInfo.

GetIOCommandInfo 7

OSErr GetIOCommandInfo (IOCommandID ID,

 IOCommandContents *contents,

 IOCommandCode *command,

 IOCommandKind *kind);

ID Command ID.

contents Pointer to the IOPB or Initialize/Finalize contents.

command Command code.

kind Command kind (synchronous, asynchronous, or immediate).

C H A P T E R 7

Writing Native Drivers

98 Writing a Generic Device Driver

DESCRIPTION

GetIOCommandInfo returns information about the active native driver I/O command
identified by ID. GetIOCommandInfo will not work after a driver has completed
a request.

EXECUTION CONTEXT

GetIOCommandInfo may be called from task level or software interrupt level, but not
from hardware interrupt level.

RESULT CODES

Responding to Device Manager Requests 7
As explained in “Native Driver Code Exports” on page 79, native drivers respond to
Device Manager requests by handling a single call, DoDriverIO. Native drivers must
also keep track of I/O permissions for each instance of multiple open actions and return
error codes if permissions are violated.

The DoDriverIO call interface is described in the previous section. The following
sections discuss some of the internal routines a driver needs to service DoDriverIO
requests.

Initialization and Finalization Routines 7

The Device Manager sends Initialize and Finalize commands to a native driver
as its first and last commands. The Initialize command gives the driver startup
information; the Finalize command informs the driver that the system would like to
unload it. Open and Close actions are now separate from initialization and finalization;
in the past, Open and Close calls were used as the initialization and finalization
mechanism.

A typical framework for a generic driver handler for Device Manager finalization and
CFM initialization and termination commands is shown in Listing 7-3.

Listing 7-3 Initialization, finalization, and termination handlers

refNum MyReferenceNumber;

RegEntryID MyDeviceID;

OSErr DoInitializeCommand

(refNum myRefNum, regEntryIDPtr myDevice)

{

// remember our refNum and Registry entry spec

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 7

Writing Native Drivers

Writing a Generic Device Driver 99

MyReferenceNumber = myRefNum;

MyDeviceID = *myDevice;

return noErr;

}

OSErr DoFinalizeCommand

(refNum myRefNum, RegEntryIDPtr myDevice)

{

#pragma unused (myRefNum , myDevice)

return noErr;

}

CFMInitialize ()

{

return noErr;

}

CFMTerminate ()

{

return noErr;

}

The driver's initialization routine should perform the following functions:

1. Check the device’s AAPL,address property to see that needed resources have been
allocated. The AAPL,address property is described in “I/O Space Cycle Generation”
beginning on page 300.

2. Enable PCI memory or I/O space, or both, using the logic illustrated in Listing 7-4.

Listing 7-4 Enabling PCI spaces

OSErr InitPCIMemorySpace (RegEntryIDPtr DeviceID,

 LogicalAddress addr)

{

UInt16 cmdWord;

OSErr status;

status = ExpMgrConfigReadWord (DeviceID,addr,&cmdWord);

if (status != noErr)

return status;

cmdWord |= cwCommandEnableMemorySpace |

cwCommandEnableIOSpace;

return ExpMgrConfigWriteWord (DeviceID,addr,cmdWord);

}

C H A P T E R 7

Writing Native Drivers

100 Writing a Generic Device Driver

3. Probe the device to verify the driver’s match to it, as illustrated in Listing 7-5.

Listing 7-5 Device probing

OSErr ProbePCIMemorySpace (LogicalAddress addr)

{

UInt8 ctest3;

OSErr status;

status = DeviceProbe(

(void *) (((UInt32)addr) + CTEST3),

&ctest3,

k8BitAccess

);

if (status != noErr)

return status;

}

The initialiation code should also allocate any private storage the driver requires and
place a pointer to it in the static data area that the Code Fragment Manager provides for
each instance of the driver. After allocating memory, the initialization routine should
perform any other preparation required by the driver. If the handler fails to allocate
memory for private storage, it should return an appropriate error code to notify the
Device Manager that the driver did not initialize itself.

If the Open Firmware FCode in the device’s expansion ROM does not furnish either
a "driver,AAPL,MAacOS,PowerPC" property or a unique name property, or if the
driver’s PCI vendor-id and device-id properties are generic, then the initialization
routine must check that the device is the correct one for the driver. If the driver has been
incorrectly matched, the initialization routine must return an error code so the Device
Manager can attempt to make a match. Driver matching is discussed in “Matching
Drivers With Devices” beginning on page 142. PCI vendor-id and device-id
properties are discussed in “Finding, Initializing, and Replacing Drivers” beginning on
page 140.

The driver’s finalization routine must reverse the effects of the initialization routine
by releasing any memory allocated by the driver, removing interrupt handlers, and
canceling outstanding timers. If the finalization routine cannot complete the finalization
request, it can return an error result code. In any event, however, the driver will
be removed.

If the initialization routine needs to install an interrupt handler, see the discussion in
“Interrupt Management” beginning on page 240.

Initialization, finalization, and termination calls are always immediate.

C H A P T E R 7

Writing Native Drivers

Writing a Generic Device Driver 101

Open and Close Routines 7

You must provide both an open routine and a close routine for a native device driver.
The current Macintosh system software does not require that these routines perform any
specific tasks; however, the driver should keep track of open calls to match them with
close calls. Open and close routines are immediate.

Typical code for keeping track of open and close commands is shown in Listing 7-6.

Listing 7-6 Managing open and close commands

long myOpenCount;

OSErr DoOpenCommand (ParmBlkPtr thePb)

{

myOpenCount++;

return noErr;

}

OSErr DoCloseCommand (ParmBlkPtr thePb)

{

myOpenCount--;

return noErr;

}

Read and Write Routines 7

Driver read and write routines implement I/O requests. You can make read and write
routines execute synchronously or asynchronously. A synchronous read or write routine
must complete an entire I/O request before returning to the Device Manager; an
asynchronous read or write routine can begin an I/O transaction and then return to the
Device Manager before the request is complete. In this case, the I/O request continues to
be executed, typically when more data is available, by other routines such as interrupt
handlers or completion routines. “Handling Asynchronous I/O” on page 104 discusses
how to complete an asynchronous read or write routine.

Listing 7-7 shows a sample read routine.

Listing 7-7 Sample driver read routine

short myLastErr; /* Globals */

long myLastCount;

OSErr DoReadCommand (IOpb pb)

{

long numBytes;

short myErr;

C H A P T E R 7

Writing Native Drivers

102 Writing a Generic Device Driver

numbytes = pb -> IORegCount;

{

/* do the read into pb -> iobuffer */

}

myLastErr = myErr; /* store in globals */

return(myErr);

}

Control and Status Routines 7

Control and status routines are normally used to send and receive driver-specific
information. However, you can use these routines for any kind of data transfer as long as
you implement the minimum functionality described in this section. Control and status
routines can execute synchronously or asynchronously.

Listing 7-8 shows a sample control routine, DoControlCommand.

Listing 7-8 Sample driver control routine

MyDriverGlobalsPtr dStore;

OSErr DoControlCommand (ParamBlkPtr pb)

{

switch (pb->csCode)

{

case kClearAll:

dStore->byteCount = 0;

dStore->lastErr = 0;

return(noErr);

default: /* always return controlErr for unknown csCode */

return(controlErr);

}

}

The status routine should work in a similar manner. The Device Manager uses the
csCode field to specify the type of status information requested. The status routine
should respond to whatever requests are appropriate for the driver and return the error
code statusErr for any unsupported csCode value.

The Device Manager interprets a status request with a csCode value of 1 as a special
case. When the Device Manager receives such a status request, it returns a handle to the
driver’s device control entry. The driver’s status routine never receives this request.

Note
An IOCommandIsComplete call with an OSStatus return of PBBusy
causes a fatal error. ◆

C H A P T E R 7

Writing Native Drivers

Writing a Generic Device Driver 103

Listing 7-9 shows a sample status routine, DoStatusCommand.

Listing 7-9 Sample driver status routine

MyDriverGlobalsPtr dStore;

OSErr DoStatusCommand (ParamBlkPtr pb)

{

switch (pb->csCode)

{

case kByteCount:

pb->csParam[0] = dStore->byteCount;

return(noErr);

case kLastErr:

pb->csParam[0] = dStore->lastErr;

return(noErr);

default: /* always return statusErr for unknown csCode */

return(statusErr);

}

}

The control routine must return controlErr for any csCode values that are not
supported. You can define driver-specific csCode values if necessary, as long as they
are within the range 0h80 through 0h7FFF.

KillIO Routine 7

Native driver killIO routines take the following form:

OSErr DoKillIOCommand (ParmBlkPtr thePb)

{ /* check internal queue for request to be killed; if found,

remove from queue and free request */

return noErr;

} /* else, if no request located */

return abortErr;

thePb Pointer to a Device Manager parameter block.

When the Device Manager receives a KillIO request, it removes the specified
parameter block from the driver I/O queue. If the driver responds to any requests
asynchronously, the part of the driver that completes asynchronous requests (such as an
interrupt handler) might expect the parameter block for the pending request to be at the
head of the queue. The Device Manager notifies the driver of KillIO requests so it can
take the appropriate actions to stop work on any pending requests. After processing the
KillIO call, the driver should check whether the kImmediateIOCommandKind bit is
set in the IOCommandKind parameter and return the KillIO result to the Device
Manager. Listing 7-2 shows an example of correct handling of this routine.

C H A P T E R 7

Writing Native Drivers

104 Writing a Generic Device Driver

Replace and Superseded Routines 7

Under certain conditions, it may be desirable to replace an installed driver. For example,
a display card may use a temporary driver during system startup and then replace it
with a better version from disk once the file system is running and initialized.

Replacing an installed driver is a two-step process. First, the driver to be replaced is
requested to give up control of the device. Second, the new driver is installed and
directed to take over management of the device. Two native driver commands are
reserved for these tasks.

The kSupersededCommand selector tells the outgoing driver to begin the replacement
process. The command contents are the same as with kFinalizeCommand. The
outgoing driver should take the following actions:

■ If it is a concurrent driver, it should wait for current I/O actions to finish.

■ Place the device in a “quiet” state. The definition of this state is device specific, but it
may involve such tasks as disabling device interrupts.

■ Remove any installed interrupt handlers.

■ Store the driver and the device state in the Name Registry as one or more properties
attached to the device entry.

■ Return noErr to indicate that the driver is ready to be replaced.

The kReplaceCommand selector tells the incoming driver to begin assume control of the
device. The command contents are the same as those of kInitializeCommand. The
incoming driver should take the following actions:

■ Retrieve the state stored in the Name Registry and delete the properties stored by the
Superseded command.

■ Install interrupt handlers.

■ Place the device in an active state.

■ Return noErr to indicate that the driver is ready to be used.

Note
When replacing concurrent generic drivers, the Device Manager halts
new commands until the replacement process is complete. ◆

Handling Asynchronous I/O 7
If you design any of your driver routines to execute asynchronously, you must provide a
mechanism for the driver to complete the requests. Some examples of routines that you
might use are the following:

■ Completion routines: Completion routines are provided by Device Manager clients to
let the Device Manager notify the client when an I/O process is finished.

■ Interrupt handlers: If the driver serves a hardware device that generates interrupts,
you can create an interrupt handler that responds to these interrupts. The interrupt
handler must clear the source of the interrupt and return as quickly as possible. For
more information about interrupts and how to install an interrupt handler, see
“Interrupt Management” beginning on page 240.

C H A P T E R 7

Writing Native Drivers

Writing a Generic Device Driver 105

Clients of the Device Manager that make asynchronous calls should observe these
guidelines when using asynchronous routines:

■ Once you pass a parameter block to an asynchronous routine, it is out of your control.
You should not examine or change the parameter block until the completion routine is
called because you have no way of knowing the state of the parameter block.

■ Do not dispose of or reuse a parameter block until the asynchronous request is
completed. For example, if you declare the parameter block as a local variable, the
function cannot return until the request is complete because local variables are
allocated on the stack and released when a function returns.

■ Use a completion routine to determine when an asynchronous routine has completed,
rather than polling the ioResult field of the parameter block. Polling the ioResult
field is not efficient and defeats the purpose of asynchronous operation.

Installing a Device Driver 7
There are two ways to install a device driver, depending on where the driver code is
stored and how much control you want over the installation process.

■ You can store the device driver in the expansion ROM of a PCI card, as described in
Chapter 4, “Startup and System Configuration.”

■ You can store the device driver on disk in a file of type 'ndrv' in the Extensions
folder inside the System Folder.

The first option, storing the driver in the card’s expansion ROM, is the normal practice
because it gives the card autoconfiguration capabilities, as described in Chapter 4,
“Startup and System Configuration.”

See “Finding, Initializing, and Replacing Drivers” beginning on page 140 for driver
loading and installation details. “Driver Loader Library” beginning on page 117 provides
details of the mechanisms available for installing and removing drivers that are listed in
the Device Manager unit table.

Table 7-1 lists the driver unit numbers that are reserved for specific purposes.

Table 7-1 Reserved unit numbers

Unit number range Reference number range Purpose

0 through 11 –1 through –12 Reserved for serial, disk, AppleTalk,
printer, and other drivers

12 through 31 –13 through –32 Available for desk accessories

32 through 38 –33 through –39 Available for SCSI devices

39 through 47 –40 through –48 Reserved

48 through 127 –49 through –128 Available for PCI and other drivers

C H A P T E R 7

Writing Native Drivers

106 Driver Gestalt

Driver Gestalt 7

Every device driver has a unique set of family-specific configuration and state informa-
tion that it maintains. This configuration information often needs to be passed between
the family expert and the device drivers it manages. To aid in this communication
process, the native driver architecture provides a driver gestalt mechanism. Driver
gestalt provides a common, unified mechanism for both native and 68K device drivers
by which clients (such as applications) or family subsystem managers (such as the SCSI
Manager or the Display Manager) can access family-specific configuration and state
information about the driver.

For instance, the Start Manager uses driverGestalt to interrogate SCSI drivers for
family-specific information to determine from which SCSI device to boot. The informa-
tion communicated back to the Start Manager is family specific (specific to the SCSI
Manager) and contains necessary data for system startup— SCSI bus ID, device ID,
and disk partition. Each I/O subsystem defines unique driverGestaltSelector and
driverGestaltResponse formats. The SCSI Manager driver gestalt formats are SCSI
based, the Display Manager formats convey video information, and so on. Cross-device-
family driverGestalt calls are not advised; for example, don’t make SCSI Manager
driver gestalt calls to video drivers.

Note
Support for driver gestalt is optional, but it is highly recommended. If a
PCI device driver does not support driver gestalt, it may not work with
some applications or in certain system configurations. ◆

For general information about the Macintosh gestalt mechanism, see Inside Macintosh:
Operating System Utilities. This book is described in “Apple Publications” beginning on
page xxi. The primary differences between driver gestalt and the traditional Macintosh
gestalt mechanism are that driver gestalt has no NewGestalt or ReplaceGestalt
functionality and information is provided independently for each driver.

System gestalt for PCI-based Macintosh computers, which is different from driver
gestalt, is described in “Macintosh System Gestalt” beginning on page 202.

Supporting and Testing Driver Gestalt 7
DriverGestaltOn, DriverGestaltOff, and DriverGestaltIsOn, described in
this section, let driver code and other software communicate about the driver’s support
for driver gestalt.

C H A P T E R 7

Writing Native Drivers

Driver Gestalt 107

DriverGestaltOn and DriverGestaltOff 7

DriverGestaltOn and DriverGestaltOff let driver code indicate to other software
that it does or does not support driver gestalt.

OSErr DriverGestaltOn (DriverRefNum refNum);

OSErr DriverGestaltOff (DriverRefNum refNum);

refNum Unit table reference number.

DESCRIPTION

DriverGestaltOn and DriverGestaltOff set and clear bit 2 in the device control
entry (DCE) flags word.

RESULT CODES

DriverGestaltIsOn 7

DriverGestaltIsOn lets other code test whether or not a driver supports
driver gestalt.

Boolean DriverGestaltIsOn (DriverFlags flags);

flags The flags word in the driver’s DCE.

DESCRIPTION

DriverGestaltIsOn returns true if bit 2 in the DCE flags word is set,
false otherwise.

Implementing Driver Gestalt 7
If a native driver has indicated support for driver gestalt, as described in the previous
section, it must conform to these rules:

■ It must respond to all unsupported status csCode values with a statusErr value,
and to all unsupported control csCode values with a controlErr value. This rule is
the most important for drivers to follow after calling DriverGestaltOn.

noErr 0 No error
badUnitErr –21 Bad unit number
unitEmptyErr –22 Empty unit number

C H A P T E R 7

Writing Native Drivers

108 Driver Gestalt

■ It should be capable of closing properly and of removing vertical blanking (VBL)
tasks, Time Manager tasks, drive queue elements, and so on. Drivers that can close
should return noErr in response to Close requests. If it is absolutely not possible for
the driver to close, it must respond with closErr and continue to function as if the
Close request had not been issued.

■ It must implement the csCode values listed in Table 7-2 and described in the rest of
this section. Driver clients seeing the DriverGestaltEnable bit set will assume
that these calls will either produce the required actions or result in a statusErr or
controlErr return. The kcsDriverGestalt and kcsDriverConfigure codes
produce the principal new functionality of the native driver model. For historical
reasons, setting the DriverGestaltEnable bit also requires that the other calls
listed in Table 7-2 either be supported or return an error code. Future control or status
calls for all native PCI drivers will be implemented using only selectors through
DriverGestalt and DriverConfigure.

DCE Flags 7
DCE bit 2 indicates that a driver supports the driver gestalt interface defined in the next
section. The complete list of DCE bits in the flags word is given in Table 7-3.

* For a discussion of power modes, see “Card Power Controls” beginning on page 311.

Table 7-2 Driver gestalt codes

Name Value Description

Status codes

kcsDriverGestalt 43 General status information

kcsGetPowerMode 70 Returns card power mode*

kcsReturnDeviceID 120 Returns SCSI device ID in csParam[0]

Control codes

kcsDriverConfigure 43 General configuration commands

kcsSetStartupDrive 44 Designates partition as a boot partition

kcsSetPowerMode 70 Sets card power mode*

Table 7-3 Bits in flags word

Name Value Description

kbIsAppleTalk 0

kbDriverGestaltEnable 2 Supports driver gestalt

kbIsNdrv 3 Is a PowerPC native driver

kbIsConcurrent 4 Used by AOCE
continued

C H A P T E R 7

Writing Native Drivers

Driver Gestalt 109

Mask values for the bits listed in Table 7-3 are given in Table 7-4.

kbIsOpen 5

kbIsRamBased 6 (Not used with native drivers)

kbIsActive 7

kbReadEnable 8

kbWriteEnable 9

kbControlEnable 10

kbStatusEnable 11

kbNeedsGoodbye 12

kbNeedsTime 13

kbNeedsLock 14

Table 7-4 Mask values for flags word

Name Value

kmIsAppleTalkMask 1 << kbIsAppleTalk

kmDriverGestaltEnableMask 1 << kbDriverGestaltEnable

kmIsNdrvMask 1 << kbIsNdrv

kmIsConcurrentMask 1 << kbIsConcurrent

kmIsOpenMask 1 << kbIsOpen

kmIsRamBasedMask 1 << kbIsRamBased

kmIsActiveMask 1 << kbIsActive

kmReadEnableMask 1 << kbReadEnable

kmWriteEnableMask 1 << kbWriteEnable

kmControlEnableMask 1 << kbControlEnable

kmStatusEnableMask 1 << kbStatusEnable

kmNeedsGoodbyeMask 1 << kbNeedsGoodbye

kmNeedsTimeMask 1 << kbNeedsTime

kmNeedsLockMask 1 << kbNeedsLock

Table 7-3 Bits in flags word (continued)

Name Value Description

C H A P T E R 7

Writing Native Drivers

110 Driver Gestalt

Using DriverGestalt and DriverConfigure 7
Status code csCode 43 (0x2B) is defined as DriverGestalt. It takes two parameters, at
csParam and csParam+4, that contain a gestalt-like selector and long word output.
Similarly, control csCode 43 is defined as DriverConfigure. It also takes two
parameters, an OSType selector that specifies the requested operation and a long word.
The parameter blocks have these structures:

struct DriverGestaltParam {

QElemPtr qLink;

short qType;

short ioTrap;

Ptr ioCmdAddr;

ProcPtr ioCompletion;

OSErr ioResult;

StringPtr ioNamePtr;

short ioVRefNum;

short ioCRefNum; /* refNum for I/O operation*/

short csCode; /* == driverGestaltCode */

OSType driverGestaltSelector;

UInt32 driverGestaltResponse;

};

struct DriverConfigParam {

QElemPtr qLink;

short qType;

short ioTrap;

Ptr ioCmdAddr;

IOCompletionUPP ioCompletion;

OSErr ioResult;

StringPtr ioNamePtr;

short ioVRefNum;

short ioCRefNum; /* refNum for I/O operation*/

short csCode; /* == driverConfigureCode*/

OSType driverConfigureSelector;

DriverGestaltInfo driverConfigureParameter;

};

IMPORTANT

DriverConfigure is not currently implemented. See
“DriverConfigure Selectors” on page 113. ▲

The OSType selectors for DriverGestalt and DriverConfigure are defined
according to the rules of gestalt selector definition set forth in Inside Macintosh: Operating
System Utilities. In particular, Apple reserves all four-character sequences consisting
entirely of lowercase letters and nonalphabetic characters.

C H A P T E R 7

Writing Native Drivers

Driver Gestalt 111

DriverGestalt Selectors 7

Currently defined selectors for the DriverGestalt status call are listed in Table 7-5.

Note
For some types of devices, DriverGestalt responses may be
dependent upon fields other than the selector field. For instance, the
'boot' selector returns a startup value that identifies a particular drive
in the drive queue instead of a particular device or driver. A driver
handling a partitioned disk, with each HFS partition representing a
separate drive, returns a result appropriate for a particular partition, as
specified by drive number in the ioVRefNum field. ◆

The following response buffers are defined for some of the driver gestalt selectors listed
in Table 7-5:

struct DriverGestaltSyncResponse

{

Boolean behavesSynchronously;

UInt pad[3]

};

* Represents power consumed in microwatts.
† The NumVersion data structure is described on page 135.

Table 7-5 DriverGestalt selectors

Selector Description Response type

'boot' Parameter RAM value to designate this driver/drive BootResponse

'devt' Type of device the driver is driving DevTResponse

'intf' Immediate location (or interface) for device IntfResponse

'lpwr' True if driver supports power switching Boolean

'pmn3' Minimum power consumption at 3.3 V unsigned long*

'pmn5' Minimum power consumption at 5 V unsigned long*

'pmx3' Maximum power consumption at 3.3 V unsigned long*

'pmx5' Maximum power consumption at 5 V unsigned long*

'purg' True if driver has purge permission Boolean

'sync' True if driver only behaves synchronously SyncResponse

'vers' The version number of the driver NumVersion†

'wide' True if driver supports the ioWPosOffset for 64-bit
addressing

WideResponse

C H A P T E R 7

Writing Native Drivers

112 Driver Gestalt

struct DriverGestaltBootResponse

{

UInt8 extDev; /* packed target (upper 5 bits)

 LUN (lower 3 bits) */

UInt8 partition; /* partition */

UInt8 SIMSlot; /* slot */

UInt8 SIMsRSRC; /* sRsrcID */

};

struct DriverGestaltDevTResponse

{

OSType deviceType;

};

enum {

kdgDiskType = 'disk', /* standard r/w disk drive */

kdgTapeType = 'tape', /* tape drive */

kdgPrinterType = 'prnt', /* printer */

kdgProcessorType = 'proc', /* processor */

kdgWormType = 'worm', /* write-once */

kdgCDType = 'cdrm', /* cd-rom drive */

kdgFloppyType = 'flop', /* floppy disk drive */

kdgScannerType = 'scan', /* scanner */

kdgFileType = 'file', /* logical partition based on a

file (drive Container) */

kdgRemovableType = 'rdsk' /* removable media hard disk */

};

struct DriverGestaltIntfResponse

{

OSType interfaceType;

};

enum {

kdgScsiIntf = 'scsi',

kdgPcmciaIntf = 'pcmc',

kdgIdeIntf = 'ide ',

kdgFireWireIntf = 'fire',

kdgExtBus = 'card'

};

struct DeviceInfoRecord {

struct DeviceInfoRecord *nextInfo;

DeviceIdent deviceID;

short identifier; /* to be used as a unique

identifier */

};

C H A P T E R 7

Writing Native Drivers

Driver Gestalt 113

struct DriverGestaltWideResponse

{

Boolean supportsWide;

};

Using the 'boot' Selector 7

The 'boot' DriverGestalt status call is made both by the Startup Disk control panel
when the user selects a device and by the Start Manager when the ROM is trying to
match a device in the drive queue with the device specified in PRAM. The DriveNum of
the device’s DrvQEl is placed in the ioVRefNum field of DriverGestaltParam. In the
case of a SCSI device, it is necessary to return the data in a particular format so that the
startup code knows on which SCSI bus, ID, and LUN the boot device can be found. It
needs this information so that it can attempt to load that driver first. A SCSI driver can
return the following data:

biPB.scsiHBAslotNumber -> driverGestaltBootResponse.slot

biPB.scsiSIMsRsrcID -> driverGestaltBootResponse.sRSRC

targetID<<3 + LUN -> driverGestaltBootResponse.extDev

partition number -> driverGestaltBootResponse.partition

As shown, the disk driver can copy the values found in BusInquiry into the slot and
sRSRC fields and can generate the extDev field by left-shifting the target ID by 3 bits (0
to 31 range) and adding the logical unit number (0 to 8 range). The partition field enables
the selection of a single partition on a multiply partitioned device as the boot device. It is
not interpreted by the ROM or the startup disk 'cdev', so the driver can choose a
meaning and a value for this field. Typically the driver would enumerate the partitions
laid out on a disk and return the number of the partition for the drive specified in the
ioVRefNum field.

DriverConfigure Selectors 7

No DriverConfigure selectors are currently defined; however, the control call with
csCode = 43 will be used in the future to add driver control functions. Drivers setting
the DriverGestaltEnable bit should not implement this control call for other uses.
To use the DriverConfigure call, use the driverConfigureSelector field to
choose an operation and pass parameters to it with the driverConfigureParameter
field. Multiple parameters can be passed by means of a pointer to a structure.

Other Control and Status Calls 7
This section discusses how native drivers should respond to driver gestalt control and
status calls other than DriverConfigure and DriverGestalt—that is, calls with
csCode values other than 43.

C H A P T E R 7

Writing Native Drivers

114 Driver Gestalt

SetStartupDrive Control Call 7

The kcsSetStartupDrive control call (csCode = 44) results when a user selects a
drive from the Startup Device control panel in the current version of Mac OS. It indicates
to the driver that a volume controlled by that driver (that is, one with its drive number in
the ioVRefNum field) is the chosen startup drive. This lets a specific partition selected by
the user on a multiply partitioned disk be the startup volume by allowing the driver to
control which partition is inserted into the drive queue first. Mass storage drivers (those
that control elements in the drive queue) that set the driverGestaltEnable bit must
implement this control call or return controlErr.

RegisterPartition Control Call 7

The RegisterPartition control call (csCode = 50) registers a non-Macintosh partition
found on a disk. The driver should fill in csParam as follows:

(long *)csParam[0] <- DrvQElPtr /* DrvQEl of partition */
(long *)csParam[1] <- /* start of partition in logical blocks */
(long *)csParam[2] <- /* size of partition in logical blocks */

GetADrive Control Call 7

The GetADrive control call (csCode = 51) asks the driver to get a drive. No parameters
are passed into GetADrive, but it must return a DrvQElPtr value for the drive
in csParam[0].

ProhibitMounting Control Call 7

The ProhibitMounting control call (csCode = 52) prevents the mounting of a
partition. The csParam[0] field contains a valid partInfoRecPtr, a pointer to a
partInfoRec structure that contains information about a partition:

typedef struct partInfoRec
{

DeviceIdent SCSIID; // DeviceIdent for the device
unsigned long physPartitionLoc; // physical block number of

beginning of partition
unsigned long partitionNumber; // partition number of this

partition
} partInfoRec, *partInfoRecPtr;

GetPartitionStatus Status Call 7

The GetPartitionStatus status call (csCode = 50) retrieves the status of a partition.
The driver should fill out csParam as follows:

(long *)csParam[0] <- /* partInfoRecPtr for partition */
(short *)csParam[1] <- /* address of a short for response */

The variable pointed to by csParam must be filled with the VRefNum value for a
volume mounted on the partition. If none exist, the driver must return 0.

C H A P T E R 7

Writing Native Drivers

Driver Gestalt 115

GetPartitionInfo Status Call 7

The GetPartitionInfo status call (csCode = 51) returns information about a
partition in the partInfoRec structure described earlier in “ProhibitMounting Control
Call.” The csParam[0] field contains a pointer to an empty partInfoRec structure,
which the driver fills out as follows:

*(partInfoRecPtr)csParam.SCSIID <- // DeviceIdent for the device

*(partInfoRecPtr)csParam.physPartitionLoc <- // physical block

number of partition start

*(partInfoRecPtr)csParam.partitionNumber <- // partition number

of this partition

Low Power Mode Support Calls 7

Control and status calls with csCode = 70 are optional for all drivers. Making a control
call with csCode = 70 sets the device’s power-saving mode, while a status call returns it.
Information is passed in the following structure in csParam[0]:

enum {

kcsGetPowerMode = 70 /* returns the current power mode*/

kcsSetPowerMode = 70 /* sets the current power mode*/

};

enum {
pmActive = 0, /* normal operation */
pmStandby = 1, /* minimal energy saving state; can go active

in 5 seconds */
pmIdle = 2, /* substantial energy savings; can go active

 in 15 seconds */
pmSleep = 3 /* maximum energy savings; device may be

turned off */
};

struct LowPowerMode

{

unsigned char mode;

};

The differences among these low power modes are the amount of energy savings and the
time it takes to return to the active state. Each device driver must determine the
appropriate level of energy saving support for the device that it drives. If the device can
go into active state in all possible low power states within 5 seconds, it should map both
pmIdle and pmSleep to pmStandby. If the device takes a minimum of 10 seconds to go
into active state from a low power state, then it should map pmStandby to pmActive.
All device drivers should support these four modes; they should never return an error
because they do not support a particular mode. Low power modes that are not possible
on a given device should be mapped to other appropriate modes.

C H A P T E R 7

Writing Native Drivers

116 Driver Gestalt

For the device to become active, it is not required that the device driver get a control call
telling it to make the device active. Any operation that requires the device to become
active is sufficient. For example, if a hard disk driver currently has its drive in sleep
mode and it gets a read call, it should automatically wake up the drive and respond to
the read request. Once the drive is made active, the device driver requires a control call
telling it to put the device into some other mode. It should not put the device into an
inactive mode automatically unless it is managing the device’s power state independently
of the Mac OS Power Manager.

Drivers that support low power mode calls should return true to the 'lpwr'
DriverGestalt call listed in Table 7-5 on page 111. Drivers that do not support
these calls should return false to the 'lpwr' DriverGestalt call, return controlErr
to the SetPowerMode (csCode = 70) control call, and return statusErr to the
GetPowerMode (csCode = 70) status call.

Device-Specific Status Calls 7

This section describes two device-specific driver gestalt status calls, ReturnDeviceID
and GetCDDeviceInfo.

ReturnDeviceID Status Call 7

A status call with a csCode value of 120 returns the DeviceIdent value for the
primary SCSI device being controlled by a driver. SCSI drivers that set the
driverGestaltEnable bit must implement this csCode value as described or
return statusErr.

GetCDDeviceInfo Status Call 7

A status call with a csCode value of 121 determines the features of a particular
CD-ROM drive. Before Apple’s CD-ROM driver version 5.0, this was done using the
GetDriveType status call, which returned a specific model of CD-ROM drive. This
makes client code difficult to maintain since it must be modified each time a new
CD-ROM drive is introduced. To alleviate this problem, the features of the device
have been encoded in testable bits. An integer containing the sustained transfer rate
of the drive relative to an AppleCD 150 is also included. This information is returned
in the CDDeviceCharacteristics structure. CD-ROM drivers that set the
driverGestaltEnable bit must either implement this csCode value or return
statusErr.

struct CDDeviceCharacteristics

{

UInt8 speedMajor; /* high byte of fixed-point number

for drive speed */

UInt8 speedMinor; /* low byte of "" CD 300 == 2.2,

CD_SC == 1.0 etc. */

UInt16 cdFeatures; /* flags for features of drive */

};

C H A P T E R 7

Writing Native Drivers

Driver Loader Library 117

enum /* flags for CD features field (cdFeatures) */

{

cdPowerInject = 0, /* supports power inject of media */

cdNotPowerEject = 1, /* no power eject of media */

cdMute = 2, /* audio channels can be muted;

 audio play mode = 00xxb or xx00b */

/* bits 3 and 4 are reserved */

cdLeftPlusRight = 5, /* left, right channels can be mixed;

 audio play mode = 11xxb or xx11b */

/* bits 6 through 9 are reserved */

cdSCSI2 = 10, /* supports SCSI-2 CD-ROM cmd set */

cdStereoVolume = 11, /* supports independent volume levels

 for each audio channel */

cdDisconnect = 12, /* drive supports SCSI disconnect/

 reconnect */

cdWriteOnce = 13, /* drive is a write/once (CD-R) type;

 bits 14 and 15 are reserved */

cdPowerInjectMask = 1 << cdPowerInject,

cdNotPowerEjectMask = 1 << cdNotPowerEject,

cdMuteMask = 1 << cdMute,

cdLeftPlusRightMask = 1 << cdLeftPlusRight,

cdSCSI2Mask = 1 << cdSCSI_2,

cdStereoVolumeMask = 1 << cdStereoVolume,

cdDisconnectMask = 1 << cdDisconnect,

cdWriteOnceMask = 1 << cdWriteOnce

};

Driver Loader Library 7

This section describes the Driver Loader Library (DLL), a CFM shared-library extension
to the Macintosh Device Manager. The DLL provides services to locate, install, and
remove drivers.

IMPORTANT

Family experts and the Mac OS startup firmware are the primary clients
of the DLL. It offers services that control every aspect of driver-to-device
matching and driver loading and installation. Driver loading is normally
an automatic process that frees drivers from having to match themselves
with devices. In some situations, however, drivers may need to perform
the match themselves. ▲

C H A P T E R 7

Writing Native Drivers

118 Driver Loader Library

The installation and removal services are provided for drivers that are called through the
Device Manager. Typically, these drivers are of service type 'ndrv'. Clients that expect
to call drivers through the Device Manager should utilize these services to locate the
driver, load it, install it in the unit table, and remove it.

Clients of device drivers that belong to a well-defined family type (such as networking
devices within OpenTransport) need not use the installation and removal services, since
these drivers are not callable via the Device Manager and hence do not reside in the unit
table. These clients may choose to use the standard CFM services to load their drivers
and may use the loader utilities to do driver matching before using the CFM.

The Driver Loader Library services provide several major functions for drivers:

■ loading and memory space management

■ installation in the unit table

■ removal from the unit table

■ providing information about installed drivers

■ driver matching

Figure 7-1 shows the roles and relationships of the Device Manager, the ROM
(all Macintosh system software other than the Device Manager), and the Driver
Loader Library.

Figure 7-1 Position of Driver Loader Library

ROM

Driver
Loader
Library

Device
Manager

Native
driver

Open and close traps

Open
Close
Read
Write
Control
Status
KillIO

Initialize
Finalize
Replace

Superseded

C H A P T E R 7

Writing Native Drivers

Driver Loader Library 119

Figure 7-2 shows the relationship of the Driver Loader Library’s main functions.

Figure 7-2 Driver Loader Library functions

Loading and Unloading 7
A driver may be loaded from any CFM container (in memory, files, or resources) as well
as from a device’s driver property in the Name Registry. The following services are
provided for this purpose.

■ GetDriverMemoryFragment loads a driver from a memory range.

■ GetDriverDiskFragment loads a driver from a file.

■ FindDriverCandidates and ScanDriverCandidates prepare a list of file-based
drivers that potentially match a device.

■ FindDriversForDevice finds the “best” drivers for a device, searching both ROM
and disk, without making a CFM connection.

■ GetDriverForDevice finds the “best” driver for a device and returns its CFM
connection ID.

■ SetDriverClosureMemory holds or releases a driver’s memory, including any
associated libraries.

The only circumstance in which FindDriversForDevice or GetDriverForDevice
is required is when there is a device node in the device tree that does not have an

Name
Registry

Loading
Code

Fragment
Manager

Installation

Information
retrieval

Removal

(Driver in use)

FilesRAM

C H A P T E R 7

Writing Native Drivers

120 Driver Loader Library

associated driver. One instance when this might happen is if a PCI card is entered in the
device tree after system startup. FindDriversForDevice does not create a CFM
connection for the driver it finds; this service is useful if you want to browse potential
drivers for a device without loading them. GetDriverForDevice finds the driver and
creates a CFM connection for it.

The successful load of a driver yields the following results:

■ a CFM ConnectionID

■ a pointer to the driver description

■ in the case of a generic native driver, a pointer to its DoDriverIO entry point

If the driver has a CFM initialization routine, it will be executed. The initialization
routine should return noErr to indicate a successful load. Note that multiple drivers
may be loaded in order to determine the best device-to-driver match. Therefore, a
driver’s CFM initialization routine should not allocate resources that cannot be released
in its termination routine.

The services listed above do not affect the Device Manager’s unit table. They are
discussed in the next sections.

Note
Holding down the Shift, Command, N, and D keys simultaneously
during Mac OS startup disables the loading of file-based drivers. ◆

GetDriverMemoryFragment 7

GetDriverMemoryFragment loads a code fragment driver from an area of memory.

OSErr GetDriverMemoryFragment

(Ptr memAddr,

 long length,

 ConstStr63Param fragName,

 CFragConnectionID *fragmentConnID,

 DriverEntryPointPtr *fragmentMain,

 DriverDescriptionPtr *DriverDesc);

memAddr Pointer to the beginning of the fragment in memory.

length Length of the fragment in memory.

fragName Optional name of the fragment (primarily used by debugger).

fragmentConnID Resulting CFM connectionID.

fragmentMain Resulting pointer to DoDriverIO (may be nil).

DriverDesc Resulting pointer to DriverDescription.

C H A P T E R 7

Writing Native Drivers

Driver Loader Library 121

DESCRIPTION

Given a pointer to the beginning of a driver code fragment in memAddr and the length of
that fragment in length, GetDriverMemoryFragment loads the driver. It returns the
loaded driver’s CFM connectionID value in fragmentConnID, a pointer to its
DoDriverIO entry point in fragmentMain, and a pointer to its driver description
structure in DriverDesc.

Note
The CFM connectionID variable should be freed when
the driver is unloaded. ◆

RESULT CODES

GetDriverDiskFragment 7

GetDriverDiskFragment loads a native driver from a file.

OSErr GetDriverDiskFragment

(FSSpecPtr fragmentSpec,

 CFragConnectionID *fragmentConnID,

 DriverEntryPointPtr *fragmentMain,

 DriverDescriptionPtr driverDesc);

fragmentSpec Pointer to a file system specification.

fragmentConnID Resulting CFM connectionID.

fragmentMain Resulting pointer to DoDriverIO.

driverDesc Resulting pointer to DriverDescription.

DESCRIPTION

Given a pointer to a CFM file system specification, GetDriverDiskFragment uses the
CFM search path to find and load a driver code fragment. It returns the loaded driver’s
CFM connectionID value in fragmentConnID, a pointer to its DoDriverIO entry
point in fragmentMain, and a pointer to its driver description in driverDesc.

RESULT CODES

noErr 0 No error
paramErr –50 Bad parameter
All CFM errors (see Inside Macintosh: PowerPC System Software)

noErr 0 No error
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)

C H A P T E R 7

Writing Native Drivers

122 Driver Loader Library

FindDriverCandidates 7

OSErr FindDriverCandidates

(RegEntryIDPtr deviceID,

 Ptr *propBasedDriver,

 RegPropertyValueSize *propBasedDriverSize,

 StringPtr deviceName,

 DriverType *propBasedDriverType,

 Boolean *gotPropBasedDriver,

 FileBasedDriverRecordPtr fileBasedDrivers,

 ItemCount *nFileBasedDrivers);

deviceID Name Registry ID of target device.

propBasedDriver Address of property-based driver.

propBasedDriverSize Size of property-based driver.

deviceName Returned name of the device.

propBasedDriverType Type of property-based driver.

gotPropBasedDriver Value is true if property-based driver was found.

fileBasedDrivers List of sorted file-based driver records.

nFileBasedDrivers Count of file-based driver records.

DESCRIPTION

Given the name entry ID of a device, FindDriverCandidates constructs a list of file-
based drivers that match the device name or one of the device-compatible names. The
list is sorted from best match to least favorable match. Drivers that match the device
name are listed before drivers that match a compatible name. Each of these groups are
further sorted by version numbers, using the HigherDriverVersion service described
on page 135. Property-based drivers are always matched using the device name and are
returned separately from file-based drivers. An I/O expert can determine a property-
based driver’s ranking using the HigherDriverVersion service. If a property-based
driver is not found, all outputs are zeroed.

If a nil list output buffer is passed, only the count of matched file-based drivers is
returned. An I/O expert can call FindDriverCandidates first with a nil buffer,
allocate a buffer large enough for the list, and then call FindDriverCandidates again
with the appropriately sized buffer.

If a nil value is passed in deviceID, all drivers from the Extensions folder are
returned. When using this option, pass nil values for all parameters except
fileBasedDrivers and nFileBasedDrivers.

C H A P T E R 7

Writing Native Drivers

Driver Loader Library 123

The list of matched drivers consists of an array of file-based driver records:

struct FileBasedDriverRecord {

FSSpec theSpec; /* file specification*/

DriverType theType; /* nameInfoStr + version number*/

Boolean compatibleProp; /* true if matched using a

compatible name*/

UInt8 pad[3]; /* alignment*/

};

typedef struct FileBasedDriverRecord

FileBasedDriverRecord,*FileBasedDriverRecordPtr;

A file-based driver consists of a file specification, the driver’s type, and whether the
driver was matched using the device name or a compatible device name.

An I/O expert can use the program logic summarized in Listing 7-10 to cycle through a
list of file-based candidates.

Listing 7-10 Finding file-based driver candidates

FindDriverCandidates(); /* get list of candidates for a device*/

while (Candidates in the list)

 {

 GetDriverFromFile (FSSpec-in-Record, &driverConnectionID);

 if (InitializeThisDriver(Candidate) == NotMyHardwareError))

{

 // unhold this failed driver's memory

 // and close its CFM connection

 UnloadTheDriver (driverConnectionID);

 // advance to next position in the list

 GetNextCandidate();

 }

 else

 break; // driver loaded and initialized

 }

RESULT CODES

noErr 0 No error
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)

C H A P T E R 7

Writing Native Drivers

124 Driver Loader Library

ScanDriverCandidates 7

OSErr ScanDriverCandidates

(RegEntryIDPtr deviceID,

 FileBasedDriverRecordPtr fileBasedDrivers,

 ItemCount nFileBasedDrivers,

 FileBasedDriverRecordPtr matchingDrivers,

 ItemCount *nMatchingDrivers);

deviceID Name Registry ID of target device.

fileBasedDrivers List of sorted file-based driver records.

nFileBasedDrivers Count of file-based driver records.

matchingDrivers File-based driver records (a subset of fileBasedDrivers).

nMatchingDrivers Count of driver records (<= nFileBasedDrivers).

DESCRIPTION

Given the name entry ID of a device and a list of FileBasedDriverRecord elements,
ScanDriverCandidates constructs a list of matching file-based drivers that match the
device name or one of the device-compatible names. The list is sorted from best match to
least favorable match. Input to this service is an array FileBasedDriverRecord
elements, described in “FindDriverCandidates” beginning on page 122. Clients can use
ScanDriverCandidates to match drivers from a static list of candidates without
having to incur the overhead of disk I/O operations.

RESULT CODES

FindDriversForDevice 7

FindDriversForDevice finds the driver from a file and from a device tree property
that represents the “best” driver for a device—that is, the latest version of the most
appropriate driver, regardless of whether it is file-based or property-based. The
algorithm for determining the best driver is described in “Matching Drivers With
Devices” beginning on page 142.

noErr 0 No error
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)

C H A P T E R 7

Writing Native Drivers

Driver Loader Library 125

OSErr FindDriversForDevice (RegEntryIDPtr device,

 FSSpec *fragmentSpec,

 DriverDescription *fileDriverDesc,

 Ptr *memAddr,

 long *length,

 StringPtr fragName,

 DriverDescription *memDriverDesc);

device Device ID.

fragmentSpec Pointer to a file system specification.

fileDriverDesc Pointer to the driver description of driver in a file.

memAddr Pointer to driver address.

length Length of driver code.

fragName Name of driver fragment.

memDriverDesc Pointer to the driver description of driver in memory.

DESCRIPTION

Given a pointer to the RegEntryID value of a device, FindDriversForDevice finds
the most suitable driver for that device. If the driver is located in a file, it returns a
pointer to the driver’s CFM file system specification in fragmentSpec and a pointer
to its driver description in fileDriverDesc. If the driver is a fragment located in
memory, FindDriversForDevice returns a pointer to its address in memAddr, its
length in length, its name in fragName, and a pointer to its driver description in
memDriverDesc. FindDriversForDevice initializes all outputs to nil before
searching for drivers.

The fragName parameter that FindDriversForDevice returns can be passed to
GetDriverMemoryFragment (described on page 120) or GetDriverDiskFragment
(described on page 121).

RESULT CODES

noErr 0 No error
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)

C H A P T E R 7

Writing Native Drivers

126 Driver Loader Library

GetDriverForDevice 7

GetDriverForDevice loads the “best” driver for a device from memory. The algorithm
for determining the best driver is described in “Matching Drivers With Devices”
beginning on page 142.

OSErr GetDriverForDevice(RegEntryIDPtr device,

 CFragConnectionID *fragmentConnID,

 DriverEntryPointPtr *fragmentMain,

 DriverDescriptionPtr *driverDesc);

device Device ID.

fragmentConnID Pointer to a fragment connection ID.

fragmentMain Pointer to DoDriverIO.

driverDesc Pointer to the driver description of driver.

DESCRIPTION

Given a pointer to the RegEntryID value of a device, GetDriverForDevice loads
from memory the most suitable driver for that device. It returns the loaded driver’s CFM
connectionID value in fragmentConnID, a pointer to its DoDriverIO entry point in
fragmentMain, and a pointer to its driver description in driverDesc.

RESULT CODES

SetDriverClosureMemory 7

OSErr SetDriverClosureMemory

(CFragConnectionID fragmentConnID,

 Boolean holdDriverMemory);

fragmentConnID ID of driver closure (returned from other DLL loading services).

holdDriverMemory Pass true to hold a driver closure; false to free it.

DESCRIPTION

A driver and all its libraries is called a driver closure. When a driver is loaded and
prepared for initialization by the DLL, memory for its closure is held as the final step
in implementing GetDriverMemoryFragment and GetDriverDiskFragment.
Closure memory is held by default to prevent page faults at primary and secondary
interrupt level.

noErr 0 No error
fnfErr –43 File not found
All CFM errors (See Inside Macintosh: PowerPC System Software)

C H A P T E R 7

Writing Native Drivers

Driver Loader Library 127

SetDriverClosureMemory lets you hold closure memory by setting the
holdDriverMemory parameter to true. It can also be use to free memory held
for a driver closure by setting the holdDriverMemory parameter to false.

To undo the effects of GetDriverMemoryFragment or GetDriverDiskFragment, an
I/O expert can call SetDriverMemoryClosureMemory (cfmID, false) followed by
CloseConnection (&cfmID). This has the effect of unloading the driver. Listing 7-11
shows a sample of code to perform this task.

Listing 7-11 Unloading a driver

void UnloadTheDriver (CFragConnectionID fragID)

{

OSErr Status;

THz theCurrentZone = GetZone();

// make sure the fragment is attached to the system context

// (System 7.5.2 CFM keys context from the current heap zone)

SetZone (SystemZone());

Status = SetDriverClosureMemory (fragID,false);

if (Status != noErr)

 printf("Couldn't unhold pages of Driver Closure!

(Err==%x)\n",Status);

Status = CloseConnection(&fragID);

if (Status != noErr)

 printf("Couldn't close Driver Connection!

(Err==%x)\n",Status);

// reset the zone

SetZone (theCurrentZone);

}

Note that you must switch the current heap to the system heap before calling
CloseConnection.

Installation 7
Once loaded, a driver must be installed in the unit table to become available to Device
Manager clients. This process begins with a CFM fragment connection ID and results in a
refNum value.

The installing software can specify a desired range of unit numbers in the unit table. For
example, SCSI drivers use the range 32 through 38 as a convention to their clients. If the
driver cannot be installed within that range, an error is returned. The unit table may

C H A P T E R 7

Writing Native Drivers

128 Driver Loader Library

grow to accommodate the new driver, however. For the rules of this growth, see the note
on page 129.

When installing a native driver, the caller also passes the RegEntryIDPtr value of the
device that the driver is to manage. This pointer (along with the refNum value) is given
to the driver as a parameter in the initialization command. The driver may use this
pointer to iterate through a device’s property list, as an aid to initialization. The native
driver should return noErr to indicate a successful initialization command.

These functions, described in the next sections, operate on a loaded driver fragment:

■ VerifyFragmentAsDriver verifies fragment contents as driver.

■ InstallDriverFromFragment places a driver fragment in the unit table.

■ InstallDriverFromDisk places a disk-based driver in the unit table.

■ OpenInstalledDriver opens a driver that is already installed in the unit table.

VerifyFragmentAsDriver 7

VerifyFragmentAsDriver makes sure there is a driver in a given fragment.

OSErr VerifyFragmentAsDriver

(CFragConnectionID fragmentConnID,

 DriverEntryPointPtr *fragmentMain,

 DriverDescriptionPtr *driverDesc);

fragmentConnID CFM connectionID.

fragmentMain Resulting pointer to DoDriverIO.

driverDesc Resulting pointer to DriverDescription.

DESCRIPTION

Given a CFM connectionID value for a code fragment, VerifyFragmentAsDriver
verifies that the fragment is a driver. It returns a pointer to the driver’s DoDriverIO
entry point in fragmentMain and a pointer to its driver description in driverDesc.

RESULT CODES

noErr 0 No error
All CFM errors (see Inside Macintosh: PowerPC System Software)

C H A P T E R 7

Writing Native Drivers

Driver Loader Library 129

InstallDriverFromFragment 7

InstallDriverFromFragment installs a driver fragment in the unit table.

OSErr InstallDriverFromFragment

(CFragConnectionID fragmentConnID,

 RegEntryIDPtr device,

 UnitNumber beginningUnit,

 UnitNumber endingUnit,

 refNum *refNum);

fragmentConnID CFM connectionID.

device Pointer to Name Registry specification.

beginningUnit Low unit number in unit table range.

endingUnit High unit number in unit table range.

refNum Resulting unit table refNum value.

DESCRIPTION

InstallDriverFromFragment installs a driver that is located in a CFM code fragment
anywhere within the specified unit number range of the unit table. It invokes the
driver’s Initialize command, passing the RegEntryIDPtr value to it. The driver’s
initialization code must return noErr for InstallDriverFromFragment to complete
successfully. This function returns the driver’s refNum value but it does not open
the driver.

IMPORTANT

If the unit table is filled throughout the range from beginningUnit to
the value returned by HighestUnitNumber (described on page 138),
and the table has not already grown to its maximum size, it can expand
to accept the new driver. To use this feature, set endingUnit larger
than HighestUnitNumber(). If endingUnit is less than or equals
HighestUnitNumber() under these conditions, unitTblFullErr
will be returned and the driver will not be installed. ▲

RESULT CODES

noErr 0 No error
badUnitErr –21 Bad unit number
unitTblFullErr –29 Unit table or requested range full
Specific returns from Initialize, Replace, Superseded
All CFM errors (see Inside Macintosh: PowerPC System Software)

C H A P T E R 7

Writing Native Drivers

130 Driver Loader Library

InstallDriverFromDisk 7

InstallDriverFromDisk locates a file in the Extensions folder that is in the Mac OS
System Folder, verifies that the file’s contents are a native driver, and loads and installs
the driver.

OSErr InstallDriverFromDisk

(Ptr theDriverName,

 RegEntryIDPtr theDevice,

 UnitNumber theBeginningUnit,

 UnitNumber theEndingUnit,

 DriverRefNum *theRefNum);

theDriverName Name of a disk file containing a driver.

theDevice Pointer to entry in the Name Registry.

theBeginningUnit First unit table number of range acceptable for installation.

theEndingUnit Last unit table number of range acceptable for installation.

theRefNum Reference number returned by InstallDriverFromDisk.

DESCRIPTION

InstallDriverFromDisk installs a driver that is located on disk anywhere within the
specified unit number range of the unit table and invokes the driver’s Initialize
command, passing the RegEntryIDPtr value to it. The driver’s initialization code must
return noErr for InstallDriverFromDisk to complete successfully. This function
returns the driver’s refNum value but it does not open the driver.

If the unit table is filled throughout the range from beginningUnit to the value
returned by HighestUnitNumber (described on page 138), and the table has not
already grown to its maximum size, it can expand to accept the new driver. To use
this feature, set endingUnit larger than HighestUnitNumber().

Note
InstallDriverFromDisk uses GetDriverMemoryFragment to
load the driver, which should then call SetDriverClosureMemory
to hold the driver’s closure memory. ◆

RESULT CODES

noErr 0 No error
badUnitErr –21 Bad unit number
unitTblFullErr –29 Unit table or requested range full
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)

C H A P T E R 7

Writing Native Drivers

Driver Loader Library 131

OpenInstalledDriver 7

OpenInstalledDriver opens a driver that is already installed in the unit table.

OSErr OpenInstalledDriver

(DriverRefNum refNum,

 SInt8 ioPermission);

refNum Unit table reference number.

ioPermission I/O permission code:
fsCurPerm 0 retain current permission
fsRdPerm 1 allow read actions only
fsWrPerm 2 allow write actions only
fsRdWrPerm 3 allow both read and write actions

DESCRIPTION

Given an installed driver’s unit table reference number, OpenInstalledDriver opens
the driver. The Device Manager ignores the ioPermission parameter; it is included
only to provide easy communication with the driver.

IMPORTANT

Native drivers must keep track of I/O permissions for each
instance of multiple open actions and return error codes if
permissions are violated. ▲

RESULT CODES

Load and Install Option 7
Clients wishing to combine the loading and installation process in one service may want
to use one of the following functions, described in the next sections:

■ InstallDriverFromFile loads and installs a file-based driver.

■ InstallDriverFromMemory loads and installs a memory-based driver.

noErr 0 No error
badUnitErr –21 Bad unit number
unitEmptyErr –22 Empty unit number

C H A P T E R 7

Writing Native Drivers

132 Driver Loader Library

InstallDriverFromFile 7

InstallDriverFromFile loads a driver from a file and installs it.

OSErr InstallDriverFromFile (FSSpecPtr fragmentSpec,

 RegEntryIDPtr device,

 UnitNumber beginningUnit,

 UnitNumber endingUnit,

 DriverRefNum *refNum);

fragmentSpec Pointer to a file system specification.

device Pointer to Name Registry specification.

beginningUnit Low unit number in unit table range.

endingUnit High unit number in unit table range.

refNum Resulting unit table refNum value.

DESCRIPTION

InstallDriverFromFile installs a driver that is located on disk anywhere within the
specified unit number range of the unit table and invokes the driver’s Initialize
command, passing the RegEntryIDPtr value to it. The driver’s initialization code
must return noErr for InstallDriverFromFile to complete successfully. This
function returns the driver’s refNum value but it does not open the driver.

If the unit table is filled throughout the range from beginningUnit to the value
returned by HighestUnitNumber (described on page 138), and the table has not
already grown to its maximum size, it can expand to accept the new driver. To use
this feature, set endingUnit larger than HighestUnitNumber().

Note
InstallDriverFromFile uses GetDriverDiskFragment to load
the driver, which should then call SetDriverClosureMemory to
hold the driver’s closure memory. ◆

RESULT CODES

noErr 0 No error
badUnitErr –21 Bad unit number
unitTblFullErr –29 Unit table or requested range full
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)

C H A P T E R 7

Writing Native Drivers

Driver Loader Library 133

InstallDriverFromMemory 7

InstallDriverFromMemory loads a driver from a range of memory and installs it.

OSErr InstallDriverFromMemory
(Ptr memory,

 long length,
 ConstStr63Param fragName,
 RegEntryIDPtr device,
 UnitNumber beginningUnit,
 UnitNumber endingUnit,
 DriverRefNum *refNum);

memory Pointer to beginning of fragment in memory.

length Length of fragment in memory.

fragName An optional name of the fragment (used primarily by debugger).

device Pointer to Name Registry specification.

beginningUnit Low unit number in unit table range.

endingUnit High unit number in unit table range.

refNum Resulting unit table refNum value.

DESCRIPTION

InstallDriverFromMemory installs a driver that is located in a CFM code fragment
anywhere within the specified unit number range of the unit table. It invokes the
driver’s Initialize command, passing the RegEntryIDPtr value to it. The driver’s
initialization code must return noErr for InstallDriverFromMemory to complete
successfully. This function returns the driver’s refNum value but it does not open
the driver.

If the unit table is filled throughout the range from beginningUnit to the value
returned by HighestUnitNumber (described on page 138), and the table has not
already grown to its maximum size, it can expand to accept the new driver. To use
this feature, set endingUnit larger than HighestUnitNumber().

Note
InstallDriverFromMemory uses GetDriverMemoryFragment to
load the driver, which should then call SetDriverClosureMemory to
hold the driver’s closure memory. ◆

RESULT CODES

noErr 0 No error
badUnitErr –21 Bad unit number
unitTblFullErr –29 Unit table or requested range full
paramErr –50 Bad parameter
All CFM errors (see Inside Macintosh: PowerPC System Software)

C H A P T E R 7

Writing Native Drivers

134 Driver Loader Library

Match, Load, and Install 7
Clients wishing to combine the matching of the best driver for a device, with the loading
and installation process in one service, may use InstallDriverForDevice and
HigherDriverVersion, described in this section. The DriverDescription data
structure is used to compare a driver’s functionality with a device’s needs. See the
discussion of the native driver container package in “Driver Loader Library” beginning
on page 117.

The Driver Loader Library picks the best driver for the device by looking for drivers in
the Extensions folder and comparing those against drivers in the device’s property list.

InstallDriverForDevice 7

InstallDriverForDevice installs the “best” driver for a device. The algorithm for
determining the best driver is described in “Matching Drivers With Devices” beginning
on page 142.

OSErr InstallDriverForDevice

(RegEntryIDPtr device,

 UnitNumber beginningUnit,

 UnitNumber endingUnit,

 DriverRefNum *refNum);

device Pointer to Name Registry specification.

beginningUnit Low unit number in unit table range.

endingUnit High unit number in unit table range.

refNum Resulting unit table refNum value.

DESCRIPTION

InstallDriverForDevice finds, loads, and installs the best driver for a device
identified by its RegEntryID value. It installs the driver anywhere within the specified
unit number range of the unit table and invokes its Initialize command, passing the
RegEntryIDPtr value to it. The driver’s initialization code must return noErr for
InstallDriverForDevice to complete successfully. This function returns the driver’s
refNum value but it does not open the driver.

If the unit table is filled throughout the range from beginningUnit to the value
returned by HighestUnitNumber (described on page 138), and the table has not
already grown to its maximum size, it can expand to accept the new driver. To use
this feature, set endingUnit larger than HighestUnitNumber().

C H A P T E R 7

Writing Native Drivers

Driver Loader Library 135

RESULT CODES

HigherDriverVersion 7

HigherDriverVersion compares two driver version numbers, normally the values in
their DriverDescription structures. It returns a value that indicates which driver is
later. This service may be used by any software that loads or evaluates drivers.

short HigherDriverVersion (NumVersion *driverVersion1,

 NumVersion *driverVersion2);

struct NumVersion {

UInt8 majorRev; /*1st part of version number in BCD*/

UInt8 minorAndBugRev; /*2nd and 3rd part of version number

 share a byte*/

UInt8 stage; /*stage code: dev, alpha, beta, final*/

UInt8 nonRelRev; /*rev level of nonreleased version*/

};

driverVersion1 First version number being compared.

driverVersion2 Second version number being compared.

DESCRIPTION

HigherDriverVersion returns 0 if driverVersion1 and driverVersion2 are
equal. It returns a negative number if driverVersion1 < driverVersion2 and a
positive number greater than 0 if driverVersion1 > driverVersion2. If both
drivers have stage values of final, a nonRelRev value of 0 is evaluated as greater
than any nonzero number.

Stage codes are the following:

developStage = 0x20

alphaStage = 0x40

betaStage = 0x60

finalStage = 0x80

noErr 0 No error
badUnitErr –21 Bad unit number
unitTblFullErr –29 Unit table or requested range full
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)

C H A P T E R 7

Writing Native Drivers

136 Driver Loader Library

Driver Removal 7
Clients wishing to remove an installed driver should use RemoveDriver.

RemoveDriver 7

RemoveDriver removes an installed driver.

OSErr RemoveDriver (DriverRefNum refNum,

 Boolean Immediate);

refNum Reference number of driver to remove.

Immediate Value of true means don’t wait for driver to become idle.

DESCRIPTION

RemoveDriver accepts a refNum value and unloads a code fragment driver from the
unit table. It invokes the driver’s Finalize command. If called as immediate, it doesn’t
wait for driver to become inactive.

RESULT CODES

Getting Driver Information 7
Clients wishing to acquire information about an installed driver should use
GetDriverInformation.

GetDriverInformation 7

GetDriverInformation returns a number of pieces of information about an
installed driver.

OSErr GetDriverInformation

(DriverRefNum refNum,

 UnitNumber *unitNum,

 DriverFlags *flags,

 DriverOpenCount *count,

 StringPtr name,

 RegEntryID *device,

noErr 0 No error
badUnitErr –21 Bad unit number
unitEmptyErr –22 Empty unit number

C H A P T E R 7

Writing Native Drivers

Driver Loader Library 137

 CFragHFSLocator *driverLoadLocation,

 CFragConnectionID *fragmentConnID,

 DriverEntryPointPtr *fragmentMain,

 DriverDescription *driverDesc);

refNum Reference number of driver to examine.

unitNum Resulting unit number.

flags Resulting DCE flag bits.

count Number of times driver has been opened.

name Resulting driver name.

device Resulting Name Registry device specification.

driverLoadLocation
Resulting CFM fragment locator from which driver was loaded.

fragmentConnID Resulting CFM connection ID.

fragmentMain Resulting pointer to DoDriverIO.

driverDesc Resulting pointer to DriverDescription.

DESCRIPTION

Given the unit table reference number of an installed driver, GetDriverInformation
returns the driver’s unit number in unitNum, its DCE flags in flags, the number of
times it has been opened in count, its name in name, its RegEntryID value in device,
its CFM fragment locator in driverLoadLocation, its CFM connection ID in
fragmentConnID, its DoDriverIO entry point in fragmentMain, and its driver
description in driverDesc.

Code that calls GetDriverInformation must always supply an FSSpec file
specification with the CFM locator. For an example, see Listing 7-12 on page 139.

Note
With 68K drivers, GetDriverInformation returns meaningful
information in only the unitNum, flags, count, and name
parameters. ◆

RESULT CODES

noErr 0 No error
badUnitErr –21 Bad unit number
unitEmptyErr –22 Empty unit number

C H A P T E R 7

Writing Native Drivers

138 Driver Loader Library

Searching for Drivers 7
The routines described in this section help clients iterate through the unit table, locating
installed drivers.

HighestUnitNumber 7

HighestUnitNumber returns the currently highest valid unit number in the unit table.

UnitNumber HighestUnitNumber (void);

DESCRIPTION

HighestUnitNumber takes no parameters. It returns a UnitNumber value that
represents the highest unit number in the unit table.

LookupDrivers 7

LookupDrivers is used to iterate through the contents of the unit table.

OSErr LookupDrivers (UnitNumber beginningUnit,

 UnitNumber endingUnit,

 Boolean emptyUnits,

 ItemCount *returnedRefNums,

 DriverRefNum *refNums);

beginningUnit First unit in range of units to scan.

endingUnit Last unit in range of units to scan.

emptyUnits A value of true means return available units; a value of false
means return allocated units.

returnedRefNums Maximum number of reference numbers to return; on completion,
contains actual number of reference numbers returned.

refNums Resulting array of returned reference numbers.

DESCRIPTION

Given the first and last unit numbers to scan, LookupDrivers returns the reference
numbers of both native and 68K drivers. The emptyUnits parameter tells it to return
either available or allocated units, and returnedRefNums tells it the maximum number
of reference numbers to return. When LookupDrivers finishes, returnedRefNums
contains the actual number of reference numbers returned.

C H A P T E R 7

Writing Native Drivers

Driver Loader Library 139

The sample code shown in Listing 7-12 uses HighestUnitNumber and LookupDrivers
to print out the reference numbers of all installed drivers and obtain driver information.

RESULT CODES

Listing 7-12 Using the LookupDrivers function

FindAllDrivers ()

{

ItemCount theCount = 1;

UnitNumber theUnit = 0;

DriverRefNum theRefNum, *fullSizedRefNumBuffer;

// method #1: iterate with a small output buffer

while ((theUnit <= HighestUnitNumber()) &&

 (LookupDrivers (theUnit, theUnit, false, &theCount, &theRefNum) ==noErr))

{

if (theCount == 1) printf ("Refnum #%d is allocated.\n",theRefNum);

theCount = 1;

theUnit++;

}

// method #2: get all refnums with one call

fullSizedRefNumBuffer = NewPtr ((HighestUnitNumber() + 1) *

 sizeof(DriverRefNum));

theCount = (HighestUnitNumber() + 1);

LookupDrivers (0, HighestUnitNumber(), false, &theCount,

 fullSizedRefNumBuffer);

for(theUnit=0,theUnit <theCount;theUnit++)

{

printf("Refnum #%d is allocated.\n", fullSizedRefNumBuffer [theUnit]);

ShowDriverInfo (fullSizedRefNumBuffer [theUnit]);

}

DisposePtr(fullSizedRefNumBuffer);

return noErr;

}

noErr 0 No error
badUnitErr –21 Bad unit number
paramErr –50 Bad parameter

C H A P T E R 7

Writing Native Drivers

140 Finding, Initializing, and Replacing Drivers

ShowDriverInfo (DriverRefNum *refNum)

{

UnitNumber theUnit;

DriverRefNum aRefNum;

DriverFlags theFlags;

FSSpec driverFileSpec;

RegEntryID theDevice;

CFragHFSLocator theLoc;

Str255 theName;

CFragConnectionID fragmentConnID;

DriverOpenCount theOpenCount;

DriverEntryPointPtr fragmentMain;

DriverDescription theDriverDescription;

theLoc.u.onDisk.fileSpec = &driverFileSpec; /* See note below */

GetDriverInformation (aRefNum,

&theUnit,

&theFlags,

&theOpenCount,

theName,

&theDevice,

&theLoc,

&fragmentConnID,

&fragmentMain,

&theDriverDescription);

printf ("Driver's flags are: %x\n", theFlags);

}

IMPORTANT

When calling GetDriverInformation, always supply an
FSSpec file specification as shown in the preceding sample.
Failure to do so may let the DLL or the CFM either crash
the system or overwrite the system heap. ▲

Finding, Initializing, and Replacing Drivers 7

The native driver framework in PCI-based Power Macintosh computers tolerates a wide
range of variations in system configuration. Although drivers and expansion cards may
be designed and updated independently, the system autoconfiguration firmware offers
several techniques for making them work together. This section discusses what PCI
driver and card designers can do to improve the compatibility of their products.

C H A P T E R 7

Writing Native Drivers

Finding, Initializing, and Replacing Drivers 141

Device Properties 7
A PCI device is required to provide a set of properties in its PCI configuration space. It
may optionally supply FCode and run-time driver code in its expansion ROM. PCI
devices without FCode and run-time driver code in ROM may not be used during
system startup.

The required device properties in PCI configuration space are

■ vendor-ID

■ device-ID

■ class-code

■ revision-number

For PCI boot devices there must be an additional property:

driver,AAPL,MacOS,PowerPC

This property contains a pointer to the boot driver’s image in the PCI card’s expansion
ROM. It is used in conjunction with the fcode-rom-offset property.

The Open Firmware FCode in a PCI device’s expansion ROM must provide and install a
driver property, as shown above, to have its driver appear in the Name Registry and
be useful to the system during startup. It must also add its expansion ROM’s base
register to the reg property, so that system firmware can allocate address space when
installing the driver.

To facilitate driver matching for devices with disk-based drivers, the FCode should
provide a unique name property that conforms to the PCI specification. For further
information, see Chapter 5, “PCI Open Firmware Drivers.”

PCI Boot Sequence 7
To better explain the concepts and mechanisms for finding, initializing, and replacing
PCI drivers, here is a short description of the PCI boot sequence:

1. Hardware is reset.

2. Open Firmware creates the device tree. This device tree is composed of all the
devices found by the Open Firmware code, including all properties associated
with those devices.

3. The Name Registry device tree is created by copying the Macintosh-relevant nodes
and properties from the Open Firmware device tree.

4. The Code Fragment Manager and the interrupt tree are initialized.

5. Device properties that are persistant across system startups and are located in
NVRAM are restored to their proper location in the Name Registry device tree.

6. The Name Registry device tree is searched for PCI expansion ROM device drivers
associated with device nodes.

7. PCI expansion ROM device drivers required for booting are loaded and initialized.

C H A P T E R 7

Writing Native Drivers

142 Finding, Initializing, and Replacing Drivers

8. If a PCI ROM device driver is marked as kdriverIsLoadedUponDiscovery, the
driver is installed in the Device Manager unit table.

9. If a PCI ROM device driver is marked as kdriverIsOpenedUponLoad, the driver is
initialized and opened, and the driver-ref property is created for the driver’s
device node.

10. The Display Manager is initiated.

11. The SCSI Manager is initiated.

12. The File Manager and Resource Manager are initialized.

13. Device properties that are persistant across system startups and located in the
Preferences folder in the System Folder are restored to their proper location in the
Name Registry device tree.

Device drivers under family expert control are processed next. The following steps load
disk-based experts and disk-based drivers:

1. Scan the Extensions folder for drivers (file type 'ndrv'), updating the Registry with
new versions of drivers as appropriate. For each driver added or updated in the tree,
a driver description property is added or updated as well.

2. For each driver that is replaced, and already open, use the driver replacement
mechanism.

3. Run 'init' resources for virtual devices. Virtual devices are discussed in “Real and
Virtual Devices” on page 165.

4. Scan the Extensions folder for experts (file type 'expt'); load, initialize, and run each
expert.

5. Run experts to scan the registry, using the driver description property associated with
each node to determine which devices are of each appropriate family.

6. Load and initialize appropriate devices based on family characteristics.

At that point all devices in use by the system and family subsystems are initialized.
Unitialized and unopened devices or services that may be used by client applications are
located, initialized, and opened at the time that a client makes a request for the devices
or services.

Note
PCI device drivers are ordered to switch from low-power to high-power
mode when their devices are opened. ◆

Matching Drivers With Devices 7
Mac OS matches drivers to devices by using the following algorithm:

■ When a device node has a driver in ROM, no driver matching is required. Mac OS
uses the driver name and compares the version numbers of ROM-based and
disk-based drivers to select the newest version of the driver.

C H A P T E R 7

Writing Native Drivers

Finding, Initializing, and Replacing Drivers 143

■ When a device node has a name property that was supplied by the FCode in a
device’s expansion ROM, Mac OS checks the name property against all disk-based
drivers and find the first matching driver with the latest version number. If there is no
match against the name property, then Mac OS attempts a match against each name
string in the device’s compatible property. The comparison is always against the
nameInfoStr parameter in the driver description structure for each disk-based
driver. The first match is used. If no match is found against name or compatible
strings, the device is not usable.

■ When a device node has no FCode, Mac OS tries to match the device with a driver
based on the generated name pcixxxx,yyyy where xxxx is the vendor ID and yyyy is
the device ID. Both these ID values must be hexadecimal numbers, without leading
0s, that use lower case for the letters A through F and are rendered as ASCII
characters. If a match is found, but the first initialization call to the driver fails, then
the code that is attempting to use the driver must call the Driver Loader Library’s best
match routine (again) to find the next-best driver.

Note
Each device node should have just one compatible property,
containing one or more C-formatted name strings as its value. The
strings must be packed in sequence with no unused bytes between them
and should be arranged with the more compatible names first. ◆

The DLL routines GetDriverForDevice, InstallDriverForDevice, and
FindDriversForDevice use the following algorithm to match or install the
“best” driver for a device:

1. Find all candidate drivers for the device. A driver is a candidate if its nameInfoStr
value matches either the device’s name or one of the names found in the device’s
compatible property.

2. Sort this list based on whether the driver matched using the device’s name or a
compatible name. Those matched with the device name are put at the head of the list.
Break ties using the driver’s version number (See “HigherDriverVersion” beginning
on page 135.) Sample code for file-based driver sorting is shown in Listing 7-13. The
sample code returns 0 if two drivers are equally compatible, a negative number if
driver1 is less compatible than driver2, and a positive number if driver1 is
more compatible than driver2.

3. If not installing the driver, return the driver at the head of the candidate list and
discard any remaining candidates.

If you still have candidates with which to attempt an installation, do the following:

1. Load and install the driver located at the head of the list.

2. The driver should probe the device, using DSL services, to verify the match. If the
driver did not successfully initialize itself, discard it and return to step 1.

3. Discard any remaining candidates.

The routines that use this algorithm are described in detail in the sections that start with
“Loading and Unloading” beginning on page 119.

C H A P T E R 7

Writing Native Drivers

144 Finding, Initializing, and Replacing Drivers

▲ W A R N I N G

You must try to match your driver with your device as securely as
possible, using the routines and algorithms just described. If you fail to
do so, the computer may crash with an unrecoverable bus error. ▲

Listing 7-13 File-based driver sorting

SInt16 CandidateCompareRoutine

(FileBasedDriverInfoPtr Driver1,

 FileBasedDriverInfoPtr Driver2,

 StringPtr CompatibleNames,

 ItemCount nCompatibleNames)

{

SInt16 matchResults = 0;

if (Driver1 and Driver2 matched using same property (name or compatible))

{

if (both drivers matched using compatible property)

{

if (drivers not matched with identical compatible name)

{

// Which compatible name (by number) did driver1/driver2 match?

Driver1CompatibleName = WhichCompatibleName(Driver1,...);

Driver2CompatibleName = WhichCompatibleName(Driver2,...);

if (Driver1CompatibleName != Driver2CompatibleName)

{

if (Driver1CompatibleName < Driver2CompatibleName)

return 1; // driver1 is "more compatible"

else

return -1; // driver2 is "more compatible"

}

}

}

// Break tie with version numbers, if possible.

matchResults = HigherDriverVersion (&Driver1 -> info.theType.version,

 &Driver2 -> info.theType.version);

// Same version number too?
if (matchResults == 0)

C H A P T E R 7

Writing Native Drivers

Finding, Initializing, and Replacing Drivers 145

{
// Final tie breaker is their filenames
// (Reverse the compare with RelString)
matchResults = RelString (Driver2 -> info.theSpec.name,

 Driver1 -> info.theSpec.name, true, true);
}

return matchResults;

}

// Matched using different property

if (Driver1 matched using compatible property)

return -1; // driver 2 is higher

return 1; // else driver 1 is higher

}

Driver Initialization and Resource Verification 7
After finding a match between a hardware device and its driver, the driver initialization
code must check to make sure that all needed resources are available. This section
describes a typical algorithm for resource verification. Driver initialization code should
perform this algorithm for two reasons:

■ The driver may not have all the address resources it requires. This event is unlikely,
but the driver should check.

■ If the PCI card expansion ROM doesn’t contain FCode, the driver may need to
perform a diagnostic to make sure the card it has been matched with is actually the
card it is designed to control. This problem is discussed in “Open Firmware FCode
Options” beginning on page 32.

IMPORTANT

The driver must enable its card for a PCI device to be useable. ▲

The following is a typical resource verification and card enabling procedure:

1. Check for existence of an assigned-addresses property for the device.If no
assigned-addresses property exists, exit the driver initialization routine with
an error message (address resources not available). The assigned-addresses
property is discussed in “Standard Properties” beginning on page 193. If an
assigned-addresses property exists, go to step 2.

2. Check the assigned-addresses property for the existence of the base registers
required for full operation of the driver. Do this by looking at the last byte of the first
long word of each assigned-addresses entry that is required. A typical
assigned-addresses entry looks like this:

If the required base registers are not present, exit the driver initialization routine with
an error message (address resources not available). If the required base registers are
present, go to step 3.

82006810 00000000 80000000 000000000 00008000
81006814 00000000 00000400 000000000 00000100

C H A P T E R 7

Writing Native Drivers

146 Finding, Initializing, and Replacing Drivers

3. Note where in the assigned-addresses property the entries for the required base
registers are located. The first entry is 0, the next is 1, and so on. That same order will
be preserved in the AAPL,address property, which is an array of 32-bit values
corresponding to the logical address for your base register's physical address. For
more information about the AAPL,address property, see “I/O Space Cycle
Generation” beginning on page 300. A typical AAPL,address property looks like this:

If the driver uses Expansion Bus Manager routines (such as ExpMgrIOReadByte) it
must pass the physical address for the I/O base register, which it gets from the
assigned-addresses property. The Expansion Bus Manager does byte swapping
and EIEIO synchronization for the driver, but it’s node-based and it’s slow. The
AAPL,address version just uses a pointer, so it’s as fast as accessing memory space.

4. If the driver can be confused with another driver—if, for example, the card doesn’t
have FCode and another vendor uses the same PCI ASIC on a different card—the
driver must perform a diagnostic routine on the card to make sure that it has been
matched correctly. The DeviceProbe function, described below, helps a driver
determine if a device is present at an address. If the diagnostic routine fails, the driver
must exit its initialization routine with an error message (not my card). If the driver
verifies that the card is correct, go to step 5.

5. The driver must read or write to the device’s configuration command register to
enable its PCI spaces. Listing 7-14 presents typical code for doing this. It uses the
ExpMgrConfigReadWord routine described on page 305.

Listing 7-14 Enabling PCI spaces

ExpMgrConfigReadWord (yourNode, 4, &yourvalue);

yourvalue = yourvalue | yourEnables; /* if I/O space, bit 0;

 if memory space, bit 1 */

ExpMgrConfigWriteWord (yourNode, 4, yourvalue);

Listing 7-15 shows a routine that extracts a device’s logical address by using its
assigned-addresses and AAPL,address properties. It accepts as input the offsets
into PCI configuration space that match the device’s space request. For example, an
Ethernet card it may want two address spaces, I/O and memory. The card is designed
so that offset 0x10 in configuration space corresponds to the I/O space and 0x14
corresponds to the memory space.

Listing 7-15 Getting a device’s logical address

// The following values are valid for offsetValues (defined in PCIRoutines.h):
//

// #define kPCIConfigBase10Offset 0x10
// #define kPCIConfigBase14Offset 0x14
// #define kPCIConfigBase18Offset 0x18
// #define kPCIConfigBase1COffset 0x1C

80000000 F2000400

C H A P T E R 7

Writing Native Drivers

Finding, Initializing, and Replacing Drivers 147

// #define kPCIConfigBase20Offset 0x20
// #define kPCIConfigBase24Offset 0x24
// #define kPCIConfigBaseROM30Offset 0x30

// Input:
// theID - the NameRegistry ID for a PCI card
// baseRegAddress - no input value
// offsetValue - config base offset, determines which address space
// logical address is returned
// spaceAllocated - no input value

// Output:
// if err = kOTNoError, *baseRegAddress - contains the logical address of a PCI
// address space, also spaceAllocated is a byte count for the amount of space
// that was allocated
// returns various errors
//

//---

OSStatus GetPCICardBaseAddress(RegEntryID *theID, UInt32 *baseRegAddress, UInt8 offsetValue,
 UInt32 *spaceAllocated)
{

OSStatus osStatus;
PCIAssignedAddress *assignedArray;
RegPropertyValueSize propertySize;
UInt32 numberOfElements, *virtualArray;
Boolean foundMatch;
UInt16 index;

*baseRegAddress = NULL; // default value
foundMatch = kFalse;

osStatus = GetAProperty(theID, kPCIAssignedAddressProperty,(void **)&assignedArray,
 &propertySize);

if ((osStatus == kOTNoError) && propertySize)
 {
 numberOfElements = propertySize/sizeof(PCIAssignedAddress);

 osStatus = GetAProperty(theID, kAAPLDeviceLogicalAddress,(void **)&virtualArray,
 &propertySize);

 if ((osStatus == kOTNoError) && propertySize)
 {
 // search through the assigned addresses property looking for base register
 for (index = 0; (index != numberOfElements) && !foundMatch; ++index)
 {
 if (assignedArray[index].registerNumber == offsetValue)

C H A P T E R 7

Writing Native Drivers

148 Finding, Initializing, and Replacing Drivers

 {
 *spaceAllocated = assignedArray[index].size.lo;
 *baseRegAddress = virtualArray[index];
 foundMatch = kTrue;
 }
 }
 DisposeProperty((void **)&virtualArray);
 }
 else
 osStatus = kENXIOErr;

 DisposeProperty((void **)&assignedArray);
 }
else
 osStatus = kENXIOErr;

return osStatus;
}

DeviceProbe 7

DeviceProbe is used to determine if a hardware device is present at the
indicated address.

OSStatus DeviceProbe (void *theSrc,

 void *theDest,

 UInt32 AccessType);

theSrc The address of the device to be accessed.

theDest The destination of the contents of theSrc.

AccessType How theSrc is to be accessed: k8BitAccess, k16BitAccess, or
k32BitAccess.

DESCRIPTION

DeviceProbe accesses the indicated address and stores the contents at theDest using
AccessType to determine whether it should be an 8-bit, 16-bit or 32-bit access. Upon
success it returns noErr. If the device is not present, that is, if a bus error or a machine
check is generated, it returns noHardwareErr.

If a PCI card contains no FCode, and therefore is assigned a generic name of the form
pcixxxx,yyyy, it is important for a driver to provide diagnostic code in its Initialize
routine. When a driver is matched with a card that has a generic name property, it may
be the wrong driver. In that case, diagnostic code probing for a unique characteristic of
the card not only may fail a data compare operation but may also cause an unrecoverable

C H A P T E R 7

Writing Native Drivers

Finding, Initializing, and Replacing Drivers 149

machine check exception. DeviceProbe allows a driver to explore its hardware in a
recoverable manner. It provides a safe read operation, which can gracefully recover from
a machine check and return an error to the caller. If DeviceProbe fails, the driver
should return an error from its Initialize command. This return may cause the DLL
to continue its driver-to-device matching process until a suitable driver is found.

RESULT CODES

Opening Devices 7
There is a clear distinction between device initialization and device opening. A device
opening action is a connection-oriented response to client requests. Device drivers
should expect to run with multiple Open and Close commands. This means that each
driver is responsible for counting open requests from clients, and must not close itself
until all clients have issued close requests. Initialization can occur independently of
client requests—for example at startup time, or (in the case of PCMCIA devices) when a
device is hot-swapped into or out of the system.

Initialization of native driver–controlled devices is handled in phases as described in the
previous section. It is necessary to make a distinction here between PCI drivers and 68K
drivers because the 68K driver initialization path has not changed.

The first phase of native driver initialization consists of searching the device portion
of the Name Registry for boot devices. Boot device nodes should be flagged as
kdriverIsLoadedUponDiscovery and kdriverIsOpenedUponLoad in the
DriverDescriptor property associated with the device node. Boot devices are loaded,
initalized, and opened by the system. Their drivers, which must be in ROM, should be
passive code controlled by the system starting up. PCI bridges are similarly tagged
kDriverIsLoadedUponDiscovery and kDriverIsOpenedUponLoad.

The second phase of startup comes after the Macintosh file system is available. In this
second phase the Extensions folder is scanned for family experts, which are run as they
are located. Their job is to locate and initialize all devices of their particular service
category in the Name Registry. The family experts are initialized and run before their
service category devices are initialized because the family expert extends the system
facilities to provide services to their service category devices. For example, the Display
Manager extends the system to provide VBL capabilities to 'disp' service category
drivers. In the past, VBL services have been provided by the Slot Manager; but with
native drivers, family-specific services such as VBL services move from being a part of
bus software to being a part of family software.

A family expert, whether ROM based or disk based, scans the Name Registry for devices
of a particular service category. Each device entered in the Registry with the specified
service category is initalized and installed in the system in a family-specific way.

noErr 0 Device present
noHardwareErr –200 Device not present

C H A P T E R 7

Writing Native Drivers

150 Finding, Initializing, and Replacing Drivers

Note that startup steps 10 and 11 listed on page 142 initiated the Display Manager and
the SCSI Manager. The Display Manager and SCSI Manager are both family experts.
These are ROM-based experts that look for service category 'disp' ('ndrv' for current
display devices) and service category 'blok' respectively. The SCSI Manager loads and
activates PCI SIMs in the way described in Inside Macintosh: Devices and in “SIMs for
Current Versions of Mac OS” beginning on page 384. The Display Manager loads,
initializes, and opens display devices. Disk-based experts perform exactly the same task
as ROM-based experts, but disk-based experts are run after the file system is available.
For more information about the Display Manager, see Display Device Driver Guide, listed
in “Apple Publications” beginning on page xxi.

Driver Replacement 7
Suppose you are shipping your PCI card and have discovered an obscure bug in your
expansion ROM driver. This section describes the mechanism that Apple supplies to
allow you to update your ROM-based driver with an newer disk-based version.

As described earlier in this chapter, the Name Registry is populated with device nodes
that have driver,AAPL,MacOS,PowerPC properties and driver-description
properties. These properties are loaded from device PCI ROM and configuration space,
installed by the Open Firmware code, and pruned by the Expansion Manager.

After the Registry is populated with device nodes, the Macintosh startup sequence
initializes the devices. For every device node in the Registry there are two questions that
require answers before the system can complete a client request to use the device. The
client may be the system itself or an application. The questions are

■ Is there a driver for this node?

■ Where is the most current version of the driver for this node?

If there is a driver in ROM for a device, the driver,AAPL,MacOS,PowerPC property is
available in the Name Registry whenever a client request is made to use that device.
However, after the operating system is running and the file system is available, the ROM
driver may not be the driver of choice. In this case, the ROM-based driver is replaced
with a newer version of the driver on disk by the following means.

In the system startup sequence, as soon as the file system is available Mac OS searches
the Extensions folder and matches drivers in that folder with device nodes in the Name
Registry. For a discussion of driver matching, see “Matching Drivers With Devices”
beginning on page 142. The driverInfoStr and version fields of the DriverType
fields of the two driver description structures are compared, and the newer version of
the driver is installed in the tree. When the driver is updated, the DriverDescriptor
property and all other properties associated with the node whose names begin with
Driver are updated in the Name Registry.

If the driver associated with a node is open (that is, if it was used in the system startup
sequence) and if the driver is to be replaced, the system must first close the open driver,
using the driver-ref property in the Name Registry to locate it. The system must then
update the Registry and reinstall and reopen the driver. If the close or finalize action
fails, the driver will not be replaced.

C H A P T E R 7

Writing Native Drivers

Finding, Initializing, and Replacing Drivers 151

The native driver model does not provide automatic replacement of 68K drivers (type
'DRVR'). If you want to replace a 68K driver with a native driver dynamically, you must
close the open 68K driver, extract its state information, and load and install the native
driver using the Driver Loader Library. The native driver must occupy the same DCE
slot as the 68K driver and use the same reference number. After being opened, it must
start running with the state information that was extracted from the 68K driver.

Applications and other software can use the ReplaceDriverWithFragment function
to replace one driver with another and RenameDriver to change a driver’s name. These
routines are described next.

ReplaceDriverWithFragment 7

ReplaceDriverWithFragment replaces a driver that is already installed with a new
driver contained in a CFM fragment. It sends replace and superseded calls to the drivers,
as described in “Replace and Superseded Routines” beginning on page 104.

OSErr

ReplaceDriverWithFragment (DriverRefNum theRefNum,

 CFragConnectionID fragmentConnID);

theRefNum Reference number of the driver to be replaced.
fragmentConnID CFM connection ID for the new driver fragment.

DESCRIPTION

Given the unit table reference number of an installed driver in theRefNum,
ReplaceDriverWithFragment replaces that driver with a new driver contained in a
CFM fragment identified by fragmentConnID. It sends replace and superseded calls to
both drivers, as described in “Replace and Superseded Routines” beginning on page 104.

Note
The CFM connectionID variable should be freed
when the driver is unloaded. ◆

RESULT CODES

noErr 0 No error
All CFM errors (See Inside Macintosh: PowerPC System Software)

C H A P T E R 7

Writing Native Drivers

152 Driver Migration

RenameDriver 7

RenameDriver changes the name of a driver.

OSErr RenameDriver (DriverRefNum refNum,

 StringPtr newDriverName);

refNum Reference number of the driver to be renamed.
newDriverName Pointer to the driver’s new name in a Pascal string.

DESCRIPTION

Given the unit table reference number of an installed driver in refNum, RenameDriver
changes the driver’s name to the contents of a string pointed to by newDriverName.

RESULT CODES

Driver Migration 7

Driver migration is the process of converting current 68K-based programming interfaces
and run-time architectures to their PCI native driver equivalents.

Resources of type 'DRVR' in Mac OS are used to solve a broad variety of problems.
Some 'DRVR' resources drive devices through the use of an I/O manager. For example,
SCSI disk device drivers use the SCSI Manager’s I/O interface to access disks on the
SCSI bus. These I/O manager–based 'DRVR' resources need not migrate to the new
services and run-time model. However, the 'DRVR' resources that control physical
devices attached to a PCI bus must operate in a new, more restrictive environment.

This section covers changes to existing driver mechanisms, as well as the replacement
calls. Please note that these are guidelines; for exact calling sequences and parameter
descriptions you must refer to the chapters that cover each of the new routines.

Driver Services That Have No Replacement 7
The services described in this section are limited for native drivers or are not supplied.

Device Manager 7

Native drivers are no longer part of the Toolbox environment. The implication of this
change is that while 68K drivers made PBOpen, PBClose, and PBControl calls, these
services are not available to drivers in the native device driver environment. Drivers do

noErr 0 No error
badUnitErr –21 Bad unit number
unitEmptyErr –22 Empty unit number

C H A P T E R 7

Writing Native Drivers

Driver Migration 153

not make calls to other drivers through the Device Manager. Subsystems designed to
communicate in this way must be reimplemented.

In the AppleTalk implementation available with System 7.1 and earlier, the AppleTalk
protocol modules are layered on top of networking device drivers using the Device
Manager as the interface mechanism between these cooperating pieces of software. The
native AppleTalk implementation uses UNIX -standard STREAMs communication
mechanisms to stack protocol modules on top of drivers. AppleTalk drivers are written
to conform with the native device driver model and operate within the Open Transport
family of devices. For further information, see Chapter 12, “Network Drivers.”

Exception Manager 7

Native device drivers must not make calls to the Exception Manager. In the past, drivers
made use of the microprocessor’s bus error mechanism to probe for hardware. Drivers
should instead use the Name Registry to find all devices and their properties.

Gestalt Manager 7

Gestalt calls are available to only to applications, not to drivers. Drivers may provide
driverGestalt services via the Status selector to DoDriverIO or may alternatively
present device information through the Name Registry. The Name Registry is a unifying
mechanism and is the preferred means for representing system information.

Mixed Mode Manager 7

Native device drivers must be written entirely in native PowerPC code. Calls to the
Mixed Mode Manager are not allowed. Future releases of Mac OS will not provide
any emulation facilities for device drivers.

Notification Manager 7

The Notification Manager is not currently available to native drivers, but will be
available in future versions of Mac OS. Native drivers can use software interrupt
mechanisms instead.

Power Manager 7

In general, native driver writers should exercise caution using the Macintosh Power
Manager, because doing so may limit the driver’s compatibility with future releases of
Mac OS. In some cases, native experts provide power management facilities for client
drivers, in which case native drivers should support such expert functionality.

Resource Manager 7

Resource Manager calls are not permitted, not even in the driver initalization routine.
Instead, drivers use the Name Registry to manage initialization and configuration. The
CFM provides dynamic loading of code fragments. See the discussion in “Driver Loader
Library” beginning on page 117.

C H A P T E R 7

Writing Native Drivers

154 Driver Migration

Segment Loader 7

No Segment Loader calls are allowed. The Segment Loader is replaced by the Code
Fragment Manager, which provides a mechanism for dynamically loading and
unloading code fragments.

Shutdown Manager 7

Shutdown queue routines are no longer needed The driver’s CFM termination routine is
called before shutdown.

Slot Manager 7

The Name Registry replaces the Slot Manager in most cases. For special bus-specific
I/O requests, see Chapter 10, “Expansion Bus Manager.”

Vertical Retrace Manager 7

Vertical blanking (VBL) facilities are intended to provide support to graphics and video
display devices. This functionality is provided to video devices by the video display
expert that is responsible for the display family. Devices outside the display family may
not make VBL calls. Timing services are provided to all devices.

New Driver Services 7
This section describes new services that the Macintosh system software provides for
native drivers.

Registry Services 7

Chapter 8, “Macintosh Name Registry,” introduces the concept of the Name Registry.
The Registry interface provides new mechanisms that allow drivers to expose
information. Any data that might be of use to a configuration or debugging utility may
be installed in the Registry and be directly available to the configuration application
through the Registry programming interface.

▲ W A R N I N G

Only a small set of Registry services are available at primary or
secondary interrupt level. The set of services available at nontask level
are gets and sets of properties associated with a single device entry. For
further information, see “Service Limitations” beginning on page 282. ▲

Operating-System Services 7

A standard set of operating-system utilities is provided in the Driver Services Library.
These services include

■ SysDebug and SysDebugStr

■ PBEnqueue and PBDequeue

C H A P T E R 7

Writing Native Drivers

Driver Migration 155

■ C and Pascal string manipulation routines

■ BlockCopy

For a more complete set of driver services, see Chapter 9, “Driver Services Library.”

Timing Services 7

The Time Manager calls InsTime, PrimeTime, and RmvTime have been replaced with a
new set of services, described in “Timing Services” beginning on page 268. The timing
routines available are

■ SetInterruptTimer

■ CancelTimer

■ UpTime

■ TimeBaseInfo

In the past, there have been special services provided to 68K drivers to allow for delayed
processing. These mechanisms, such as dNeedTime, drvrDelay, and accRun, are
specific to the Macintosh Toolbox and the Process Manager. These facilities will continue
to be provided for Toolbox code resources; drivers written to be compatible with the
native driver specification will never run in a Toolbox context and hence may not make
use of these facilities.

Memory Management Services 7

Native drivers may not call Toolbox memory management routines, particularly

■ NewPtr

■ NewPtrSys

■ NewHandle

■ SetZone

Memory allocation requests should use either a device family–specific allocation
mechanism or the new memory management services. The memory management
allocation and deallocation routines are

■ PoolAllocateResident

■ PoolDeallocate

An example of a family specific allocation mechanism is 'allocb' for STREAMS
drivers. Allocb is an exported allocation mechanism provided to all STREAMS drivers
and protocol modules. Allocb uses the appropriate memory management services to its
underlying operating system.

The Macintosh native driver memory management services are listed and described in
Chapter 9, “Driver Services Library.”

C H A P T E R 7

Writing Native Drivers

156 Driver Migration

Primary Interrupt Mechanisms 7

To install an interrupt handler, you use InstallInterruptFunctions, which
replaces the earlier Slot Manager routine SIntInstall.

The declarations for the interrupt handler, enabler, and disabler are the following:

typedef InterruptMemberNumber (*InterruptHandler)

(InterruptSetMember ISTmember,

 void * refCon,

 UInt32 theIntCount);

typedef void (*InterruptEnabler)

(InterruptSetMember member,

 void * refCon);

typedef InterruptSourceState (*InterruptDisabler)

(InterruptSetMember member,

 void * refCon);

The interrupt set ID and interrupt member number values are available as driver-ist
properties associated with each device entry in the Name Registry. For a complete
discussion of native driver interrupt handling, see “Interrupt Management” beginning
on page 240.

Secondary Interrupt Services 7

The Deferred Task Manager call DTInstall (dtTaskPtr: QElemPtr) is replaced by
QueueSecondaryInterruptHandler and CallSecondaryInterruptHandler2.
These routines are discussed in “Secondary Interrupt Handlers” beginning on page 263.

The Deferred Task Manager maintains a queue of deferred tasks that run after hardware
interrupts but before the return to the application level. The new mechanisms allow a
deferred task, now called a secondary interrupt handler, to be queued or run on the fly. The
operating-system mechanisms used to manage secondary interrupts are no longer visible
to clients of the scheduling routines. The deferred task structure itself is no longer part of
the requesting application’s context.

Device Configuration 7

All device configuration information is stored in the Name Registry. All resources
required by the driver will be provided to device drivers in a family-specific way or
through the Name Registry. Device driver writers must follow these rules:

■ Do not use the Resource Manager.

■ Do not use the file system.

■ Do not use the PRAM utilities.

C H A P T E R 7

Writing Native Drivers

Driver Migration 157

Support for these mechanisms is not available to drivers after the first generation of
Power Macintosh computers. The Name Registry provides two kinds of persistant
storage; see Chapter 8, “Macintosh Name Registry,” for details on how these facilities are
used. In short and in general, do not use the Macintosh Toolbox from main driver code.

All information required by device drivers is located in the Name Registry. Native driver
initalization routines are passed a Name Registry node pointer that identifies the
corresponding device. The Name Registry programming interface provides access
routines to the interesting properties required by devices. See “Standard Properties”
beginning on page 193, for names and values of properties of interest to PCI drivers for
use with Mac OS.

Native drivers should not make calls to, or expect data from, the Resource Manager.
There are two reasons for this rule:

■ The Resource Manager is an application service, not a system service.

■ Information stored in resources is unwieldy because it is impossible to distinguish
code from data resources in a paging-protected or memory-protected way.

Configuration data must be supplied by the expert controlling the device or stored as
property data in the Name Registry.

C H A P T E R 8

Macintosh Name Registry 8Figure 8-0
Listing 8-0
Table 8-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 8

Macintosh Name Registry

160

Concepts

This chapter describes the Name Registry, a data structure maintained by Mac OS
that stores hardware and software configuration information in the second generation
of Power Macintosh computers.

This chapter presents general concepts followed by a detailed discussion of the
Name Registry programming interface. Because native device drivers must access
the Registry, developers writing new device drivers or upgrading existing drivers
should read this chapter.

Concepts 8

People identify things by giving them names. In computer systems, names are used to
identify machines, files, users, devices, and so on. The Name Registry provides device
driver and system software with a way to store names. The Registry does not store the
things named, just important pieces of information about the things. The information
stored is determined by the creator of the name entry and may include such data as the
physical location of the thing, technical descriptions of it, and logical addresses.

Name entries are created in the Name Registry by expert software. Each expert owns
specific entries and is responsible for removing them when they are no longer needed.
Clients search for entries the expert has placed in the Registry, making the Registry
a rendezvous point for clients and experts. The Registry does not provide general
communication between clients and experts; it only helps clients and experts find
each other. After clients and experts find each other, different software helps them
communicate directly.

The Macintosh Name Registry is similar to the name services used in some other
computing environments. In concept it resembles the X.500 or BIND (named) network
name services. However, the present implementation of the Macintosh Name Registry is
less general; it is optimized for the specific needs of hardware and device driver
configuration.

The Name Graph 8

Name entries in the Name Registry are connected together. At present the connections
form a hierarchy, but in the future the names may be connected in a more general
graph structure.

Note

Code must not depend on the order in which name
entries are found in the Registry.

◆

Software finds new name entries in the Registry by locating ones that it already knows
and by examining entries found nearby. By knowing to what a name entry refers, a
program can find other entries that might be used for a similar or related purpose.

C H A P T E R 8

Macintosh Name Registry

Concepts

161

The hierarchical name graph is based on an origin entry called the

root.

 All name entries
in the graph may be described by a pathway through the graph starting from the root.
Future versions of the Registry may provide multiple paths to some entries.

Name Properties 8

Each name entry in the Registry is accompanied by a set of properties. Each property has
a name and a value. By looking at the properties associated with a name entry, software
can determine what the entry identifies and what its uses are.

Software uses Registry properties to find other software. For example, if a user specifies
a name while running an application, the application may look up the name in the
Registry and use the properties associated with it to determine what the name represents
in the system. For example, a distributed application could ask the user to choose a
network interface. From the properties that accompany the name of the interface in the
Registry, the application could find the device driver that controls the network interface
and the parameters needed to open the network device, as diagrammed in Figure 8-1.

Figure 8-1

Using name properties

How the Registry Is Built 8

During system startup, the Open Firmware support code in the Macintosh ROM
creates a device tree, as described in Chapter 4, “Startup and System Configuration.”
When Mac OS is launched, it extracts device information from the device tree in the
following steps:

1. Search for devices.

2. Add a name entry and a set of properties to the Registry for each device.

Jon's Frubar
 Properties:
 Name = "Jon's Frubar"
 Location = "Cafeteria"
 Address = "129.484.1234"
 Driver = "Frubar Driver"

Frubars
 Properties:
 Name = "Frubars"
 Frubar Root = ""

Jan's Frubar
 Properties:
 Name = "Jan's Frubar"
 Location = "Jan's Office"
 Address = "129.468.1111"
 Driver = "Frubar Driver"

Frubar Driver

C H A P T E R 8

Macintosh Name Registry

162

Name Registry Overview

3. Find a driver for each device.

4. Initialize the driver.

Connections between name entries are formed when the entries are added to the
Registry. The connections have direction and point from an existing entry to the new one.

The Expansion Bus Manager places most of the name entries in the Registry during
system startup. However, some hardware provides standard ways to probe for devices
and return information describing them. In this case, the low-level expert responsible for
that variety of hardware finds the devices and adds their names to the Registry. The
low-level expert attaches descriptive information for each device to the name entry as
properties. Low-level experts are described in “Terminology” on page 61. In a few cases,
drivers may enter names and properties in the Registry directly.

The software entity that creates a name entry owns it, whether it is the Expansion Bus
Manager, a low-level expert, or a device driver. Only the owner should remove a name
entry. Since most device drivers do not create entries in the Registry, most drivers never
remove them.

Name Registry Overview 8

This section summarizes the scope, design goals, limitations, and terminology of the
Macintosh Name Registry.

Scope 8

The naming services provided by the Name Registry are intended to serve local clients
on a single computer only. Experts that create name entries include the low-level experts
and the Expansion Bus Manager. Clients include device drivers, control panels
(resources of type

'CDEV'

), family experts, and other device management software.

Limitations 8

The Name Registry supports a relatively small number of entries. Other limitations
include the following:

■

Because all Registry contents reside in RAM, the number of name entries supported is
limited by the available RAM space.

■

Name entry creation and searching processes do not have to be fast.

■

The Registry’s information is volatile; information in it is lost when the system is
restarted unless the information is saved to NVRAM or disk storage.

C H A P T E R 8

Macintosh Name Registry

Name Registry Overview

163

Terminology 8

The Macintosh Name Registry uses these special terms:

■

name:

 a null-terminated character string representing a thing or a concept

■

name entry:

 the representation of a name in the Name Registry. Name entries are
connected to form a

name graph.

■

entry ID:

 a unique ID that Mac OS gives to a name entry

■

path:

 a sequence of colon-separated names

■

property:

 a name-and-value pair associated with a name entry, which describes some
characteristic of the thing represented by the entry

■

modifier:

 hardware- or implementation-specific information associated with a name
entry or property. Modifier information is stored as bits in a 32-bit word.

Registry Topology 8

The topology of the Name Registry can be summarized as follows:

■

An unnamed root exists at the top of the Registry tree.

■

A

Devices

 name entry exists under the root. It represents the I/O universe for
the computer.

■

The device tree exists as a descendant (child) of the

Devices

 name entry, with a new
name

device-tree

, which is machine independent. This descendant represents the
Power Macintosh I/O hardware.

■

The

gestalt

 entry is another child of the root, making it a peer to

Devices

.

These relationships are diagrammed in Figure 8-2.

Figure 8-2

Typical Name Registry structure

"hammerhead" "bandit"

"device-tree"

"Devices" "Gestalt"

Unnamed
root

C H A P T E R 8

Macintosh Name Registry

164

Name Registry Overview

The Device Tree 8

The device tree is a data structure that the Macintosh startup firmware creates in system
RAM to provide information about configured PCI devices to other software, including
firmware on PCI cards. Attached to it are the drivers and support software that PCI
devices need to operate. The device tree in PCI-compatible Power Macintosh computers
is similar to the sResource table previously used in NuBus-compatible Macintosh
computers. For further information, see “Startup Firmware” beginning on page 30.

The device tree is the structure from which Mac OS extracts the original information to
create the device portion of the Name Registry. A device tree entry may be a device entry
(a entry that serves one hardware device) or a property entry (a list of name-and-value
pairs associated with a device entry). Device nodes may have child device nodes,
creating a branching tree structure; however, the tree begins with a single root entry.
Device nodes in the single systemwide device tree may serve devices that are connected
to the PowerPC processor bus through different bridges. Each device entry in the tree
has one or more property nodes. An important use of property nodes is to store drivers
associated with PCI card devices.

You can view the Name Registry generally as a global tree structure with a large branch
equal to the original Open Firmware device tree plus and minus a few properties. When
bringing the Open Firmware device tree to Mac OS through the Open Firmware client
interface, the only pruning of the original tree is to delete drivers for other operating
systems that may be stored there. All drivers with a

driver,AAPL,MacOS,PowerPC

property are brought into the Mac OS Name Registry.

The device tree for a PCI-based Power Macintosh computer (the Power Macintosh 9500)
is shown in Listing 8-1. Note that the Bandit and Hammerhead ASICs are also shown in
Figure 8-2.

Listing 8-1

A typical device tree

/bandit@F2000000

 /gc@10

 /53c94@10000

 /sd@0,0

 /mace@11000

 /escc@13020

 /escc@13000

 /awacs@14000

 /swim3@15000

 /via-cuda@16000

 /adb@0,0

 /keyboard@0,0

 /mouse@1,0

 /pram@0,0

 /rtc@0,0

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry

165

 /power-mgt@0,0

 /mesh@18000

 /sd@0,0

 /bandit@B

 /AAPL,8250@E

 /bandit@F4000000

 /bandit@B

 /ATY,mach64@E

 /hammerhead@F8000000

Real and Virtual Devices 8

Name entries can be associated with many different things, including real devices and
virtual devices. A virtual device is represented by a name entry for which there is no
hardware. Any piece of software can add a virtual device just by creating a new entry in
the

Devices

 section of the Name Registry. It can mimic hardware to any degree by its
selection of properties and its location in the tree topology. For example, a virtual device
might enter only a logical address, using an

AAPL,address

 property, or it might enter a
full set of properties to mimic the behavior of a real device such as a SCSI controller.

Future versions of Mac OS will use the Name Registry to store information about many
kinds of system components besides devices.

Note

You can also use the DLL (discussed in “Driver Loader Library”
beginning on page 117) to load a native driver without any associated
hardware device. Just pass

nil

 in

RegEntryIDPtr

 to the DLL
installation service.

◆

Using the Name Registry 8

This section describes the Macintosh Name Registry programming interface available to
device drivers and other device control software in the second generation of Power
Macintosh computers.

Determining If the Name Registry Exists 8

You can use the Macintosh Gestalt Manager to determine if the Name Registry exists in
the user’s version of Mac OS, using the gestalt selector

'nreg'

. Check the routine’s
error return first;

Gestalt

 will return

gestaltUndefSelectorErr

 if the Name
Registry is not present. If the routine was successful, check the gestalt return for the
Name Registry version number (currently 0). The Gestalt Manager is discussed in

Inside
Macintosh: Operating System Utilities.

Its use in the second generation of Power Macintosh
computers is described in “Macintosh System Gestalt” beginning on page 202.

If the Name Registry is not present, the computer does not support PCI cards.

C H A P T E R 8

Macintosh Name Registry

166

Using the Name Registry

PCI Bus Identification 8

When the user’s system is running Mac OS, you can use the Name Registry to determine
if a PCI bus exists in it. Use the

RegistryEntrySearch

 routine, described on page 178,
to locate a name entry that has a property named

"device-type"

 with a property
value

"pci"

. If the routine returns

noErr

 and its

done

 parameter returns

false

, then a
PCI bus exists.

Name Entry Management 8

The name graph is based on an anonymous, unnamed root entry under which all other
entries live. This root does not appear in pathnames, and it can be referenced only
indirectly, using

null

 for its parent

entryID

 value.

Given a parent

entryID

 value and the pathname

:aaaa:bbbb

,

aaaa

 is a child of the
specified parent name entry. If the specified parent name entry is

null

, the root entry is
assumed to be the parent and the path is equivalent to an absolute path.

Names for the entries just below the root (children of the root) are generic names
representing categories of things such as devices, processes, volumes, and so on. As you
move down the tree the things become more specific, depending on their organization
within each category.

Name Entry Identifiers 8

Each name entry in the Name Registry is given a unique ID, of type

RegEntryID

, that
code can use to reference the entry. The structure of this ID is opaque—it is accessible
only to system code and may change in future releases of Mac OS. For a discussion of
opaque IDs, see the note on page 216.

Name entry identifiers might contain allocated data, so Mac OS includes operations to
copy and dispose of them. See “ID Management” beginning on page 170.

Pathnames 8

Name Registry paths are colon-separated lists of name components. Name components
may not contain colons themselves.

Paths and name components are presented as null-terminated character strings.

Paths follow parsing rules similar to Apple file system absolute and relative pathnames.
However, the Apple double colon (

::

) parent directory syntax is not currently supported.

Absolute pathnames are assumed to be rooted to the anonymous root. For example, in
the pathname

aaaa:bbbb

,

aaaa is a child of the root and bbbb is a child of aaaa.
Relative pathnames are rooted to a specified parent name entry identified using an
entryID value.

Pathnames, both absolute and relative, should not be hard coded in expert or driver code
unless it is certain that the subset of the tree represented by the pathnames will remain
static. The location of things in the tree can and will change over time, thus changing the

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 167

pathnames. For example, a card can be inserted into one of several slots and potentially
change the parent name entry that represents the slot. However, pathnames are useful
for displaying the current topology of the tree or subtree or for referencing static
portions of the tree.

Finding Registry Components 8
Objects in the Registry should be located by means of search or iterate calls using
properties to identify the desired things. Code can search for properties (name and value
combinations) that uniquely identify the what it is looking for. Searching for generic
names such as "SCSI" or "ADB" is not a good idea because it can find many unrelated
entries.

Using Iterate Routines 8

Writing code to traverse a set of names consists of a call to begin the iteration, the
iteration loop, and a call to end the iteration. The call to end the iteration should be made
even in the case of an error, so that allocated data structures can be freed. Here is the
basic code structure for traversing names in the Name Registry:

Create(...)

Set(...) // optional

do {

Iterate(...); // or Search(...);

} while (!done);

Dispose(...);

Two different name entry iterations are provided, direction oriented and search oriented.
The type of iteration is indicated by the call used to retrieve the next name entry. All the
Mac OS routines used are described in “Name Iteration and Searching” beginning on
page 174. Rules for direction iteration are given below; rules for search iteration are
given in the next section.

■ RegistryEntryIterate, described on page 176, is used to traverse and explore the
Name Registry. An iteration operation begins at a starting entry and moves in a
direction defined by the relationship parameter. Each iterate call returns the next
entry encountered along the designated path. You can change the direction at any
time by specifying a new relationship parameter in your next iterate call. You
can continue in the current direction by specifying kRegIterContinue for the
relationship parameter. Remember that the direction is relative to the last entry
returned from the previous iterate call.

■ When an entry iterator is created via RegistryEntryIterateCreate, it is initialized
to the default starting entry root and to the relationship kRegIterDescendants.
This lets you iterate over the entire Name Registry.

■ You can use RegistryEntryIterateSet to set the iterator to some name entry
other than root, limiting the iteration to some subset of the Name Registry. To change
the default relationship, specify a new relationship as a parameter to your first
iterate call.

C H A P T E R 8

Macintosh Name Registry

168 Using the Name Registry

■ An iteration sequence is complete when either it finds what it is looking for or the
done parameter returns true, indicating that there are no more entries in the
specified direction. When done is true no error code is returned and the contents
of foundEntry are indeterminate. The iterator must be reset, using
RegistryEntryIterateSet, before it can be used again for a subsequent search
or iterate operation.

■ Each iterate call should describe the next relation.

■ Don’t mix iterators for iterate and search routines without reinitializing the iterator
value by means of RegistryEntryIterateSet.

Here are some hints for using relationships while iterating:

■ To iterate through all the descendants of an entry, specify kRegIterDescendants
on the first iterate call and then specify kRegIterContinue until done is true.

■ To iterate through the children of an entry, specify kRegIterChildren on the first
iterate call and then specify kRegIterContinue until done is true.

■ To iterate through the siblings of an entry, specify kRegIterSiblings on the first
iterate call and then specify kRegIterContinue until done is true. Siblings do not
include the current entry.

■ To iterate through the parents of an entry, specify kRegIterParents on the first
iterate call and then specify kRegIterContinue until done is true. Note that
there is only one parent now, but this may change in future implementations of the
Name Registry.

■ To navigate down the registry hierarchy, specify kRegIterChildren until you find
the level you are looking for or until done is true (which indicates that you have
reached the bottom). The latter case is useful when deleting a subtree, because you
must delete the children before you can delete a parent.

■ To navigate up the Registry hierarchy, specify kRegIterParents until you find the
level you are looking for or until done is true (which indicates that you have reached
the root).

Using Search Routines 8

RegistryEntrySearch, RegistryEntryPropertyMod, and RegistryEntryMod
are used to search the Name Registry for entries having a specific property or set of
modifiers. The set of entries to be searched is defined by a starting entry and a relation-
ship. The relationship determines which entries relative to the starting entry are to be
included in the search—children, parents, siblings, or descendants.

Follow these rules when using search routines:

■ When an entry iterator is created via RegistryEntryIterateCreate, it is
initialized to the default starting entry root and to the relationship
kRegIterDescendants. A subsequent search call using these default values
will include all entries in the Name Registry.

■ You can use RegistryEntryIterateSet to set the iterator to some name entry
other than root, limiting the iteration to some subset of the Name Registry. To
change the default relationship, specify a new relationship as a parameter to your
first search call.

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 169

■ Search routines are designed to be iterative, allowing you to search for multiple
instances of the same thing within a set of entries. To continue a search, make the
same call again, specifying kRegIterContinue as the relationship. The routine will
continue where it left off and will find new entries that meet the same search criteria.

■ To change the search criteria (property name, value, or modifiers) or the set of entries
to be searched, reset the iterator. Use RegistryEntryIterateSet to set a new
starting entry and then specify a new relationship in the next search call.

■ An search operation is complete when either it finds what it is looking for or the done
parameter returns true, indicating that there are no more name entries that meet
the search criteria. When done is true no error code is returned and the contents
of foundEntry are indeterminate. The iterator must be reset, using
RegistryEntryIterateSet, before it can be used again for a subsequent search
or iterate operation.

Here is a typical search sequence:

1. Get an iterator.

2. Set the starting point if it is other than the root.

3. Set the relationship in the first search call.

4. Do the search call.

5. Repeat the search call with the relationship set to kRegIterContinue.

Coding Conventions 8
The header file declaring the Name Registry programming interface should be included
as follows:

#include <NameRegistry.h>

No other header files are required.

Data Structures and Constants 8
Pathnames may be of any length, but components of a pathname are limited as follows:

enum

{

kRegCStrMaxEntryNameLength = 31

kRegMaximumPropertyNameLength = 31

};

typedef char RegCStrPathName;

typedef unsigned long RegPathNameSize;

C H A P T E R 8

Macintosh Name Registry

170 Using the Name Registry

typedef char RegCStrEntryName,

*RegCStrEntryNamePtr

RegCStrEntryNameBuf[kRegCStrMaxEntryNameLength];

typedef char RegPropertyName,

*RegPropertyNamePtr

RegPropertyNameBuf[kRegMaximumPropertyNameLength];

struct RegEntryID {

UInt8 opaque[16];

};

typedef struct RegEntryID RegEntryID, *RegEntryIDPtr;

Software must use directed moves when examining a neighborhood in the Registry’s
name graph. The following constants indicate the direction of movement during
traversals of the hierarchical Registry graph:

typedef unsigned long RegIterationOp;

typedef RegIterationOp RegEntryIterationOp;

enum

{

kRegIterRoot = 0x2L, // absolute locations

kRegIterParents = 0x3L, // include all parent(s) of entry

kRegIterChildren = 0x4L, // include all children

kRegIterDescendants = 0x5L, // include all subtrees of entry

kRegIterSibling = 0x6L, // include all siblings

kRegIterContinue = 0x1L // keep doing the same thing

};

ID Management 8
Mac OS provides several routines, described in this section, to create and manage name
entry IDs. These IDs are discussed in “Name Entry Identifiers” on page 166.

RegistryEntryIDInit 8

RegistryEntryIDInit initializes a RegEntryID structure to a known, invalid state.

OSStatus RegistryEntryIDInit (RegEntryID *id);

id Identifier to be initialized.

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 171

DESCRIPTION

Since RegEntryID values are allocated on the stack, it is not possible to determine
whether one contains a valid reference or uninitialized data from the stack.
RegistryEntryIDInit corrects this problem. It should be called before a
RegEntryID structure is used.

RESULT CODES

RegistryEntryIDCompare 8

RegistryEntryIDCompare compares RegEntryID values to see if they are equal. It
can also be used to determine if a RegEntryID value is set to an invalid state.

Boolean RegistryEntryIDCompare (const RegEntryID *id1,

const RegEntryID *id2);

id1 First identifier.

id2 Second identifier.

DESCRIPTION

RegistryEntryIDCompare is useful for comparing two RegEntryID values to see
whether they reference the same name entry as well as to check if a RegEntryID value
is a valid reference. It returns true if the two ID values are equal.

If a null value is passed in either id1 or id2, RegistryEntryIDCompare compares
the other ID with the intialized value returned by RegistryEntryIDInit. If both ID
values are null, RegistryEntryIDCompare returns true.

RESULT CODES

noErr 0 No error
paramErr –50 Bad parameter

false 0 ID values different
true 1 ID values equal

C H A P T E R 8

Macintosh Name Registry

172 Using the Name Registry

RegistryEntryIDCopy 8

RegistryEntryIDCopy copies the identifier for a name entry, including any internally
allocated data.

void RegistryEntryIDCopy (const RegEntryID *src,

 RegEntryID *dst);

src ID to be copied.

dst Destination ID.

DESCRIPTION

Given an existing RegEntryID value, RegistryEntryIDCopy sets another
RegEntryID to be functionally the same.

RESULT CODES

RegistryEntryIDDispose 8

RegistryEntryIDDispose disposes of a Name Registry identifier.

void RegistryEntryIDDispose (RegEntryID *id);

id RegEntryID value to be disposed of.

DESCRIPTION

RegistryEntryIDDispose disposes of the identifier for a name entry pointed to by
id, including its allocated data.

RESULT CODES

Name Creation and Deletion 8
The following routines add new name entries to the Name Registry and remove existing
name entries from it.

noErr 0 No error
paramErr –50 Bad parameter

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 173

RegistryCStrEntryCreate 8

RegistryCStrEntryCreate creates a new child name entry in the Name Registry.

OSErr RegistryCStrEntryCreate (const RegEntryID *parentEntry,

 const RegCStrPathName *name,

 RegEntryID *newEntry);

parentEntry RegEntryID value that identifies the parent name entry.

name Pathname of the new entry relative to the parent, as a C string.

newEntry Returned RegEntryID value of the new name entry.

DESCRIPTION

Given the RegEntryID value of a parent name entry, RegistryCStrEntryCreate
creates a new entry that is a descendant of the parent, with the C string pathname name.
It returns the RegEntryID value that identifies the new name entry.

The rules for composing pathnames are given in “Pathnames” on page 166. Note that the
pathname in name includes the name of the new entry. If parentEntry is NULL, name
is a pathname relative to the root.

RESULT CODES

CODE SAMPLE

Listing 8-2 shows code that uses RegistryCStrEntryCreate to add a name entry for
a new child device to the Name Registry.

Listing 8-2 Adding a name entry to the Name Registry

OSStatus

AddDevice(

 const RegEntryID *parentEntry,
 const RegCStrEntryName *deviceName,
 RegEntryID *deviceEntry
)

noErr 0 No error
paramErr –50 Bad parameter
nrNotEnoughMemoryErr –2537 Not enough space in the system heap
nrInvalidNodeErr –2538 RegEntryID value not valid
nrPathNotFound –2539 Path component lookup failed
nrNotCreatedErr –2540 Entry or property could not be created

C H A P T E R 8

Macintosh Name Registry

174 Using the Name Registry

{

 RegCStrPathName devicePathBuf[kRegCStrMaxEntryNameLength + 2]
 = {kRegPathNameSeparator,kRegPathNameTerminator};
 RegCStrPathName *devicePath = &devicePathBuf[0];
 OSStatus err = noErr;

 /*
 * Need to construct a relative path name since we are not
 * attaching the new entry to the root.
 */
 devicePath = strcat(devicePath, deviceName);

 err = RegistryCStrEntryCreate(parentEntry, devicePath, deviceEntry);
 return err;
}

RegistryEntryDelete 8

RegistryEntryDelete deletes a name entry from the Name Registry.

OSErr RegistryEntryDelete (const RegEntryID id);

id RegEntryID value of name entry to delete.

DESCRIPTION

Given the RegEntryID value of a name entry in the Name Registry,
RegistryEntryDelete deletes it.

RESULT CODES

Name Iteration and Searching 8
The Registry name entry iteration functions communicate through an iterator parameter
with the following type:

typedef struct RegEntryIter { void *opaque; }

RegEntryIter,

*RegEntryIterPtr;

noErr 0 No error
paramErr –50 Bad parameter
nrLockedErr –2536 Entry or property is locked
nrInvalidNodeErr –2538 RegEntryID value not valid

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 175

RegistryEntryIterateCreate 8

RegistryEntryIterateCreate creates an iterator named cookie that is used by
iterate and search routines. The iterator is initialized to the default starting entry root
and to the relationship kRegIterDescendants, so it can be used to access the whole
Name Registry.

OSErr RegistryEntryIterateCreate (RegEntryIter *cookie);

cookie Iterator used by iterate and search routines.

DESCRIPTION

RegistryEntryIterateCreate sets up the iteration process for finding device
names in the Name Registry and returns an iterator in cookie that is used by
RegistryEntryIterate or RegistryEntrySearch.

RESULT CODES

RegistryEntryIterateSet 8

RegistryEntryIterateSet sets a cookie value to identify a specified starting
name entry.

OSStatus RegistryEntryIterateSet

(RegEntryIter *cookie,

 const RegEntryID *startEntryID);

cookie Iterator used by iterate and search routines.

startEntryID RegEntryID valuethat identifies name entry to start iteration.

DESCRIPTION

When an iterator is first created, it is set to the root of the Name Registry with a relation
of kRegIterDescendants. RegistryEntryIterateSet lets you adjust this starting
point to a known name entry so you can iterate or search over a subset of the device tree.

The relation part of the iterator can be set by specifying a new relation in a subsequent
iterate or search call.

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 8

Macintosh Name Registry

176 Using the Name Registry

RESULT CODES

RegistryEntryIterate 8

One kind of iteration call, RegistryEntryIterate, retrieves the next name entry in
the Name Registry by moving in a specified direction.

OSErr RegistryEntryIterate

(RegEntryIter *cookie,

 RegEntryIterationOp relationship,

 RegEntryID *foundEntry,

 Boolean *done);

cookie Iterator used by iterate and search routines.

relationship Iteration direction (values defined on page 170).

foundEntry ID of the next name entry found.

done Value of true means iteration is completed.

DESCRIPTION

RegistryEntryIterate moves from entry to entry in the Name Registry, marking its
position by changing the value of cookie. The direction of movement is indicated by
relationship. RegistryEntryIterate returns the RegEntryID value that
identifies the next name entry found in foundEntry, or true in done if all name entries
have been found.

RESULT CODES

CODE SAMPLE

Listing 8-3 shows code using RegistryEntryIterate and RegistryEntryDelete
that finds and remove all immediate child entries of a given parent entry.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 177

Listing 8-3 Finding and removing child entries

OSStatus

RemoveDevices(

 const RegEntryID *parentEntry
)
{

 RegEntryID entry;
 RegEntryIter cookie;
 RegEntryIterationOp iterOp;
 Boolean done;
 OSStatus err = noErr;

 RegistryEntryIDInit(&entry);

 err = RegistryEntryIterateCreate(&cookie);
 if (err != noErr)
 return err;

 /*
 * Reset iterator to point to our parent entry
 */
 err = RegistryEntryIterateSet(&cookie, parentEntry);

 if (err == noErr) {
 /*
 * Include just immediate chidren, not all descendants
 */
 iterOp = kRegIterChildren;
 do {
 err = RegistryEntryIterate(&cookie, iterOp, &entry, &done);

 if (!done && err == noErr) {
 err = RegistryEntryDelete(&entry);
 RegistryEntryIDDispose(&entry);
 }
 iterOp = kRegIterContinue;

 } while (!done && err == noErr);
 }
 RegistryEntryIterateDispose(&cookie);
 return err;
}

C H A P T E R 8

Macintosh Name Registry

178 Using the Name Registry

RegistryEntrySearch 8

Another kind of iteration call, RegistryEntrySearch, retrieves the next name entry in
the Name Registry that has a specified matching property.

OSErr RegistryEntrySearch

(RegEntryIter *cookie,

 RegEntryIterationOp relationship,

 RegEntryID *foundEntry,

 Boolean *done,

 const RegPropertyName *propertyName,

 const void *propertyValue,

 RegPropertyValueSize propertySize);

cookie Iterator used by iterate and search routines.

relationship Search direction (values defined on page 170).

foundEntry ID of the next name entry found.

done Value of true means searching is completed.

propertyName Pointer to name of property to be matched.

propertyValue Pointer to value of property to be matched.

propertySize Size of property to be matched.

DESCRIPTION

RegistryEntrySearch searches for a name entry with a property that matches certain
criteria and returns the RegEntryID value that identifies that entry in foundEntry, or
true in done if all matching name entries have been found.

RegistryEntrySearch returns only entries with properties that simultaneously
match the values of propertyName, propertyValue, and propertySize. If the
propertyValue pointer is null or propertySize is 0, then any property value is
considered a match.

RESULT CODES

CODE SAMPLE

Listing 8-4 shows code that uses RegistryEntrySearch to count the number of SCSI
interface devices for a given parent device.

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 179

Listing 8-4 Using RegistryEntrySearch

OSStatus
FindSCSIDevices(
 const RegEntryID *parentEntry,
 int *numberOfSCSIDevices
)
{
 RegEntryIter cookie;
 RegEntryID SCSIEntry;
 RegEntryIterationOp iterOp;
 Boolean done;
 OSStatus err = noErr;

 #define kSCSIDeviceType "scsi"

 RegistryEntryIDInit(&SCSIEntry);
 *numberOfSCSIDevices = 0;

 err = RegistryEntryIterateCreate(&cookie);
 if (err != noErr)
 return err;

 /*
 * Reset iterator to point to our parent entry
 */
 err = RegistryEntryIterateSet(&cookie, parentEntry);

 if (err == noErr) {
 /*
 * Search all descendants of the parent device.
 */
 iterOp = kRegIterDescendants;
 do {
 err = RegistryEntrySearch(&cookie, iterOp, &SCSIEntry, &done,
 "device-type", kSCSIDeviceType, sizeof(kSCSIDeviceType));

 if (!done && err == noErr) {
 *numberOfSCSIDevices += 1;
 RegistryEntryIDDispose(&SCSIEntry);
 }
 iterOp = kRegIterContinue;

 } while (!done && err == noErr);
 }
 RegistryEntryIterateDispose(&cookie);
 return err;
}

C H A P T E R 8

Macintosh Name Registry

180 Using the Name Registry

RegistryEntryIterateDispose 8

RegistryEntryIterateDispose disposes of the iteration structure after searching
is finished.

void RegistryEntryIterateDispose (RegEntryIter *cookie);

cookie Iterator used by iterate and search routines.

DESCRIPTION

Given the cookie value used previously, RegistryEntryIterateDispose disposes
of resources used for iterating or searching.

RESULT CODES

Name Lookup 8

RegistryCStrEntryLookup provides a fast, direct mechanism for finding a name
entry in the Registry.

RegistryCStrEntryLookup 8

RegistryCStrEntryLookup finds a name entry in the Name Registry by starting from
a designated point and traversing a defined path. This makes it faster than most search
or iterate routines.

OSErr RegistryCStrEntryLookup

(const RegEntryID *searchPointID,

 const RegCStrPathName *pathName,

 RegEntryID *foundEntry);

searchPointID RegEntryID value that identifies starting point of search.

pathName Pathname of entry to be found.

foundEntry RegEntryID value of found name entry.

DESCRIPTION

RegistryCStrEntryLookup finds a name entry in the Registry based on pathName,
starting from the entry designated by searchPointID.

If searchPointID is NULL, the path is assumed to be a rooted path and pathName
must contain an absolute pathname. If the pathname begins with a colon, the path is

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 181

relative to searchPointID and pathName must contain a relative pathname. If the
pathname does not begin with a colon, the path is a rooted path and pathName must
contain an absolute pathname.

After using RegistryCStrEntryLookup, dispose of the foundEntry ID by calling
RegistryEntryIDDispose.

Note
A reverse lookup mechanism has not been provided because some name
services may not provide a fast, general algorithm. To perform reverse
lookup, the process described in “Name Iteration and Searching”
beginning on page 174 should be used. ◆

RESULT CODES

CODE SAMPLE

Listing 8-5 shows code that uses RegistryCStrEntryLookup to obtain the entry ID
for a child device.

Listing 8-5 Obtaining an entry ID

OSStatus

LocateChildDevice(

 const RegEntryID *parentEntry,
 const RegCStrEntryName *deviceName,
 RegEntryID *deviceEntry
)
{

 RegCStrPathName devicePathBuf[kRegCStrMaxEntryNameLength + 2]
 = {kRegPathNameSeparator,kRegPathNameTerminator};
 RegCStrPathName *devicePath = &devicePathBuf[0];
 OSStatus err = noErr;

 /*
 * Need to construct a relative path name from the parent entry.
 */
 devicePath = strcat(devicePath, deviceName);

 err = RegistryCStrEntryLookup(parentEntry, devicePath, deviceEntry);
 return err;
}

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
nrPathNotFound –2539 Path component lookup failed

C H A P T E R 8

Macintosh Name Registry

182 Using the Name Registry

Pathname Parsing 8

The routines defined in this section convert a RegEntryID value to the equivalent full
pathname, give the pathname’s length, and parse the pathname into its components.

RegistryEntryToPathSize 8

RegistryEntryToPathSize returns the size of the pathname to a specified
name entry.

OSErr RegistryEntryToPathSize

(const RegEntryID *entryID,

 RegPathNameSize *pathSize);

entryID RegEntryID value that identifies a name entry.

pathSize Returned size in bytes of the pathname to the entry.

DESCRIPTION

RegistryEntryToPathSize returns in pathSize the length (in bytes) of the absolute
pathname of the name entry designated by entryID, including the pathname’s
terminating character.

RESULT CODES

RegistryCStrEntryToPath 8

RegistryCStrEntryToPath returns the pathname of a name entry in the
Name Registry.

OSErr RegistryCStrEntryToPath

(const RegEntryID *entryID,

 RegCStrPathName *pathName,

 RegPathNameSize pathSize);

entryID RegEntryID value that identifies a name entry.

pathName Returned pathname to the entry.

pathSize Size (in bytes) of the pathname buffer pointed to by pathName.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 183

DESCRIPTION

Given a RegEntryID value that identifies a name entry, RegistryCStrEntryToPath
returns its pathname in pathName. If the buffer provided is too small, it returns
nrPathBufferTooSmall.

RESULT CODES

RegistryCStrEntryToName 8

RegistryCStrEntryToName retrieves the name component of a name entry and
returns the ID of the entry’s parent.

OSErr RegistryCStrEntryToName

(const RegEntryID *entryID,

 RegEntryID *parentEntry,

 RegCStrEntryName *nameComponent,

 Boolean *done);

entryID RegEntryID value that identifies a name entry.

parentEntry Returned RegEntryID value of the entry’s parent entry.

nameComponent Returned name of the entry as a C string.

done Returns true when parentEntry is the root.

DESCRIPTION

Given a RegEntryID value that identifies a name entry, RegistryCStrEntryToName
returns the RegEntryID value that identifies its parent entry in parentEntry and the
name component of the name entry in nameComponent. RegistryCStrEntryToName
is useful for locating the parent of a name entry and for constructing a relative pathname
from the parent to the entry.

RESULT CODES

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
nrPathBufferTooSmall –2543 Buffer for pathname too small

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid

C H A P T E R 8

Macintosh Name Registry

184 Using the Name Registry

CODE SAMPLE

Listing 8-6 shows code that uses RegistryCStrEntryToName to obtain the parent
entry for a given child entry.

Listing 8-6 Obtaining a parent entry

OSStatus

LocateParentDevice(

 const RegEntryID *deviceEntry,
 RegEntryID *parentEntry
)
{

 RegCStrEntryName deviceNameBuf[kRegCStrMaxEntryNameLength+1];
 Boolean done;
 OSStatus err = noErr;

 err = RegistryCStrEntryToName(deviceEntry, parentEntry,
 &deviceNameBuf[0], &done);
 if (err != noErr)
 return err;

 /*
 * If done == true, we have reached the root, there is no parent!
 */
 if (done)
 err = kNotFoundErr;

 return err;
}

Property Management 8
Properties describe what a name entry represents or how it may be used. Each name
entry has a set of named properties, which may be empty. Each property consists of a
name string and a value. The value consists of 0 or more contiguous bytes. Property
names are null-terminated strings of at most kRegMaximumPropertyNameLength
bytes (31 bytes). Name property data structures and constants are listed in “Data
Structures and Constants” on page 169.

Creation and Deletion 8

The routines described in this section add new properties to or remove existing
properties from a name entry in the Name Registry.

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 185

RegistryPropertyCreate 8

RegistryPropertyCreate adds a new property to a name entry.

OSErr RegistryPropertyCreate

(const RegEntryID *entryID,

 const RegPropertyName *propertyName,

 const void *propertyValue,

 RegPropertyValueSize propertySize);

entryID RegEntryID value that identifies a name entry.

propertyName Name of the property to be created.

propertyValue Value of the new property.

propertySize Size of the new property.

DESCRIPTION

Given a RegEntryID value that identifies a name entry, RegistryPropertyCreate
adds a new property to that entry with name propertyName and value propertyValue.
The entryID parameter may not be null.

The propertySize parameter must be set to the size (in bytes) of propertyValue.

Property names may be any alphanumeric strings but may not contain slash (/) or
semicolon (:) characters.

RESULT CODES

CODE SAMPLE

In Listing 8-7, RegistryPropertyCreate, RegistryPropertyGetSize,and
RegistryPropertySet are used to update the value of a given property of a name
entry. If the property exists, its value is updated. If it doesn’t exist, a new property
is created.

noErr 0 No error
paramErr –50 Bad parameter
nrNotEnoughMemoryErr –2537 Not enough space in the system heap
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotCreatedErr –2540 Entry or property could not be created
nrNameErr –2541 Name invalid, too long, or not terminated

C H A P T E R 8

Macintosh Name Registry

186 Using the Name Registry

Listing 8-7 Updating or creating a property

OSStatus

UpdateDeviceProperty(

 const RegEntryID *deviceEntry,
 const RegPropertyName *propertyName,
 const void *newPropertyValue,
 const RegPropertyValueSize newPropertySize
)
{

 RegPropertyValueSize PrevPropertySize;
 OSStatus err = noErr;

 /*
 * RegistryPropertyGetSize used here to see if the property exists.
 */
 err = RegistryPropertyGetSize(deviceEntry,propertyName,&PrevPropertySize);

 if (err == noErr) {
 err = RegistryPropertySet(deviceEntry, propertyName,
 newPropertyValue, newPropertySize);
 return err;

 } else if (err == nrNotFoundErr)
 err = RegistryPropertyCreate(deviceEntry, propertyName,
 newPropertyValue, newPropertySize);

 return err;
}

RegistryPropertyDelete 8

RegistryPropertyDelete deletes a property from the Name Registry.

OSErr RegistryPropertyDelete

(const RegEntryID *entryID,

 const RegPropertyName *propertyName);

entryID RegEntryID value that identifies a name entry.

propertyName Name of the property to be deleted.

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 187

DESCRIPTION

RegistryPropertyDelete deletes the property named propertyName from the
name entry identified by entryID.

RESULT CODES

Property Iteration 8

Traversing the set of properties associated with a name entry is similar to iteration over
names in the Registry, described in “Name Iteration and Searching” beginning on
page 174.

Only one form of property iteration is provided—iteration over the set of properties
associated with a single name entry.

A property iteration loop has this general form:

Create(...)

do {

Iterate(...);

} while (!done);

Dispose(...);

Property iteration functions communicate by means of an iterator parameter that is a
RegPropertyIter data structure:

typedef struct RegPropertyIter { void *opaque; }

RegPropertyIter,

*RegPropertyIterPtr;

RegistryPropertyIterateCreate 8

The starting routine RegistryPropertyIterateCreate starts an iteration over all
the properties associated with a name entry.

OSErr RegistryPropertyIterateCreate

(const RegEntryID *entry,

 RegPropertyIter *cookie);

entry RegEntryID value that identifies a Name Registry name entry.

cookie Iterator used by property iterate routines.

noErr 0 No error
paramErr –50 Bad parameter
nrLockedErr –2536 Entry or property locked
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotFoundErr –2539 Search failed to match criteria

C H A P T E R 8

Macintosh Name Registry

188 Using the Name Registry

DESCRIPTION

RegistryPropertyIterateCreate creates a property iterator (cookie) that can be
used to iterate the properties of the name entry identified by entry. The value it returns
in cookie is used by RegistryPropertyIterate, described next.

RESULT CODES

RegistryPropertyIterate 8

Repeated calls to RegistryPropertyIterate use the iterator returned by
RegistryPropertyIterateCreate to iterate through a succession of properties.

OSErr RegistryPropertyIterate

(RegPropertyIter *cookie,

 RegPropertyName *foundProperty,

 Boolean *done);

cookie Iterator used by property iterate routines.

foundProperty Name of the property found.

done Value is true if all properties have been found.

DESCRIPTION

RegistryPropertyIterate moves from property to to property among the properties
of the name entry specified in a prior RegistryPropertyIterateCreate call (see
previous section). It returns the name of the next property in foundProperty, or true
in done if all properties have been iterated through.

RESULT CODES

CODE SAMPLE

Listing 8-8 shows code that uses RegistryPropertyIterate to iterate through all the
properties for a given name entry.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 189

Listing 8-8 Iterating through properties

OSStatus
IterateDeviceProperties(
 const RegEntryID *deviceEntry
)
{
 RegPropertyNameBuf propertyName;
 RegPropertyIter cookie;
 Boolean done;
 OSStatus err = noErr;

 err = RegistryPropertyIterateCreate(deviceEntry, &cookie);

 if (err != noErr) {
 do {
 err = RegistryPropertyIterate(&cookie, &propertyName[0], &done);
 if (err != noErr)
 break;

 /*
 * Do something with the property, given the property name
 * you can use RegistryPropertyGetSize to determine the size
 * of the value and and RegistryPropertyGet to retrieve the value.
 */

 } while (!done && err == noErr);
 }
 RegistryPropertyIterateDispose(&cookie);
 return err;
}

RegistryPropertyIterateDispose 8

RegistryPropertyIterateDispose completes the property iteration process.

void RegistryPropertyIterateDispose (RegPropertyIter *cookie);

cookie Iterator used by iterate and search routines.

DESCRIPTION

RegistryPropertyIterateDispose disposes of the iterator used to find properties.
It should be called even in the case of an error, so that allocated data structures can
be freed.

C H A P T E R 8

Macintosh Name Registry

190 Using the Name Registry

RESULT CODES

Property Retrieval and Assignment 8

The value of an existing property may be retrieved or modified using the routines
defined in this section.

RegistryPropertyGetSize 8

A property’s value may have any length. If the length of a property’s value is not known,
use RegistryPropertyGetSize to determine its size so you can allocate space for it.

OSErr RegistryPropertyGetSize

(const RegEntryID *entryID,

 const RegPropertyName *propertyName,

 RegPropertyValueSize *propertySize);

entryID RegEntryID value that identifies a name entry.

propertyName Name of the property.

propertySize Returned size of the property’s value.

DESCRIPTION

RegistryPropertyGetSize returns in propertySize the length (in bytes) of the
property named propertyName and associated with the name entry identified
by entryID.

EXECUTION CONTEXT

RegistryPropertyGetSize may be called from software interrupt level only, not
from task level or hardware interrupt level.

RESULT CODES

CODE SAMPLE

In Listing 8-9, RegistryPropertyGetSize and RegistryPropertyGet are used to
obtain the value of a property.

noErr 0 No error
paramErr –50 Bad parameter

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotFoundErr –2539 Search failed to match criteria

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 191

Listing 8-9 Obtaining a property value

OSStatus
GetDeviceProperty(
 const RegEntryID *deviceEntry,
 const RegPropertyName *propertyName,
 RegPropertyValue propertyValue,
 RegPropertyValueSize *propertySize
)
{
 RegPropertyValueSize size;
 OSStatus err = noErr;

 /*
 * Get the size of the value first to see if our buffer is big enough.
 */
 err = RegistryPropertyGetSize(deviceEntry, propertyName, &size);
 if (err == noErr) {
 if (size > *propertySize)
 return kPropBufferTooSmall;
 /*
 * Note, we return the actual property size.
 */
 err = RegistryPropertyGet(deviceEntry, propertyName, propertyValue,
 propertySize);
 }
 return err;
}

RegistryPropertyGet 8

RegistryPropertyGet retrieves the value of a property in the Name Registry.

OSErr RegistryPropertyGet

(const RegEntryID *entryID,

 const RegPropertyName *propertyName,

 void *propertyValue,

 RegPropertyValueSize *propertySize);

entryID RegEntryID value that identifies a name entry.

propertyName Name of the property.

propertyValue Returned value of the property.

propertySize In call: size of the property buffer. On return: actual size of the
property’s value.

C H A P T E R 8

Macintosh Name Registry

192 Using the Name Registry

DESCRIPTION

RegistryPropertyGet retrieves the value of the property named propertyName
and associated with the name entry identified by entryID. The propertySize
parameter must be set to the size in bytes of the buffer pointed to by propertyValue.
Upon return, the value of propertySize will be the actual length of the value in bytes.

EXECUTION CONTEXT

RegistryPropertyGet may be called from software interrupt level only, not from task
level or hardware interrupt level.

RESULT CODES

RegistryPropertySet 8

RegistryPropertySet sets the value of a property in the Name Registry.

OSErr RegistryPropertySet

(const RegEntryID *entryID,

 const RegPropertyName *propertyName,

 const void *propertyValue,

 RegPropertyValueSize propertySize);

entryID RegEntryID value that identifies a name entry.

propertyName Name of the property.

propertyValue Value to which to set the property.

propertySize Size of the property.

DESCRIPTION

RegistryPropertySet sets the value of the property named propertyName and
associated with the name entry identified by entryID. The propertySize parameter
must be set to the size (in bytes) of the value pointed to by propertyValue.

IMPORTANT

RegistryPropertySet cannot be used to change the
size of a property from secondary interrupt level. ▲

EXECUTION CONTEXT

RegistryPropertySet may be called from software interrupt level only, not from task
level or hardware interrupt level.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotFoundErr –2539 Search failed to match criteria

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 193

RESULT CODES

Standard Properties 8

Some standard Name Registry properties names are specified for device entries. These
names should not be used for other purposes. Standard reserved property names used
by PCI expansion cards are listed in Table 8-1.

noErr 0 No error
paramErr –50 Bad parameter
nrLockedErr –2536 Entry or property locked
nrNotEnoughMemoryErr –2537 Not enough space in the system heap
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotFoundErr –2539 Search failed to match criteria
nrNameErr –2541 Name invalid, too long, or not terminated

Table 8-1 Reserved Name Registry property names

Name Description

Open Firmware standard properties

address Defines large virtual address regions

compatible Defines alternate name property values*

device-type The implemented interface

fcode-rom-offset Location of node’s FCode in the expansion ROM

interrupts Defines the interrupts used

model Defines a manufacturer’s model

name Name of the name entry (nameString); see page 142

reg The package’s physical address space request

status Indicates the device’s operations status

Properties defined by PCI binding to Open Firmware

alternate-reg Alternate access paths for addressable regions

assigned-addresses Assigned physical addresses

class-code Value from corresponding PCI configuration register

device-id Value from corresponding PCI configuration register

devsel-speed Value from corresponding PCI configuration register

driver,xxx,yyy,zzz Driver code for xxx,yyy,zzz platform

driver-reg,xxx,
yyy,zzz

Descriptor of location for driver code for xxx,yyy,zzz
platform (not supported by Mac OS)

fast-back-to-back Value from corresponding PCI configuration register

max-latency Value from corresponding PCI configuration register

continued

C H A P T E R 8

Macintosh Name Registry

194 Using the Name Registry

Normally, the device tree shows several properties attached to each device. Most of these
properties are created and used by Open Firmware and are described fully in IEEE
Standard 1275, described on page xxiv. Some properties are Apple specific and are
required only by Power Macintosh computers or Mac OS. Following are some notes on
the properties listed in Table 8-1:

■ Manufacturers of PCI cards should use their United States stock symbol (if they are a
publicly traded company) as the hardware manufacturer’s ID in the name property.
Otherwise, they can ask the IEEE to assign a 24-bit ID number by contacting

Registration Authority Committee
IEEE, Inc.
445 Hoes Lane
Piscataway, NJ 08855-1331
Telephone 809-562-3812

* See “Matching Drivers With Devices” beginning on page 142.
† See “I/O Space Cycle Generation” beginning on page 300.
‡ See “Interrupts and the Name Registry” beginning on page 247.

min-grant Value from corresponding PCI configuration register

power-consumption Function’s power requirements

revision-id Value from corresponding PCI configuration register

vendor-id Value from corresponding PCI configuration register

Properties specific to the Power Macintosh platform

AAPL,address Vector to logical address pointers†

AAPL,interrupts Internal interrupt number

AAPL,slot-name Physical slot identifier

depth Color depth of each pixel (for display device node only)

driver,AAPL,MacOS,
PowerPC

Driver code for Mac OS

driver-description Property that contains the driver description structure

driver-ist IST member and set value, used to install interrupts‡

driver-ptr Memory address of driver code

driver-ref Reference to driver controlling a specific name entry

height Height in pixels (for display device node only)

linebytes Number of bytes in each line (for display device node only)

width Width in pixels (for display device node only)

Table 8-1 Reserved Name Registry property names (continued)

Name Description

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 195

■ Mac OS native drivers should use the following value for their driver property:

driver,AAPL,MacOS,PowerPC

■ A standard property that is important to native drivers is the assigned-addresses
property defined in PCI Bus Binding to IEEE 1275-1994, currently available from the
IEEE as described in a note on page xxiv. The assigned-addresses property tells
the driver where a card’s relocatable address locations have been placed in physical
memory. With all routines except the Expansion Bus Manager I/O functions, driver
code must resolve assigned-addresses values to AAPL,address values before
using them. Sample code that retrieves an assigned-addresses property from the
Name Registry is shown in Listing 7-15 on page 146.

■ Drivers can use the vendor-id, device-id, class-code, and revision-id
properties to distinguish one card from another. However, these values typically refer
to the controller on the card rather than the card itself. For example, software will be
unable to use these properties to distinguish between two video cards that use the
same controller chip. Driver writers can make the cards distinct by giving different
names to them in their FCode assignments.

■ The fcode-rom-offset property contains the location in the PCI card’s expansion
ROM at which the FCode that produces the node is found. The FCode Tokenizer tool
(described in “Tools” beginning on page 391) can use the value of this property to
determine the values of other properties, such as driver. If a card’s expansion ROM
contains no FCode, the fcode-rom-offset property will be absent from the card’s
Name Registry entry.

■ The driver-ref pointer can be important. This property is created by the system
when a device driver is installed; it is the driver reference as defined by Inside
Macintosh: Devices. The property is removed when the driver is removed. The
presence of this property can be used to determine whether a particular device is open.

■ The driver-description property is a structure taken from the driver header; it
defines various characteristics of the device. For NuBus cards in a NuBus expansion
chassis, a property of this type may be constructed from information in the slot
resources of the card’s expansion ROM. The contents of this property are defined in
“Driver Description Structure” beginning on page 88.

■ The AAPL,address property is a vector to an array of logical address pointers, as
described in “I/O Space Cycle Generation” beginning on page 300.

■ The AAPL,interrupts property is an internal interrupt number that the Open
Firmware startup process creates before any FCode is read from the card.

■ The AAPL,slot-name property is an identifier for the hardware slot in which the
card is plugged. This property is created by the Open Firmware startup process before
any FCode is read from the card. Its value may be different with different Power
Macintosh models.

■ The height, width, linebytes, and depth properties are attached to the Name
Registry entries of graphic display devices to define each display’s characteristics.

■ The property driver,xxx,yyy,zzz provides access to driver code. An expansion card
ROM may contain a number of different drivers suited to different operating systems
and machine architectures. The value of xxx specifies the manufacturer of the
hardware (AAPL for Apple Computer, Inc.), yyy specifies the operating system

C H A P T E R 8

Macintosh Name Registry

196 Using the Name Registry

(MacOS) , and zzz specifies the instruction set architecture (PowerPC). The value of
driver,xxx,yyy,zzz is the driver code itself, which can be quite large; there is no
defined upper limit to the size of a property’s data. Although a PCI card may define a
number of drivers, only drivers appropriate to an available operating system will be
placed in the device tree, and therefore only these drivers can be accessed through the
Name Registry.

Modifier Management 8
Modifiers, described in this section, convey special characteristics of names and
properties. They are provided for use by low-level experts designed for specific
platforms. Modifiers may be supported for some names and not others. Support may
change from one hardware platform to another. Hence, device drivers should not rely on
modifiers to determine device functionality.

Data Structures and Constants 8

Modifiers are specified as bits in a 32-bit word. The low-order 16 bits are reserved for
modifiers applicable to both names and properties. The next 8 bits are reserved by the
name space and are redefined for each name space. The high-order 8 bits are reserved for
each name and property set and are redefined for each name entry.

The following types are used to declare modifier words:

typedef unsigned long RegModifiers;

typedef RegModifiers RegEntryModifiers;

typedef RegModifiers RegPropertyModifiers;

The following constants are used to mask bits in modifier words:

The following constants have meaning for property modifiers:

Name Value Description

kRegNoModifiers 0x00000000 No entry modifiers in place

kRegUniversalModifierMask 0x0000FFFF Modifiers to all entries

kRegNameSpaceModifierMask 0x00FF0000 Modifiers to all entries within
the name space

kRegModifierMask 0xFF000000 Modifiers to just this entry

Name Value Description

kRegPropertyValueIsSavedToNVRAM 0x00000001 Saved in NVRAM

kRegPropertyValueIsSavedToDisk 0x00000002 Saved to disk

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 197

Modifier-Based Searching 8

Mac OS provides two routines to simplify searching for name entries or properties that
have particular modifiers.

RegistryEntryMod 8

RegistryEntryMod searches for name entries that have specified modifiers.

OSErr RegistryEntryMod

(RegEntryIter *cookie,

 RegEntryIterationOp relationship,

 RegEntryID *foundEntry,

 Boolean *done,

 RegEntryModifiers matchingModifiers);

cookie Iterator used by name entry iterate and search routines.

relationship Search relationship (values defined on page 170).

foundEntry ID of the next name entry found.

done Value of true means searching is completed.

matchingModifiers Modifiers to be matched.

DESCRIPTION

RegistryEntryMod searches for name entries, using the relation indicated by
relationship, that have a specified modifier. RegistryEntryMod returns the
RegEntryID value that identifies the next name entry found in foundEntry, or
true in done if all entries have been exhausted.

RegistryEntryMod returns only name entries with modifiers that match the value of
matchingModifiers. It uses a bit AND operation to determine when the bits set in
matchingModifiers are also set in the entry.

RESULT CODES

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 8

Macintosh Name Registry

198 Using the Name Registry

RegistryEntryPropertyMod 8

RegistryEntryPropertyMod searches for name entries that have a property with a
specified modifier.

OSErr RegistryEntryPropertyMod

(RegEntryIter *cookie,

 RegEntryIterationOp relationship,

 RegEntryID *foundEntry,

 Boolean *done,

 RegEntryModifiers matchingModifiers);

cookie Iterator used by iterate and search routines.

relationship Search relationship (values defined on page 170).

foundEntry ID of the next name entry found.

done Value of true means searching is completed.

matchingModifiers Modifiers to be matched.

DESCRIPTION

RegistryEntryPropertyMod searches for name entries, using the relation indicated
by relationship, that have a property with a specified modifier. It returns the
RegEntryID value that identifies the next name entry found in foundEntry, or true
in done if all entries have been exhausted.

RegistryEntryPropertyMod returns only name entries with properties that have
modifiers that match the value of matchingModifiers. It uses a bit AND operation to
determine when the bits set in matchingModifiers are also set in the property.

RESULT CODES

Name Modifier Retrieval and Assignment 8

Existing name entries and properties may have their modifier word’s value set or
retrieved. Code can accomplish this by using the routines described in this section.

IMPORTANT

In the current implementation of the Name Registry, the only modifiers
that you can change are kRegPropertyValueIsSavedToNVRAM and
kRegPropertyValueIsSavedToDisk. Changing other modifiers is
reserved for future versions of Mac OS. ▲

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 199

RegistryEntryGetMod 8

RegistryEntryGetMod fetches the modifiers for a name entry in the Registry.

OSErr RegistryEntryGetMod

(const RegEntryID *entry,

 RegEntryModifiers *modifiers);

entry RegEntryID value that identifies a name entry.

modifiers Return value of modifiers.

DESCRIPTION

RegistryEntryGetMod returns in modifiers the current modifiers for the name
entry identified by entry.

RESULT CODES

CODE SAMPLE

In Listing 8-10, RegistryEntryGetMod and RegistryEntrySetMod are used to save
a property to disk.

Listing 8-10 Saving a property to disk

OSStatus

SaveDeviceProperty(

 const RegEntryID *deviceEntry,
 const RegPropertyName *propertyName
)
{

 RegPropertyModifiers propertyModifiers;
 OSStatus err = noErr;

 /*
 * Get the existing modifiers first.
 */
 err = RegistryPropertyGetMod (deviceEntry,propertyName,&propertyModifiers);

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid

C H A P T E R 8

Macintosh Name Registry

200 Using the Name Registry

 if (err == noErr) {
 /*
 * Set the save-to-disk modifier preserving the
 * already existing ones.
 */
 propertyModifiers = propertyModifiers
 & kRegPropertyValueIsSavedToDisk;
 err = RegistryPropertySetMod
 (deviceEntry, propertyName, propertyModifiers);
 }
 return err;
}

RegistryEntrySetMod 8

RegistryEntrySetMod sets the modifiers for a name entry in the Registry.

OSErr RegistryEntrySetMod

(const RegEntryID *entry,

 const RegEntryModifiers modifiers);

entry RegEntryID value that identifies a name entry.

modifiers Value of modifiers to set.

DESCRIPTION

RegistryEntrySetMod sets the modifiers specified in modifiers for the name entry
identified by entry. The caller is responsible for preserving bits that should remain set
by reading the current modifier value, changing it, and then assigning the new value.

RESULT CODES

Property Modifier Retrieval and Assignment 8

The two routines described in this section retrieve and assign property modifiers.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid

C H A P T E R 8

Macintosh Name Registry

Using the Name Registry 201

RegistryPropertyGetMod 8

RegistryPropertyGetMod fetches the modifiers for a property in the Registry.

OSErr RegistryPropertyGetMod

(const RegEntryID *entry,

 const RegPropertyName *name,

 RegPropertyModifiers *modifiers);

entry RegEntryID value that identifies a name entry.

name Property name.

modifiers Returned value of property modifiers.

DESCRIPTION

RegistryPropertyGetMod returns in modifiers the current modifiers for the
property with name name in the name entry identified by entry.

RESULT CODES

RegistryPropertySetMod 8

RegistryPropertySetMod sets the modifiers for a property in the Registry.

OSErr RegistryPropertySetMod

(const RegEntryID *entry,

 const RegPropertyName *name,

 RegPropertyModifiers modifiers);

entry RegEntryID value that identifies a name entry.

name Property name.

modifiers Value of property modifiers to set.

DESCRIPTION

RegistryPropertySetMod sets the modifiers specified in modifiers for the
property with name name in the name entry identified by entry. The caller is
responsible for preserving bits that should remain set by reading the current modifier
value, changing it, and then assigning the new value.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotFoundErr –2539 Search failed to match criteria

C H A P T E R 8

Macintosh Name Registry

202 Macintosh System Gestalt

RESULT CODES

Macintosh System Gestalt 8

When it builds the device tree, the Macintosh ROM installs a node at its root, called the
gestalt node, that contains information about the Macintosh system on which it is
running. The names of the properties of this node are the standard Macintosh gestalt
selectors, as described in Inside Macintosh: Operating System Utilities. This book is
described in “Supplementary Documents” beginning on page xxi. Some of the available
Gestalt properties of interest to PCI drivers are shown in Table 8-2.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotFoundErr –2539 Search failed to match criteria

Table 8-2 Gestalt properties

Name Description

"fpu " Floating-point unit type

"hdwr" Low-level hardware configuration attributes

"kbd " Keyboard type

"lram" Logical RAM size

"mach" Macintosh model code

"mmu " Memory management unit type

"nreg" Name Registry version

"pgsz" Logical page size

"proc" Microprocessor type

"prty" Parity attributes

"ram " Physical RAM size

"rom " System ROM size

"romv" System ROM version

"ser " Serial hardware attributes

"snd " Sound attributes

"tv " TV support version

"vers" Gestalt version

"vm " Virtual memory attributes

C H A P T E R 8

Macintosh Name Registry

Macintosh System Gestalt 203

Note
Specific Macintosh computer models may lack some of the
gestalt values listed in Table 8-2, so the corresponding
properties will not appear in the gestalt node. ◆

PCI expansion card firmware and driver code can explore the gestalt name entry in the
Name Registry to determine the hardware and firmware environment available to it. For
example, Listing 8-11 shows typical code to extract the 32-bit value of the Macintosh
virtual memory attributes from the "vm " property of the gestalt name entry.

Listing 8-11 Sample code to fetch virtual memory gestalt

RegEntryIter cookie;

RegEntryID gestaltEntry;

RegPropertyValueSize gestaltEntrySize = sizeof(UInt32);

Boolean done;

OSErr err;

err = RegistryEntryIterateCreate(&cookie);

if (err != noErr)

return err;

err = RegistryEntrySearch (&cookie,

kRegIterRoot,

&gestaltEntry,

&done,

"vm ",

nil,

0);

if (err != noErr)

return err;

err = RegistryPropertyGet (&gestaltEntry,

"vm ",

&vmIsOn,

&gestaltEntrySize);

if (err != noErr)

return err;

RegistryEntryIterateDispose (&cookie);

C H A P T E R 8

Macintosh Name Registry

204 Code Samples

Code Samples 8

This section contains code samples that illustrate common Name Registry operations.

Adding a Device Entry 8
For all physical devices, adding a device entry to the Name Registry is handled by the
device’s expert. Device drivers normally do not need to add their devices to the Registry.

Adding a new device to the system consists of entering a new name entry in the Registry
and setting the appropriate property values. The example shown in Listing 8-12 adds a
new name entry to the Registry with a single property.

Listing 8-12 Adding a name entry to the Name Registry

#include <NameRegistry.h>

OSStatus JoePro_AddName(

const RegCStrPathName *name,

const RegPropertyName *prop,

const void *val,

const RegPropertyValueSize len

)

{

OSStatus err = noErr;

RegEntryID where, new_entry;

err = JoePro_FigureOutWhere(&where);

if (err == noErr) {

err = JoePro_EnterName(&where, name, &new_entry);

RegistryEntryIDDispose(&where);

}

if (err == noErr) {

err = JoePro_AddProperties(&new_entry, prop, val, len);

RegistryEntryIDDispose(&new_entry);

}

return err;

}

C H A P T E R 8

Macintosh Name Registry

Code Samples 205

OSStatus

JoePro_FigureOutWhere(RegEntryID *where)

{

OSErr err = noErr;

RegEntryIter cookie;

Boolean done = FALSE;

/*

 * We want to search all the names, which is

 * the default, so we just need to continue.

 */

RegEntryIterationOp op = kRegIterContinue;

/*

 * For this example, the existence of the

 * “Joe Pro Root” property is used to find

 * out where to put the “Joe Pro” devices.

 * Initialization code will need to have

 * created this entry.

 */

RegPropertyNameBuf name;

RegPropertyValue val = NULL;

RegPropertyValueSize siz = 0;

strncpy(name, "Joe Pro Root", sizeof(name));

/*

 * Figure out where to put the driver.

 *

 * By convention, there is one “Joe Pro Root”

 * so we don’t need to loop.

 */

err = RegistryEntryIterateCreate(&cookie);

if (err == noErr) {

err = RegistyEntrySearch(&cookie, op, &where, &done,

name, val, siz);

}

RegistryEntryIterateDispose(&cookie);

/*

 * Check if we completed the search without

 * finding the “Joe Pro Root”.

 */

assert(err != noErr || !done);

return err;

}

C H A P T E R 8

Macintosh Name Registry

206 Code Samples

OSStatus JoePro_EnterName(

const RegEntryID *where,

const RegCStrPathName *name,

RegEntryID *entry

)

{

/*

 * Assumption: This call will return an error

 * if the name entry is already in the Registry.

 */

return RegistryCStrEntryCreate(where, name, entry);

}

OSStatus

JoePro_AddProperties(

const RegEntryID *entry,

const RegPropertyName *prop,

const void *val,

const RegPropertyValueSize siz

)

{

return RegistryPropertyCreate(entry, prop, val, siz);

}

Since all name entries in the registry are connected to at least one other entry, either an
existing name entry must be provided when creating a new entry or it will be assumed
that the path is specified relative to the root entry.

Note
Although the current Registry supports only a hierarchy of
names, future versions of the Registry may provide other
kinds of connections between names. ◆

The creator of a name entry must determine where in the tree it should appear. This
determination may be made by convention, as shown in the foregoing example, or may
be made by the user, running an administrative application.

Finding a Device Entry 8
Every device driver typically needs to retrieve information about the device from the
Name Registry. The example in Listing 8-13 retrieves the value of a single property for a
specified name entry in the Name Registry.

C H A P T E R 8

Macintosh Name Registry

Code Samples 207

Listing 8-13 Retrieving the value of a property

#include <NameRegistry.h>

OSStatus

JoePro_LookupProperty(

const RegCStrPathName *name,

const RegPropertyName *prop,

RegPropertyValue *val,

RegPropertyValueSize *siz

)

{

OSErr err = noErr;

RegEntryID entry;

err = JoePro_FindEntry(name, &entry);

if (err == noErr) {

err = JoePro_GetProperty(&entry, prop, val, siz);

RegistryEntryIDDispose(&entry);

}

return err;

}

OSStatus JoePro_FindEntry(

const RegCStrPathName *name,

RegEntryID *entry

)

{

return RegistryCStrEntryLookup(

NULL /* start root */, name, entry);

}

OSStatus JoePro_GetProperty(

RegEntryID *entry,

RegPropertyName *prop,

RegPropertyValue *val,

RegPropertyValueSize *siz

)

{

OSErr err = noErr;

/*

 * Figure out how big a buffer we need for the value

 */

C H A P T E R 8

Macintosh Name Registry

208 Code Samples

err = RegistryPropertyGetSize(entry, prop, siz);

if (err == noErr) {

*val = (RegPropertyValue) malloc(*siz);

assert(*val != NULL);

err = RegistryPropertyGet(entry, prop, val, siz);

if (err != noErr) {

free(*val);

*val = NULL;

}

}

return err;

}

Removing a Device Entry 8
When a device is permanently removed from the system, the information pertaining to
the device must be removed from the Name Registry. When a name entry is removed
from the Registry, all properties associated with that entry are automatically removed as
well. Listing 8-14 illustrates removing a device entry from the Registry.

Note
In the current Macintosh system, all children of a parent entry are
removed when the parent is removed. Removing a parent entry, thereby
creating orphan entries, may not be supported in future releases. ◆

Listing 8-14 Removing a device entry from the Name Registry

#include <NameRegistry.h>

OSStatus

JoePro_RemName(const RegCStrPathName *name)

{

OSErr err = noErr;

RegEntryID entry;

/* from previous example */

err = JoePro_FindEntry(name, &entry);

if (err == noErr) {

err = JoePro_RemEntry(&entry);

RegistryEntryIDDispose(&entry);

}

return err;

}

C H A P T E R 8

Macintosh Name Registry

Code Samples 209

OSStatus

JoePro_RemEntry(RegEntryID *entry)

{

return RegistryEntryDelete(entry);

}

Listing Devices 8
Administrative software must be able to find various devices in the system. The example
shown in Listing 8-15 contains two procedures. The first loops through name entries,
invoking a callback function for each one. The second loops through the properties for
a name entry, invoking a callback function for each property. It is up to the caller to
determine what the callback functions will do, but they could (for example) display a
graph of names and properties in a window or identify all name entries that match a
complex set of search criteria.

Listing 8-15 Listing names and properties

#include <NameRegistry.h>

OSStatus JoePro_ListDevices(

void (*callback) (

RegCStrPathName *name,

RegEntryID *entry

)

)

{

OSErr err = noErr;

RegEntryIter cookie;

Boolean done;

/*

 * Entry iterators are created pointing to the root

 * with a RegEntryIterationOp of kRegIterDescendants.

 * So, we just need to continue.

 */

RegEntryIterationOp op = kRegIterContinue;

err = RegistryEntryIterateCreate(&cookie);

if (err == noErr) do {

RegEntryID entry;

C H A P T E R 8

Macintosh Name Registry

210 Code Samples

err = RegistryEntryIterate(&cookie, op, &entry, &done);

if (!done) {

RegCStrPathName *name;

RegPathNameSize len;

err = RegistryCStrEntryToPathSize(&entry, &len);

if (err == noErr) {

name = (RegCStrPathName*) malloc(len);

assert(name != NULL);

err = RegistryCStrEntryToPath(&entry, name, len);

if (err == noErr) {

(*callback)(name, &entry);

}

free(name);

}

RegistryEntryIDDispose(&entry);

}

} while (!done);

RegistryEntryIterateDispose(&cookie);

return err;

}

OSStatus JoePro_ListProperties(

const RegCStrPathName *name,

const RegEntryID *entry,

void (*callback)(

 RegPropertyName*,

 RegPropertyValue,

 RegPropertyValueSize

)

)

{

OSErr err = noErr;

RegPropertyIter cookie;

Boolean done;

err = RegistryPropertyIterateCreate(entry, &cookie);

if (err == noErr) do {

RegPropertyNameBuf property;

C H A P T E R 8

Macintosh Name Registry

Code Samples 211

err = RegistryPropertyIterate(&cookie, property, &done);

if (!done) {

RegPropertyValue val;

RegPropertyValueSize siz;

err = JoePro_GetProperty(entry, property, &val, &siz);

if (err == noErr) {

(*callback)(property, val, siz);

}

}

} while (!done);

RegistryPropertyIterateDispose(&cookie);

return err;

}

C H A P T E R 9

Driver Services Library 9Figure 9-0
Listing 9-0
Table 9-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 9

Driver Services Library

214

Device Driver Execution Contexts

This chapter describes the routines that are provided for every native driver by the
Macintosh Driver Services Library. The driver loader, part of Mac OS, automatically links
the library to each generic driver when the driver is loaded. The routines included in the
Driver Services Library implement all the system programming interfaces (SPIs) that
Mac OS provides for drivers. Additional functionality may be made available to drivers
within certain families or categories through family programming interfaces (FPIs)
maintained by family experts.

As described in the next section, device drivers run in their own environment without
access to the Macintosh Toolbox. This chapter describes the services available in the
device driver run-time environment. The services are categorized as follows:

■

memory management

■

interrupt management

■

timing services

■

atomic operations

■

queue operations

■

string operations

■

debugging support

■

service limitations

These services are also available to family drivers to support their basic needs. Mac OS
provides some added family-specific services that are not discussed in this chapter. For
further information about family-specific services, see Chapters 11 through 13.

Device Driver Execution Contexts 9

As explained in “Noninterrupt and Interrupt-Level Execution” beginning on page 67,
code in PCI-based Macintosh computers may run in any of three execution contexts:

■

Hardware interrupt level is the execution context provided to a device driver’s
interrupt handler. Page faults are not allowed at this context. Hardware interrupt level
is also known as

primary interrupt level.

■

Secondary interrupt level is the execution context similar in concept to the previous
Mac OS deferred task environment. Page faults are not allowed at this context.

■

Noninterrupt level, usually called

task level,

 is the context where all other code is
executed. Page faults are allowed at this context.

Note

Many device driver services are available in only one or two of the
execution contexts just listed. It is the responsibility of the driver writer
to conform to these limitations. Drivers that violate them will not work
with future releases of Mac OS. For lists of service availability, see
“Service Limitations” beginning on page 282.

◆

C H A P T E R 9

Driver Services Library

Miscellaneous Types

215

CurrentExecutionLevel 9

The function

CurrentExecutionLevel

 lets code determine its execution context.

ExecutionLevel CurrentExecutionLevel (void);

DESCRIPTION

CurrentExecutionLevel

 returns one of the result codes shown below.

EXECUTION CONTEXT

CurrentExecutionLevel

 may be called from task level, software interrupt level, or
hardware interrupt level.

RESULT CODES

Miscellaneous Types 9

This section introduces some basic data types that are used throughout the Driver
Services Library.

typedef unsigned long ByteCount;

typedef unsigned long ItemCount;

typedef long OSStatus;

typedef unsigned long OptionBits;

For a description of

OSStatus

, see “Error Returns” on page 72.

The constant

kNilOptions

 (= 0) is provided for clarity.

IDs are used whenever you create, manipulate, or destroy a object. All IDs are
derived from the type

KernelID

:

typedef struct OpaqueRef *KernelID;

You should use the derived ID types whenever possible to make their code
more readable.

kTaskLevel

0 Noninterrupt level

kSecondaryInterruptLevel

5 Secondary interrupt level

kHardwareInterruptLevel

6 Hardware interrupt level

C H A P T E R 9

Driver Services Library

216

Memory Management Services

Note

Derived ID types are all 32-bit opaque identifiers that specify various
kernel resources. There is a separate ID type for each kind of resource—
for example, separate types for

TaskID

 and

AddressSpaceID

. All
kernel services that create or allocate a resource return an ID; the ID is
later used to specify the resource to perform operations on it or delete it.
These IDs are

opaque

 because the value of the ID tells you nothing—
you can’t tell from an ID which resource it identifies without calling the
kernel, you can’t tell what ID you’ll get back the next time you create a
resource, and you can’t tell the relationship between any two resources
by the relationship between their IDs. When a resource is deleted, its ID
usually becomes invalid for a long time. This helps your code catch
errors, because if you accidentally use an ID for a resource that has been
deleted, chances are you’ll get an error instead of just doing something
to a different resource.

◆

The value

kInvalidID

 (= 0) is reserved to mean no ID.

Memory Management Services 9

This section describes the memory management services that the Driver Services Library
provides to drivers.

Addressing 9

System 7 provides a single address space that is used by all software. Future versions of
Mac OS may provide memory protection and separate address spaces for different
software entities. The Mac OS 7.5 services described in this chapter are designed to be
compatible with multiple address spaces, and drivers using these services must be
written for a multiple address space environment.

One concept that applies to multiple address spaces is that of

static logical mapping,

 the
ability to address client buffers logically regardless of the current address space. Static
logical mapping is important because drivers in a multiple address space environment
cannot depend on the client buffer’s logical address to remain directly accessible for the
duration of an I/O operation.

Another concept that applies to multiple address spaces is that of

memory protection,

 the
ability to prevent inadvertent access to data. Drivers must respect the protection of client
buffers, even though they may access the buffers through means such as hardware direct
memory access.

Note

Restrictions on the execution contexts in which memory allocation and
deallocation services can be used are given in “Service Limitations”
beginning on page 282.

◆

C H A P T E R 9

Driver Services Library

Memory Management Services

217

I/O Operations and Memory 9

Several aspects of the operating system, the main processor, cache memory, and the
memory hardware must be coordinated when an I/O operation is performed between
an external device and a buffer in system memory:

■

Memory protection:

 The I/O operation must not violate the access restrictions of
the buffer.

■

Residency:

 The I/O operation must not generate page faults when accessing the buffer.
The buffer must also have physical memory assigned to it for the duration of the
I/O operation.

■

Addressability:

 When using DMA hardware to perform an I/O operation, it is
necessary to convert a logical buffer specification into a physical specification. When
using programmed I/O, it is necessary to convert the buffer specification (either
logical or physical) to a logical specification that is addressable regardless of the
current address space.

■

Memory coherency:

 Coherency ensures that the data being moved is not stale and that
the effects of the data movement are apparent to the processor and any associated
data caches. Guaranteed coherency potentially applies to cache operations before and
after the I/O operation.

The DSL provides services that ensure this coordination. One service assigns physical
memory to the buffer, generates an appropriate buffer specification, and performs all
necessary cache manipulations prior to the I/O operation. Another routine cleans up
following the I/O operation. These services operate according to the computer’s cache
topology, taking into account whether the caches are logical or physical and whether the
overall hardware architecture guarantees coherency. This shields drivers from having to
compensate for the system memory architecture.

Memory Management Types 9

This section defines some types and values that are fundamental to memory management
for native drivers.

Values of type

LogicalAddress

 represent a location in an address space:

typedef void *LogicalAddress;

Values of type

PhysicalAddress

 represent location in physical memory. They are used
primarily with DMA I/O operations:

typedef void *PhysicalAddress;

C H A P T E R 9

Driver Services Library

218

Memory Management Services

A

LogicalAddressRange

 structure is a description of a single logically addressed buffer:

struct LogicalAddressRange

{

LogicalAddress address;

ByteCount count;

};

typedef struct LogicalAddressRange LogicalAddressRange;

typedef struct LogicalAddressRange *LogicalAddressRangePtr;

A

PhysicalAddressRange

 structure is a description of a single physically
addressed buffer:

struct PhysicalAddressRange

{

PhysicalAddress address;

ByteCount count;

};

typedef struct PhysicalAddressRange PhysicalAddressRange;

typedef struct PhysicalAddressRange *PhysicalAddressRangePtr;

An

AddressRange

 structure is a description of a single buffer, in which the buffer
address may be either logical and physical:

struct AddressRange

{

void *base;

ByteCount length;

};

typedef struct AddressRange AddressRange;

Address spaces are referred to by values of type

AddressSpaceID

. The value

kCurrentAddressSpaceID

 refers to the current address space:

typedef KernelID AddressSpaceID;

enum

{

kCurrentAddressSpaceID = 0

};

C H A P T E R 9

Driver Services Library

Memory Management Services

219

Memory Services Used During I/O Operations 9

The DSL provides two routines that help drivers coordinate I/O software with
system memory:

■

The

PrepareMemoryForIO

 function tells Mac OS that a particular buffer will be
used for I/O transfers. It checks memory protection, assigns physical memory to
the buffer, provides addressing information, and prepares the processor’s caches
for the transfer.

■

The

CheckpointIO

 function tells the operating system that the previously started
transfer is complete. It assures processor cache coherency and either prepares for
further transfers or, if its parameters specify that no more transfers will be made,
deallocates the resources associated with the buffer preparation. Once the prepara-
tion’s resources have been deallocated, subsequent I/O operations with the buffer
must be preceded by another call to

PrepareMemoryForIO

.

The memory coordination that these routines provide is summarized in “I/O Operations
and Memory” beginning on page 217.

▲ W A R N I N G

Failure to use these I/O related services properly can result in data
corruption or fatal system errors. Correct system behavior is the
responsibility of the operating system and all I/O components including
hardware, drivers, and other software.

▲

Preparing Memory for I/O 9

This section describes the

PrepareMemoryForIO

 function and its associated data
structures. Different ways of employing

PrepareMemoryForIO

 are discussed in “Using
PrepareMemoryForIO” beginning on page 224.

PrepareMemoryForIO Data Structures 9

The

PrepareMemoryForIO

 function has a single parameter, a pointer to an

IOPreparationTable

 structure.

Some fields of the

IOPreparationTable structure contain pointers to subsidiary
structures. There are three types of subsidiary structures:

■ A LogicalMappingTablePtr value is a pointer to an array of LogicalAddress
values. The LogicalAddress table is where PrepareMemoryForIO returns the
static logical addresses the driver can use to logically access the client buffer:

typedef LogicalAddress *LogicalMappingTablePtr;

■ A PhysicalMappingTablePtr value is a pointer to an array of PhysicalAddress
values. The PhysicalAddress table is where PrepareMemoryForIO returns the
physical addresses the driver can use to access the client buffer physically:

typedef PhysicalAddress *PhysicalMappingTablePtr;

C H A P T E R 9

Driver Services Library

220 Memory Management Services

■ An AddressRangeTablePtr value is a pointer to an array of AddressRange
specifications. All ranges in a given AddressRange array are of the same kind, either
all logical or all physical. The AddressRange table is where the driver can specify a
user buffer that consists of multiple ranges (that is, a scatter-gather buffer as described
in “Scatter-Gather Client Buffers” on page 226):

typedef struct AddressRange *AddressRangeTablePtr;

The IOPreparationTable structure and its subsidiary structures are diagrammed in
Figure 9-1 on page 221.

Note
In Figure 9-1, gray areas are filled in by the PrepareMemoryForIO
function and white areas are filled in by the calling software. The
preparationID field is used both ways. ◆

The IOPreparationTable structure is defined as follows:

struct IOPreparationTable
{

IOPreparationOptions options;
IOPreparationState state;
IOPreparationID preparationID;
AddressSpaceID addressSpace;
ByteCount granularity;
ByteCount firstPrepared;
ByteCount lengthPrepared;
ItemCount mappingEntryCount;
LogicalMappingTablePtr logicalMapping;
PhysicalMappingTablePtr physicalMapping;
union
{
AddressRange range;
MultipleAddressRange multipleRanges;
} rangeInfo;

};

typedef struct IOPreparationTable IOPreparationTable;

typedef OptionBits IOPreparationOptions;
enum {

kIOMultipleRanges = 0x00000001,
kIOLogicalRanges = 0x00000002,
kIOMinimalLogicalMapping = 0x00000004,
kIOShareMappingTables = 0x00000008,
kIOIsInput = 0x00000010,
kIOIsOutput = 0x00000020,
kIOCoherentDataPath = 0x00000040,
kIOClientIsUserMode = 0x00000080

};

C H A P T E R 9

Driver Services Library

Memory Management Services 221

Figure 9-1 IOPreparationTable structure

typedef OptionBits IOPreparationState;
enum {

kIOStateDone = 0x00000001
};

typedef struct MultipleAddressRange MultipleAddressRange;

struct MultipleAddressRange
{

ItemCount entryCount;
AddressRangeTablePtr rangeTable;

};

entryCount

rangeTable

options

state

preparationID

addressSpace

granularity

PhysicalAddress

PhysicalAddress

PhysicalAddress

length

base

length

firstPrepared

lengthPrepared

mappingEntryCount

base

length

base

logicalMapping

physicalMapping

range
(address range)

LogicalAddress

IOPreparationTable

PhysicalMappingTable

AddressRangeTable

LogicalMappingTable

LogicalAddress

LogicalAddress

Address
range

C H A P T E R 9

Driver Services Library

222 Memory Management Services

The IOPreparationTable structure specifies the buffer to be prepared and provides
storage for the mapping and other information that are returned. Its fields contain the
following information:

options Optional characteristics of the IOPreparationTable structure
and the transfer process. Possible values in this field are discussed
in “IOPreparationTable Options” on page 223.

state Filled in by PrepareMemoryForIO to indicate the state of the
IOPreparationTable structure. The kIOStateDone flag
indicates that the buffer has been prepared up to the end of the
specified range. See “Partial Preparation” on page 227.

preparationID Filled in by PrepareMemoryForIO to indicate the identifier that
represents the I/O transaction. When the I/O operation is completed
or abandoned, the IOPreparationID value is used to finish the
transaction, as described in“Finishing I/O Transactions” beginning
on page 228.

addressSpace The address space containing the buffer to be prepared. Mac OS 7.5
provides only one address space, which it automatically passes to
native drivers through doDriverIO. Otherwise, this field must be
specified as kCurrentAddressSpaceID.

granularity Information to reduce the memory usage of partial preparations.
See “Partial Preparation” on page 227.

firstPrepared The byte offset into the buffer at which to begin preparation. See
“Partial Preparation” on page 227.

lengthPrepared Filled in by PrepareMemoryForIO to indicate how much of the
buffer was successfully prepared, beginning at firstPrepared.
See “Partial Preparation” on page 227.

mappingEntryCount
Number of entries in the logical and physical mapping tables
supplied. Normally, the driver should allocate as many entries as
there are pages in the buffer. The number of pages in a memory
range can be calculated from the range’s base address and length. If
there are not enough entries, a partial preparation is performed
within the limit of the tables. See “Partial Preparation” on page 227.

logicalMapping The address of an array of LogicalAddress values.
PrepareMemoryForIO fills the logical mapping table with the
static logical mappings for the specified buffer. This table is
optional. Mapping tables are discussed in “Mapping Tables” on
page 225.

physicalMapping
The address of an array of PhysicalAddress values.
PrepareMemoryForIO fills the physical mapping table with the
physical addresses corresponding to the specified buffer. This table
is optional. Mapping tables are discussed in “Mapping Tables” on
page 225.

rangeInfo The buffer to prepare. A simple buffer is represented by a single
AddressRange value. A scatter-gather buffer is specified by a
MultipleAddressRange structure. If the kIOMultipleRanges
flag is omitted from options, rangeInfo is interpreted as an

C H A P T E R 9

Driver Services Library

Memory Management Services 223

AddressRange value named range. If kIOMultipleRanges
is specified in options, rangeInfo is interpreted as a
MultipleAddressRange structure named multipleRanges.
Scatter-gather buffers are discussed in “Scatter-Gather Client
Buffers” on page 226. Because there might be insufficient resources
to prepare the entire buffer, the buffer can be prepared in pieces.
This procedure is discussed in “Partial Preparation” on page 227.

IOPreparationTable Options 9

This options field of the IOPreparationTable structure contains flags that have the
following meanings:

■ kIOMultipleRanges specifies that the rangeInfo field is to be interpreted as
MultipleAddressRange, enabling a scatter-gather memory specification.

■ kIOLogicalRanges specifies that the base fields of the AddressRange structures
are logical addresses. If this option is omitted, the addresses are treated as physical
addresses. Mac OS 7.5 does not support specifying physical buffers, so the driver
must specify kIOLogicalRanges.

■ kIOMinimalLogicalMapping specifies that the LogicalMappingTable structure
is to be filled in with just the first and last mappings of each range, arranged in pairs.
Minimal logical mappings are discussed in “DMA Alignment Requirements” on
page 227.

■ kIOShareMappingTables specifies that the system can use the driver’s mapping
tables instead of maintaining its own copies of the tables. Sharing mapping tables
is discussed in “Reducing Memory Usage” on page 226.

■ kIOIsInput specifies that data will be moved into main memory.

■ kIOIsOutput specifies that data will be moved out of main memory.

■ kIOCoherentDataPath indicates that the data path that will be used to access
memory during the I/O operation is fully coherent with the main processor’s data
caches, making data cache manipulations unnecessary. Memory coherency with the
instruction cache is not implied, however, so the appropriate instruction cache
manipulations are performed regardless. This option is useful when the overall
hardware architecture is not coherent, but the driver knows that the transfer will
occur on a particular hardware path that is coherent. (PrepareMemoryForIO
operates according to the overall architecture and has no implicit way of knowing
about individual data paths.) When in doubt, omit this option. Incorrectly omitting it
merely slows operation, whereas incorrectly specifying this option can result in
erroneous behavior and crashes.

■ kIOClientIsUserMode indicates that PrepareMemoryForIO is being called on
behalf of a nonprivileged client. If this option is specified, the memory ranges are
checked for user-mode accessibility. If this option is omitted, the memory ranges
are checked for privileged-level accessibility. Drivers can obtain the client’s execution
mode through the device’s family programming interface (FPI). This option is not
implemented in Mac OS 7.5. For compatibility with future Mac OS releases, drivers
should omit it from the options. The FPI will perform the buffer access level checks on
behalf of the driver.

C H A P T E R 9

Driver Services Library

224 Memory Management Services

Using PrepareMemoryForIO 9

PrepareMemoryForIO coordinates data transfers between devices and one or more
memory ranges in the system, the main processor caches, and other memory facilities.
Preparation includes ensuring that physical memory remains assigned to the memory
ranges until CheckpointIO relinquishes it. Depending on the I/O direction and data
path coherence that are specified, Mac OS manipulates the contents of the processor’s
caches, if any, and may make parts of physical memory noncacheable.

PrepareMemoryForIO 9

OSStatus

PrepareMemoryForIO (IOPreparationTable *theIOPreparationTable);

theIOPreparationTable Pointer to an IOPreparationTable structure

DESCRIPTION

PrepareMemoryForIO coordinates data transfers between devices and one or more
memory ranges with the operating system, the main processor caches, and other data
buffers. Preparation includes ensuring that physical memory remains assigned to the
memory ranges until CheckpointIO relinquishes it. Depending on the I/O direction
and data path coherence that are specified, Mac OS manipulates the contents of the
processor’s caches, if any, and may make parts of the ranges noncacheable.

A native driver can call PrepareMemoryForIO from its doDriverIO handler. The
doDriverIO entry point is discussed in “DoDriverIO Entry Point” beginning on
page 93.

The driver or other software must perform I/O preparation before permitting data
movement. For operations with block-oriented devices, preparation is best done just
before moving the data, typically by the driver. For operations upon buffers such as
memory shared between the main processor and a coprocessor, frame buffers, or buffers
internal to a driver, preparation is best performed when the buffer is allocated. This
technique is discussed more fully in “Multiple Transfers” on page 226. The PCI Card
Device Driver Kit contains code samples that use PrepareMemoryForIO; for information
about obtaining it, see Appendix A, “Development Tools.”

Calls to PrepareMemoryForIO should be matched with calls to CheckpointIO, even
if the I/O operation was aborted. In addition to applying finishing operations to the
memory range, CheckpointIO deallocates resources used in preparing the range.

EXECUTION CONTEXT

PrepareMemoryForIO may be called only at task level from a driver’s DoDriverIO
routine or from a subroutine called by DoDriverIO.

C H A P T E R 9

Driver Services Library

Memory Management Services 225

RESULT CODES

Logical and Physical Memory Preparation 9

The two most common PrepareMemoryForIO operations are preparing logical or
physical I/O when the client has specified a single, logically-addressed buffer. The
following lists show how the driver would set up the IOPreparationTable for these
cases. The only difference between the two cases is which mapping table is supplied.
PrepareMemoryForIO infers whether the transfer will be physical (DMA) or logical
(programmed I/O) based on whether the mapping table is physical or logical.

To perform logical I/O with single logical buffer, set IOPreparationTable as follows:

For physical I/O with single logical buffer, set IOPreparationTable as follows:

Mapping Tables 9

The logical and physical mapping tables are where PrepareMemoryForIO returns the
addresses the driver can use to access the client’s buffer. The first entry of a range’s
mappings will be the exact mapping of the first prepared address in that range,
regardless of page alignment, while the remaining entries will be page aligned. If
multiple address ranges were specified, the mapping table is a concatenation, in order,
of the mappings for each range.

noErr 0 No error
paramErr –50 Bad parameter

options kIOLogicalRanges and either kIOIsInput
or kIOIsOutput

addressSpace default or kCurrentAddressSpaceID (see page 222)

granularity 0

firstPrepared 0

mappingEntryCount Number of pages in buffer

logicalMapping Address of table containing mappingEntryCount entries

physicalMapping nil

range.base Buffer address

range.length Buffer length

options kIOLogicalRanges and either kIOIsInput or
kIOIsOutput

addressSpace kCurrentAddressSpaceID

granularity 0

firstPrepared 0

mappingEntryCount Number of pages in buffer

logicalMapping nil

physicalMapping Address of table containing mappingEntryCount entries

range.base Buffer address

range.length Buffer length

C H A P T E R 9

Driver Services Library

226 Memory Management Services

There are no explicit length fields in the mapping tables. Instead, entry lengths are
implied by the entry’s position in the range’s mappings, the overall range length, and
the page size. The length of the first entry generally runs to the next page alignment, the
length of the intermediate entries (if any) is the page size, and the length of the last
element in the range is what remains by subtracting the previous lengths from the
overall range length. If the prepared range fits within a single page, there is only one
prepared entry and its length is equal to the range length.

Scatter-Gather Client Buffers 9

Drivers may be asked to transfer data from buffers that are not contiguous. In this case,
the client buffer may be specified as a MultipleAddressRange scatter-gather list.

A MultipleAddressRange structure specifies an array of AddressRange entries. Its
fields have the following meanings:

The options and addressSpace specifications apply equally to each range.

The granularity, firstPrepared, and lengthPrepared fields apply to the overall
buffer. These fields are discussed in “Partial Preparation” on page 227.

The resulting mapping tables concatenate, in order, the mappings for each range.

Multiple Transfers 9

This DSL memory management services allow efficient coordination for both single and
multiple I/O transactions to a given buffer. A single transaction—such as reading
page-faulted data into a client’s memory—uses a PrepareMemoryForIO call before the
transfer and a single CheckpointIO call when the transfer is complete. A multiple
transaction scenario—such as a network driver that transfers from its own buffers and
divides blocks in and out of the client buffer—uses a single PrepareMemoryForIO call
during driver initialization and a CheckpointIO call before and after each transfer. The
intermediate calls to CheckpointIO would include the kIOMoreTransfers option, so
the memory preparation remains in effect.

Reducing Memory Usage 9

PrepareMemoryForIO normally keeps its own copy of the mapping tables in addition
to the tables the driver has allocated. Hence, memory usage can be reduced if the driver
shares its mapping tables with the operating system. The kIOShareMappingTables
option specifies that PrepareMemoryForIO can use the driver’s mapping tables rather
than maintain its own copies. The shared mapping tables must be located in logical
memory that cannot page fault until the final CheckpointIO call finishes (that is, the
memory is locked). In addition, the mapping tables must remain allocated and the

entryCount The number of entries in the rangeTable structure.

rangeTable The address of an array of AddressRange elements (an
AddressRangeTable structure). See the description of
AddressRange in “PrepareMemoryForIO Data Structures”
beginning on page 219. The specified ranges may overlap.

C H A P T E R 9

Driver Services Library

Memory Management Services 227

entries unaltered until after the final CheckpointIO call. It is not necessary for the
driver to provide both tables.

A full-sized mapping table contains as many entries as there are pages in the client
buffer. However, the driver can use a smaller table if it calls PrepareMemoryForIO
more than once for a given client buffer. This technique is discussed in “Partial
Preparation” on page 227.

The granularity specification can reduce memory usage in the event of a partial
preparation. Granularity is discussed in “Partial Preparation” on page 227.

Certain DMA transactions require both mapping tables. However, the size of the logical
mapping table can be easily reduced. The kIOMinimalLogicalMapping option is
discussed in “DMA Alignment Requirements” on page 227.

Reducing Execution Overhead 9

If memory must be prepared long in advance of the transfer, the driver can reduce
the execution overhead by postponing cache manipulations. This is because cache
manipulations are wasted if the buffer will be accessed normally before the transfer.
By omitting both kIOIsInput and kIOIsOutput from the options field, the driver
prevents PrepareMemoryForIO from manipulating the caches at that time. Later, the
driver calls CheckpointIO just prior to the transfer to prepare the caches. This is part
of the technique discussed in the “Multiple Transfers” on page 226.

DMA Alignment Requirements 9

A variation on the physical transfer of data occurs when the client’s buffer does not meet
the alignment requirements of the DMA hardware. In this case, the driver needs to
supply a logical mapping table in addition to the physical mapping table, so that
programmed I/O can be performed in the unaligned beginning and/or end of the buffer.
Otherwise, the driver would have to prepare the beginning and end separately from the
middle portion.

Because only the beginning and the end of the buffer will be transferred with programmed
I/O, only the first and last logical mapping table entries are actually needed—the
middle entries are page aligned, which is sufficient for DMA alignment. To reduce
memory usage, the driver may limit the size of the logical mapping table to just two
entries per range and may specify the kIOMinimalLogicalMapping option.
PrepareMemoryForIO will fill in the first logical mapping table entry of each range as
usual and will fill the second entry with the static logical mapping of the last page in the
range. Two entries per range are used, regardless of the range sizes. However, the value
of the second entry of the pair is undefined if the range is contained within a single page.

Partial Preparation 9

If insufficient resources are available to prepare the whole range of memory that is
specified, PrepareMemoryForIO will prepare as much as possible, indicate to the
driver how much memory was prepared, clear the kIOStateDone bit in tableState,
and return noErr. This is called a partial preparation.

C H A P T E R 9

Driver Services Library

228 Memory Management Services

Examples of resources that may limit the preparation are insufficient physical page
frames to make the buffer resident, mapping table size too small, and not enough
operating-system pool space. Because not all of these resources are under the control
of the driver, every driver that calls PrepareMemoryForIO must be written to handle
a partial preparation. One possibility is to make a final CheckpointIO call to verify
the preparation and return an error to the client. Another possibility is to perform the
transfer as a series of partial transfers.

The firstPrepared, lengthPrepared, and granularity fields of the
IOPreparationTable structure (shown in Figure 9-1 on page 221) control partial
preparations. When calling PrepareMemoryForIO the first time, specify 0 for
firstPrepared. If the resulting tableState value does not indicate kIOStateDone,
a partial preparation was performed, and lengthPrepared indicates how much
memory was successully prepared. After the data transfer and final call to
CheckpointIO, another PrepareMemoryForIO call can be made to prepare as
much as possible of the ranges that remain. This time, firstPrepared should be
the sum of the current firstPrepared and lengthPrepared. This sequence prepare,
transfer, and final checkpoint can be repeated until IOPreparationState indicates
kIOStateDone.

The granularity field gives a hint to PrepareMemoryForIO for partial preparation.
It is useful for transfers with devices that operate on fixed-length buffers. The length
prepared will be 0 (with an error status returned) or a multiple of granularity
rounded up to the next greatest page alignment. This prevents preparing more memory
than the driver is willing to use. A value of 0 for granularity specifies no granularity.
No check is made for whether the specified range lengths are multiples of granularity.

Finishing I/O Transactions 9
This section describes the CheckpointIO function and its options.

CheckpointIO 9

OSStatus CheckpointIO (IOPreparationID theIOPreparation,

 IOCheckpointOptions theOptions);

theIOPreparation Value from the IOPreparationID field in the
IOPreparationTable structure.

theOptions Options.

typedef OptionBits IOPreparationOptions;

enum{

kNextIOIsInput = 0x00000001,

kNextIOIsOutput = 0x00000002,

kMoreIOTransfers = 0x00000004

};

C H A P T E R 9

Driver Services Library

Memory Management Services 229

DESCRIPTION

CheckpointIO performs the necessary follow-up operations for a device I/O transfer
and optionally prepares for a new transfer or reclaims the system resources associated
with memory preparation. To reclaim resources, CheckpointIO should be called even if
the I/O operation was abandoned.

Mac OS supports multiple concurrent preparations of memory ranges or portions of
memory ranges. In this case, cache actions are appropriate and individual pages are not
unlocked until all transactions have been finalized.

ParametertheIOPreparation is the IOPreparationID value for the I/O operation,
as returned by a previous call to PrepareMemoryForIO. This ID is not valid following
CheckpointIO if the kMoreTransfers option is omitted.

The Options parameter specifies optional operations. Values for this field are
the following:

kNextIOIsInput Data will be moved into main memory.
kNextIOIsOutput Data will be moved out of main memory.
kMoreIOTransfers Further I/O transfers will occur to or from the buffer. If

kMoreIOTransfers is omitted, the buffer is allowed to page
and IOPreparationID is invalidated.

EXECUTION CONTEXT

CheckpointIO may be called from task level or software interrupt level but not from
hardware interrupt level.

RESULT CODES

Cache Operations 9
Unlike some previous Macintosh drivers, native PCI drivers do not need to flush the
PowerPC processor cache. The Power Macintosh hardware supports processor cache
snooping, which guarantees that the RAM and cache memory domain is coherent.
Future PCI-based Macintosh systems will maintain this coherency.

Nevertheless, driver writers may want to perform cache manipulation to improve driver
performance. The Driver Services Library provides several routines and data types,
described in this section, that allow drivers to get information about cache, alter the
default cache modes, and flush the processor cache.The SetProcessorCacheMode
function, described on page 233, forces the cache mode for selected pages of memory.
The FlushProcessorCache function, described on page 234, forces data from cache
out to main memory. These functions lets special-purpose drivers optimize their I/O
performance.

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 9

Driver Services Library

230 Memory Management Services

▲ W A R N I N G

Take care when using the SetProcessorCacheMode and
FlushProcessorCache functions, because they may conflict
with the cache mode operations of Mac OS. Most drivers need
use only PrepareMemoryForIO and CheckPointIO. ▲

Getting Cache Information 9

The functions described in this section let you determine the structure of the processor
cache. GetLogicalPageSize and GetDataCacheLineSize define the structure of
the cache, and GetPageInformation returns information about each logical page in an
address range.

GetLogicalPageSize 9

ByteCount GetLogicalPageSize (void);

DESCRIPTION

The GetLogicalPageSize function returns the logical page size of the cache, in bytes.

EXECUTION CONTEXT

GetLogicalPageSize may be called from task level, software interrupt level, or
hardware interrupt level.

GetDataCacheLineSize 9

ByteCount GetDataCacheLineSize (void);

DESCRIPTION

The GetDataCacheLineSize function returns the line size of the cache, in bytes.

EXECUTION CONTEXT

GetDataCacheLineSize may be called from task level, software interrupt level, or
hardware interrupt level.

C H A P T E R 9

Driver Services Library

Memory Management Services 231

GetPageInformation 9

OSStatus GetPageInformation (AddressSpaceID theAddressSpace,

 LogicalAddress theBase,

 ByteCount theLength,

 PBVersion theVersion,

 PageInformation *thePageInfo);

theAddressSpace ID of address space to be examined.

theBase Starting address in address space.

theLength Length of address range, in bytes.

theVersion Version of the page information structure.

thePageInfo Page information structure.

struct PageInformation

{

AreaID area;

ItemCount count;

PageStateInformation information [1];

};

typedef unsigned long PageStateInformation;

enum {

kPageIsProtected = 0x00000001,

kPageIsProtectedPrivileged = 0x00000002,

kPageIsModified = 0x00000004,

kPageIsReferenced = 0x00000008,

kPageIsLocked = 0x00000010,

kPageIsResident = 0x00000020,

kPageIsShared = 0x00000040,

kPageIsWriteThroughCached = 0x00000080,

kPageIsCopyBackCached = 0x00000100

};

typedef struct PageInformation PageInformation,

*PageInformationPtr;

DESCRIPTION

The GetPageInformation function returns information about each logical page in a
specified range. Parameter theAddressSpace specifies the address space containing
the range of interest. Parameter theBase is the first logical address of interest.
Parameter theLength specifies the number of bytes of logical address space, starting at
theBase, about which information is to be returned.

C H A P T E R 9

Driver Services Library

232 Memory Management Services

Parameter theVersion specifies the version number of the PageInformation type to
be returned, thereby providing backward compatibility.

Parameter thePageInfo is filled in with information about each logical page. This
buffer must be large enough to contain information about the entire range. The page
information fields are the following:

■ area will identify a group of pages in future releases of Mac OS; currently the value
of this field is always kNoAreaID.

■ count indicates the number of enties in which information was returned.

■ information contains one PageStateInformation entry for each logical page.

The bits of PageStateInformation are the following:

■ pageIsProtected: the page is write-protected against unprivileged software.

■ pageIsProtectedPrivileged: the page is write-protected against privileged
software.

■ pageIsModified: the page has been modified since the last time it was mapped in
or its data was released.

■ pageIsReferenced: the page has been accessed (by either a load or a store
operation) since the last time the memory system’s paging operation checked the page.

■ pageIsLocked: the page is ineligible for replacement (it is nonpageable) because
there is at least one outstanding PrepareMemoryForIO or SetPagingMode (of
kPagingModeResident) request outstanding that uses it.

■ pageIsShared: the page’s underlying physical page is mapped into additional
logical pages.

RESULT CODES

EXECUTION CONTEXT

GetPageInformation may be called only from task level, not from software or
hardware interrupt level.

Setting Cache Modes 9

Mac OS assigns default cache modes to various kinds of memory. Main memory defaults
to copyback cache mode; PCI memory space defaults to cache-inhibited mode

With these settings, drivers do not need to perform specific cache flushing. However,
drivers may wish to alter a memory section’s default cache mode to create the highest
performance data transfer rate for their application. For example, the PowerPC processor
performs burst bus transactions to memory in copyback or writethrough cache modes.

Drivers may also want to set areas of PCI memory space to a cacheable setting, thereby
causing the PowerPC to burst to that space; however, extreme care must be taken to

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 9

Driver Services Library

Memory Management Services 233

perform appropriate cache flushing when operating on cacheable PCI memory space.
Drivers that control PCI master devices may wish to experiment with different cache
modes for their DMA buffer spaces to determine the optimal setting.

SetProcessorCacheMode 9

OSStatus

SetProcessorCacheMode (AddressSpaceID theAddressSpace,

 void *theBase,

 ByteCount theLength,

 ProcessorCacheMode theMode);

theAddressSpace Address space ID of address space.

theBase Starting address in address space.

theLength Length of address range, in bytes.

theMode Cache mode to be set.

typedef unsigned long ProcessorCacheMode;

enum {

kProcessorCacheModeDefault = 0,

kProcessorCacheModeInhibited = 1,

kProcessorCacheModeWriteThrough = 2,

kProcessorCacheModeCopyBack = 3

};

DESCRIPTION

The SetProcessorCacheMode function sets the cache mode of a specified range of
address space. The theAddressSpace parameter specifies the address space containing
the logical ranges to be set. With Mac OS 7.5, there is only one address space, which must
be specified as kCurrentAddressSpaceID.

In early versions of the PCI-based Mac OS, SetProcessorCacheMode can be used on
only one card in any given 256 MB segment of the effective address space above 0x7FFF
FFFF. For example, if two PCI cards were configured at addresses 0x8001 2000 and
0x8034 5000, SetProcessorCacheMode could set the cache mode of only one card’s
address space. However, it could also set the mode of a card at 0xA001 0000, because that
card’s space lies in a different 256 MB segment of the system’s effective address space.
This restriction will be relaxed in future versions of Mac OS.

EXECUTION CONTEXT

SetProcessorCacheMode may be called only from task level, not from software or
hardware interrupt level.

C H A P T E R 9

Driver Services Library

234 Memory Management Services

RESULT CODES

Synchronizing I/O 9

To synchronize I/O accesses, using the PowerPC eieio (enforce in-order execution of
I/O) instruction, use the SynchronizeIO routine. You can call it either before or after
accesses—the object is simply to separate the accesses by eieio actions.

SynchronizeIO 9

void SynchronizeIO (void)

DESCRIPTION

The SynchronizeIO routine executes the PowerPC eieio instruction. This ensures
orderly code execution between accesses to noncached devices.

▲ W A R N I N G

Failure to use SynchronizeIO between I/O accesses can misorder
PowerPC load and store operations, with unpredictable results for
program execution. ▲

EXECUTION CONTEXT

SynchronizeIO may be called from task level, software interrupt level, or hardware
interrupt level.

Flushing the Processor Cache 9

As explained in “Cache Operations” on page 229, drivers normally do not need to flush
the processor cache. The function described in this section is used only in rare cases to
improve performance.

FlushProcessorCache 9

OSStatus FlushProcessorCache (AddressSpaceID spaceID,

 LogicalAddress base,

 ByteCount length);

spaceID Target address space identifier.

base Starting address in address space.

length Length of address range, in bytes.

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 9

Driver Services Library

Memory Management Services 235

DESCRIPTION

The FlushProcessorCache function forces data from cache out to main memory. The
spaceID parameter specifies the address space containing the logical ranges prepared.
With Mac OS 7.5, there is only one address space, which must be specified as
kCurrentAddressSpaceID.

EXECUTION CONTEXT

FlushProcessorCache may be called from task level, software interrupt level, or
hardware interrupt level.

RESULT CODES

Memory Allocation and Deallocation 9
The Driver Services Library provides services to allocate and free system memory for
device drivers. The PoolAllocateResident and PoolDeallocate functions allocate
and deallocate resident memory. MemAllocatePhysicallyContiguous and
MemDeallocatePhysicallyContiguous allocate and deallocate memory that is
resident and physically unbroken. You should always use these services to obtain
dynamic memory.

PCI drivers that allocate memory may need to increase the size of the system heap. They
can do this by adding a 'sysz' resource to the driver resource file, thereby extending
the system heap at startup. Typical code is shown in Listing 9-1.

Listing 9-1 Adding a 'sysz' resource to the system heap

type 'sysz' {

longint;

};

resource 'sysz' (0, "256 Kb") {

256 * 1024 /* 1/4 MB of system heap */

};

Memory allocations can be performed only at noninterrupt execution level. Memory
deallocations can be performed at either noninterrupt or software interrupt level.
Execution levels are discussed in “Driver Execution Contexts” beginning on page 85.

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 9

Driver Services Library

236 Memory Management Services

PoolAllocateResident 9

void *PoolAllocateResident (ByteCount byteSize,

 Boolean clear);

byteSize The number of bytes of memory to allocate.

clear Whether or not the allocated memory is to be zeroed.

DESCRIPTION

The PoolAllocateResident function allocates resident memory byteSize in length.
The memory address is returned as the result of the call. A nil result indicates that the
GrowProc function was called and the pool is exhausted.

EXECUTION CONTEXT

PoolAllocateResident may be called only from task level, not from software or
hardware interrupt level.

RESULT CODES

MemAllocatePhysicallyContiguous 9

LogicalAddress MemAllocatePhysicallyContiguous

(ByteCount byteSize,

 Boolean clear);

byteSize The number of bytes of memory to allocate.

clear Whether or not the allocated memory is to be zeroed.

DESCRIPTION

MemAllocatePhysicallyContiguous allocates a buffer that is resident and is
guaranteed to be physically uninterrupted. It returns the buffer’s logical address.

Driver code can pass the address returned by MemAllocatePhysicallyContiguous
to PrepareMemoryForIO (described on page 224) to obtain the buffer’s physical location.

EXECUTION CONTEXT

MemAllocatePhysicallyContiguous may be called only from task level, not from
software or hardware interrupt level.

noErr 0 No error
qErr –1 Queue element not found
memFullErr –108 Not enough room in heap

C H A P T E R 9

Driver Services Library

Memory Management Services 237

RESULT CODES

PoolDeallocate 9

OSStatus PoolDeallocate (LogicalAddress *Address);

Address Address of pool memory chunk to deallocate.

DESCRIPTION

The PoolDeallocate routine returns the chunk of memory at Address to the pool
from which it was allocated. It can be used to deallocate memory that was allocated with
PoolAllocateResident.

EXECUTION CONTEXT

PoolDeallocate may be called only from task level, not from software or hardware
interrupt level.

RESULT CODES

CODE SAMPLE

The code shown in Listing 9-2 uses PoolDeallocate to dispose of a property that was
obtained by calling RegistryPropertyGet.

Listing 9-2 Disposing of a property

void DisposeThisProperty(

 RegPropertyValue *regPropertyValuePtr
)
{

 if (*regPropertyValuePtr != NULL) {
 PoolDeallocate(*regPropertyValuePtr);
 *regPropertyValuePtr = NULL;
 }
}

noErr 0 No error
paramErr –50 Bad parameter
memFullErr –108 Not enough room in heap

noErr 0 No error
qErr –1 Queue element not found
memFullErr –108 Not enough room in heap

C H A P T E R 9

Driver Services Library

238 Memory Management Services

MemDeallocatePhysicallyContiguous 9

OSStatus MemDeallocatePhysicallyContiguous

(LogicalAddress address);

address Address of the memory block to free.

DESCRIPTION

The MemDeallocatePhysicallyContiguous function deallocates memory allocated
by MemAllocatePhysicallyContiguous.

EXECUTION CONTEXT

MemDeallocatePhysicallyContiguous may be called only from task level, not
from software or hardware interrupt level.

RESULT CODES

Memory Copying Routines 9
The DSL provides a general routine, BlockCopy, for copying the contents of
memory from one location to another. It also provides several BlockMove routines
that drivers may use to more precisely control the copying process and its effects on
memory coherency.

BlockCopy 9

BlockCopy copies the contents of memory from one location to another.

void BlockCopy (const void *srcPtr,

 void *destPtr,

 Size byteCount);

srcPtr Address of source to copy.

destPtr Address of destination to copy into.

byteCount Number of bytes to copy.

noErr 0 No error
paramErr –50 Bad parameter
notLockedErr –623 Specified memory range is not locked

C H A P T E R 9

Driver Services Library

Memory Management Services 239

DESCRIPTION

The BlockCopy routine copies the chunk of memory at srcPtr to destPtr. Parameter
byteCount specifies how many bytes are copied.

EXECUTION CONTEXT

BlockCopy may be called from task level, software interrupt level, or hardware
interrupt level.

BlockMove 9

BlockCopy (described in the previous section) calls BlockMove, using the most
appropriate version for the current execution environment and copying task. However,
drivers may bypass BlockCopy and call BlockMove directly. The DSL includes new
extensions to the BlockMove routine that deliver improved performance for software
running in native mode. The original BlockMove routine is described in Inside
Macintosh: Memory.

Table 9-1 lists the different versions of the BlockMove function that are in the DSL. It
indicates for each routine what memory contents it is designed for and whether it can be
used with buffers or other destinations that are not level-one cached.

DESCRIPTION

The new BlockMove extensions provide several benefits for developers. They’re
optimized for the PowerPC 603 and 604 processors, rather than the PowerPC 601.
They’re compatible with the new dynamic recompilation emulator. They provide a way
to handle cache-inhibited address spaces and are able to flush the emulator’s cache.
Finally, they include new high-speed routines for setting memory to 0.

The BlockMove extensions use 8-byte floating-point registers for large blocks and
assume a data cache block size of 32 bytes. They may not work if the 8-byte floating

Table 9-1 BlockMove versions

Version Use with what memory contents
Can be used
with buffers

BlockMove Contains some 68K code, L1 cached No

BlockMoveData No 68K code, L1 cached (fastest) No

BlockMoveDataUncached No 68K code, uncached Yes

BlockMoveUncached Some 68K code, uncached (slowest) Yes

BlockZero Set memory to zero, L1 cached No

BlockZeroUncached Set memory to zero, uncached Yes

C H A P T E R 9

Driver Services Library

240 Interrupt Management

point hardware is disabled or absent or if cache blocks are larger than 32 bytes. They do
not use lswx and stswx instructions, which are slow on models other than the 601.

Except for BlockZero and BlockZeroUncached, the BlockMove extensions use the
same parameters as BlockMove. Calls to BlockZero and BlockZeroUncached have
only two parameters, a pointer and a length, which are the same as the second and third
parameters of BlockMove.

IMPORTANT

The BlockMove versions for cacheable data use the PowerPC dcbz
instruction to avoid unnecessary prefetching of destination cache blocks.
For uncacheable data, you should avoid using those routines because
the dcbz instruction faults on uncacheable or writethrough locations,
making execution extremely slow. ▲

EXECUTION CONTEXT

The BlockMove routines may be called from task level, software interrupt level, or
hardware interrupt level.

Interrupt Management 9

This section discusses interrupt management for native drivers in the second generation
of Power Macintosh computers. A general description of the new interrupt model is
given first, followed by a detailed description of its programming interface. Interrupt
timing services are described in “Interrupt Timers” beginning on page 272.

Definitions 9
A hardware interrupt is a physical device’s method for requesting attention from a
computer. The physical device capable of interrupting the computer is known as an
interrupt source. The device’s request for attention is usually asynchronous with respect
to the computer’s execution of code.

An interrupt handler is a piece of code invoked to satisfy a hardware interrupt.
Interrupt handlers are installed and removed by drivers and act as subroutines of the
driver. A typical interrupt handler consists of two parts: a primary interrupt handler
and a secondary interrupt handler. The primary interrupt handler is the code that
services the immediate needs of the device that caused the interrupt, performing actions
that must be synchronized with it. The secondary interrupt handler is the code that
perform the remainder of the work associated with the interrupt. Secondary interrupt
handlers are executed at a lower priority than primary interrupt handlers.

Interrupt handler registration is the process of associating an interrupt source with an
interrupt handler. Interrupt dispatching is the sequence of steps necessary to invoke an
interrupt handler in response to an interrupt.

C H A P T E R 9

Driver Services Library

Interrupt Management 241

Execution contexts for interrupt handling are discussed in “Noninterrupt and
Interrupt-Level Execution” beginning on page 67.

Interrupt Model 9
Interrupt dispatching and control hardware may be designed in a variety of styles
and capabilities. In some hardware systems, software must do most of the work of
determining which devices that generate interrupts need to be serviced and in what
order the system must service them. Other hardware systems may contain specific
vectorization and priority schemes that force the software to respond in predeter-
mined ways.

Designing a driver so that it can respond to the details of every interrupt mechanism in
every hardware system limits the driver’s portability and increases its complexity. As a
result, a new native driver interrupt model is introduced that replaces the traditional
interrupt-handling mechanisms used in previous Macintosh computers. This new model
provides a more standardized execution environment for interrupt processing by using
two key strategies:

■ The new model formalizes the concept of primary and secondary interrupt levels for
processing interrupts. Primary interrupt level execution happens as a direct result of a
hardware interrupt request. Secondary interrupt level provides a way to defer
noncritical interrupt processing until after all hardware interrupts have been serviced,
thereby reducing hardware interrupt latency.

■ The control and propagation of hardware interrupts are abstracted from the driver
software. An interrupt source for a PCI card or device is represented by a node in
hierarchical tree, called an interrupt source tree (IST). Generally the leaf nodes of the
tree represent interrupt sources for devices and the parent nodes representing
dispatching or demultiplexing points. This removes the need for drivers to respond
in detail to hardware interrupt mechanisms; they need only contain interrupt-
handling code specific to the devices they control. Driver writers no longer needs
to know how interrupts are multiplexed by a particular hardware platform (such
as through versatile interface adapters [VIAs]), or handle CPU-specific low memory
interrupt vectors.

IMPORTANT

A consequence of abstracting the interrupt-handling process from its
hardware implementation is that interrupt service routines may be
called when their devices did not cause the interrupt. To minimize
processing overhead, each interrupt service routine must quickly
determine if it is needed and return immediately if it is not. ▲

A more detailed description of these concepts follows.

Primary and Secondary Interrupt Levels 9
Primary interrupt level is also called hardware interrupt level. Primary interrupt level
execution happens as a direct result of a hardware interrupt request. To insure maximum
system performance, primary interrupt handlers perform only those actions that must

C H A P T E R 9

Driver Services Library

242 Interrupt Management

be synchronized with the external device that caused the interrupt and then queue a
secondary interrupt handler to perform the remainder of the work associated with the
interruption. Primary interrupt handlers must operate within the restrictions of the
interrupt execution model by not causing page faults and by using a limited set of
operating-system services. Those services available to primary interrupt handlers are
listed in Table 9-2 on page 283.

Secondary interrupt level is similar to the deferred task concept in previous versions of
Mac OS; conceptually, it exists between the hardware interrupt level and the application
level. A secondary interrupt queue is filled with requests to execute subroutines that are
posted for execution by hardware interrupt handlers. These handlers need to perform
certain actions, but choose to defer the execution of the actions in the interest of
minimizing primary interrupt level execution. The execution of secondary interrupt
handlers is serialized. For synchronization purposes, noninterrupt level execution may
also post secondary interrupt handlers for execution; they are processed synchronously
from the prospective of noninterrupt level but are serialized with all other secondary
interrupt handlers.

Like primary interrupt handlers, secondary interrupt handlers must also operate within
the restrictions of the interrupt execution model by not causing page faults and by using
a limited set of operating-system services. Those services available to secondary
interrupt handlers are listed in Table 9-2 on page 283.

Note
The execution of secondary interrupt handlers may
be interrupted by primary interrupts. ◆

When writing device drivers that handle hardware interrupts, it is important to balance
the amount of processing done within the primary and secondary interrupt handlers
with that done by the driver’s tasks at noninterrupt level. The driver writer should make
every effort to shift processing time from primary interrupt level to secondary interrupt
level and from secondary interrupt level to the driver’s main task. Doing this allows the
system to be tuned so that the driver does not seize an undue amount of processing time
from applications and other drivers.

Interrupt Source Tree Composition 9
An interrupt source tree is composed of hierarchically arranged nodes. Each node
represents a distinct hardware interrupt source. Nodes are called interrupt members
and are arranged in interrupt sets.

An interrupt set is identified by an InterruptSetID value and is characterized as the
logical grouping of all of the direct child nodes of a parent node. An InterruptSetID
value has no meaning other than being unique among all InterruptSetID values.
An interrupt member is identified by an InterruptMemberNumber value, which lies in
the range from 1 to the number of members in the interrupt set to which the interrupt
member belongs. Together, an InterruptSetID and InterruptMemberNumber
group form an InterruptSetMember identifier that uniquely identifies a node in
the IST.

C H A P T E R 9

Driver Services Library

Interrupt Management 243

Each interrupt set in the hierarchy represents a finer categorization of an interrupt
source. The top of the tree consists of a single interrupt member that has no parent
members and is referred to as the root member. The rest of the interrupt members in the
tree branch down from the root member with each interrupt member acting as a child
member to the interrupt members above it, and as a parent member to the interrupt
members below it. When an interrupt member has no child members, it is referred to as
a leaf member.

An interrupt source tree can have any number of branches, and any branch can have any
number of levels. Figure 9-2 illustrates a simplified example of an interrupt source tree.

Figure 9-2 Interrupt source tree example

Interrupt Registration 9
An interrupt member (a node in the IST) can have four kinds of information attached
to it:

■ a pointer to an interrupt service routine (ISR)

■ a pointer to an interrupt enabler routine (IER)

■ a pointer to an interrupt disabler routine (IDR)

■ a reference constant (refCon)

Installation of this information is done by drivers and I/O experts during initialization.
The process of attachment is called registration. Once registered to an interrupt member,
the information persists until the next system startup.

Root member

Parent child member

Leaf member

Interrupt set

Set A

Set B

Set C

Set D

1

1 2

3

2

2

1 3 4

1

C H A P T E R 9

Driver Services Library

244 Interrupt Management

There are two types of ISRs. The first type, called a transversal ISR, routes interrupt
processing from a member to one of its child members. Transversal ISRs are always
attached to root or parent/child members. The second type of ISR directly handles a
device’s request for service. This type, called a handler ISR, is always attached to a leaf
member. Transversal ISRs never directly handle a device’s request for service, and
handler ISRs never route the processing of an interrupt.

When a handler ISR is invoked, it is supplied with three parameters. The first parameter
indicates the source of the interrupt and consists of an InterruptSetID and
InterruptMemberNumber, forming the InterruptSetMember parameter. This
allows a single ISR that has been registered with multiple interrupt sources to determine
which source caused the current interrupt. The second parameter is the reference
constant value that was registered along with the ISR. The reference constant is not used
by the system; its use is completely up to the driver writer. The third parameter is a
numeric value that tells an ISR whether it has been invoked more than once in a single
interrupt tree traversal process. See “InterruptHandler” beginning on page 252 for more
information.

An IER turns on an interrupt source’s ability to generate a hardware interruption.
Enabling a root member or parent/child member also allows any pending interrupt
requests from any hierarchically lower child to propagate.

An IDR turns off an interrupt source’s ability to generate a hardware interruption. It
returns the previous state of the interrupt source (enabled or disabled), which can be
used to decide if subsequent enable operations are required. Disabling a root member
or parent/child member also prevents any pending interrupt requests from any
hierarchically lower child from propagating.

Interrupt Dispatching 9
ISRs do all of the actual processing to service a hardware interrupt. When a device
generates a hardware interrupt request, the interrupt dispatching process designates the
root member of the IST the current parent member and invokes its ISR routine. The ISR
decides which of the root member’s child members should be designated as the current
parent member for continued categorization of the interrupt and returns the
InterruptMemberNumber value of that child member. As each subsequent child
member is designated as the current parent member, its ISR is invoked to decide which
of its child members should next be designated in the same way. Ultimately a leaf
member is reached, which represents the specific interrupt source. When the leaf
member’s ISR is invoked, it services the specific requesting interrupt source. It then
signals that processing for the interrupt is completed by returning the kIsrIsComplete
constant. If the leaf member’s ISR is null, the interrupt request is dismissed as a
spurious interrupt and ignored.

Consider an example using the simplified IST diagrammed in Figure 9-2 on page 243.
Assume that the interrupt source represented by the IST member set D,
InterruptMemberNumber value 1, requests an interruption. Interrupt dispatching
begins by invoking the ISR of member set A, InterruptMemberNumber value 1, which
returns an InterruptMemberNumber value of 2. This invokes the ISR of member set B,

C H A P T E R 9

Driver Services Library

Interrupt Management 245

InterruptMemberNumber value 2, which returns an InterruptMemberNumber
value of 3. The ISR of member set C, InterruptMemberNumber 3 is then invoked, and
it returns an InterruptMemberNumber of 1. Finally, the ISR of IST member set D,
InterruptMemberNumber 1, is invoked, which tries to service the requesting device.
The ISR returns kIsrIsComplete if the device was successfully serviced and
kIsrIsNotComplete if it was not successfully serviced.

At this point the dispatching process is not complete; the tree must now be traversed
back to the root. This must be done because each interrupt member set can have
dispatching options attached to the set that modifies dispatching behavior. Once a leaf
member’s ISR has been invoked, the traversal path must be retraced toward the root to
see if any parent members on the path belong to an interrupt set with dispatching
options. These options can take two forms:

■ reinvoke a child’s parent ISR function when the child member returns
kIsrIsComplete

■ reinvoke a child’s parent ISR function when the child member returns
kIsrIsNotComplete

Using kIsrIsComplete 9

An ISR returning kIsrIsComplete starts the dispatching process back toward the root.
In the current example, assume that interrupt set C has its dispatching modifier option
set to reinvoke the parent when kIsrIsComplete is returned. When the traversal
toward the root encounters the InterruptMemberNumber 3 of member set C, parent
set member B of InterruptMemberNumber 2 has its ISR reinvoked. This ISR might
then, for example, return an InterruptMemberNumber value of 2, which would
invoke the ISR of member set C, InterruptMemberNumber value 2. This ISR would
service its device and returns kIsrIsComplete. Since no higher interrupt set has
any dispatching modifier options, the dispatching process will arrive at the root and
be finished.

In this way, the kIsrIsComplete dispatching option is typically used to give a parent
member a chance to service additional children without having to reenter the
dispatching process.

Using kIsrIsNotComplete 9

An ISR returning kIsrIsNotComplete produces slightly more complex behavior. An
ISR returns kIsrIsNotComplete only when its device was not the device requesting
service. Even though a leaf ISR was invoked, the interrupt request is still outstanding
and the ISR for the requesting device must be found. If the member set containing the
ISR just invoked has no dispatching modifing options, then the next interrupt member in
the set will have its ISR invoked. In the current example, the ISR of IST member set D,
InterruptMemberNumber 2, would be invoked. Assuming that this ISR serviced its
device and returned kIsrIsComplete, dispatching would be complete since no higher
interrupt set had any dispatching modifier options set.

C H A P T E R 9

Driver Services Library

246 Interrupt Management

If the ISR of IST member set D, InterruptMemberNumber 2, also returned
kIsrIsNotComplete, however, the ISR of the next interrupt member in the parent set
would be invoked. In the example, InterruptMemberNumber 3 of member set C is
already the last member in set C, so this set is skipped and the next higher set is
examined (in this case, set B). Set B is found to have higher members, resulting in the ISR
of member set B, InterruptMemberNumber 3, being invoked. Assuming that this ISR
serviced its device and returned kIsrIsComplete, dispatching would be finished.

The behavior just described is a classic left-branch recursive tree walk. It is employed
when no means exist for directly identifying exactly which device is requesting service.
Devices must be polled, by invoking their ISRs, to find and service the requesting device.

While this behavior will correctly poll for the requesting device, it is sometimes
inappropriate to poll devices in the order that they appear in the member set. In the
example, assume that interrupt set B has its dispatching modifier option set to reinvoke
the parent ISR if kIsrIsNotComplete is returned. In the example just cited, when
the traversal toward the root encounters InterruptMemberNumber 2 of member set B,
the parent set member A, InterruptMemberNumber 1, has its ISR reinvoked. This
ISR could then return InterruptMemberNumber 4 to invoke member set B,
InterruptMemberNumber 4. In this way, kIsrIsNotComplete should be used when
the priority of devices is not the same as the order in which devices appear in their
member sets.

Interrupt Priority 9

Note that there is no explicit prioritization scheme reflected in this process, but that
implied prioritization does take place. The fact that tree transversal proceeds from the
root member toward leaf members gives members closer to the root a higher priority.
Hence, the hierarchichal structure of the IST determines the system’s fixed interrupt
priority structure. Conversely, a transversal ISR is free to use any algorithm to decide
which child member’s ISR should be invoked—for example, an anti-starvation algorithm
or a priority based on the value of InterruptMemberNumber. Whatever method is
used, transversal ISRs provide the dynamic aspect of system’s interrupt priority
structure. Implementing the IST structure and ISR usage sets the implied prioritization
of all interrupts.

Interrupt Source Tree Construction 9
The Mac OS startup process automatically performs the initial construction and
maintenance of the IST for all built-in I/O ASICs, and both PCI expansion cards, and
PCI-to-PCI bridges that use the default PCI bridge IST extensions.

Note
Expansion card developers normally have no need to construct the IST
but may need to extend it as described in “Explicit IST Extension”
beginning on page 249. The following description of the initial
construction process is included for completeness. ◆

C H A P T E R 9

Driver Services Library

Interrupt Management 247

The interrupt tree is constructed by creating new sets of child members under existing
child members, which thus become parent members. The preexisting root member is
used as the parent member for the first layer of the tree. As each new child member is
created, a null ISR is installed and its IER and IDR routines are inherited from the parent.
If built-in interrupt controller hardware can enable and disable interrupts for each of the
interrupt members in the new interrupt set, IERs and IDRs tailored to each interrupt
member are installed. When a child member becomes a parent member, a transversal ISR
is installed on top of the null ISR for dispatching its child members. This process is
repeated for as many layers and IST members as required. For an example, see the
simplified IST diagrammed in Figure 9-2 on page 243. Typically, the default IST
originally created services all the fixed hardware devices and slots on the Power
Macintosh main logic board.

Having child members inherit their parents’ IERs and IDRs allows devices that don’t
have hardware enabling and disabling support on the main logic board to still use IER
and IDR functions. Invoking an IER or IDR for such a device will transparently invoke
the parent member’s IER or IDR. At some point up the interrupt tree, main logic board
hardware will physically enable or disable interrupts intended for the device.

IMPORTANT

Default enablers, disablers, and transversal ISRs for all Macintosh
built-in I/O devices are provided and installed by Apple I/O experts.
Drivers that use them are more portable and are more likely to be
compatible with future Apple products. ▲

▲ W A R N I N G

The Apple built-in handlers can be overridden by other software.
However, built-in interrupt enablers, disablers, and transversal ISRs
are very specific to the hardware platform. Detailed knowledge of
the built-in interrupt controller hardware is required to successfully
override one. ▲

Interrupts and the Name Registry 9
Once the IST is constructed and initialized, drivers need a mechanism to find the IST
member that represents the interrupt source the driver is controlling. This is done
through the Name Registry discussed in Chapter 8. As explained in “Initialization and
Finalization Routines” beginning on page 98, a driver’s initialization command call
contains a RegEntryID value that refers to the set of Registry properties for the device
the driver controls. Besides the standard set of PCI properties, a number of Apple-
specific properties are included, as shown in Table 8-1 on page 193. The Apple property
used for interrupts is driver-ist, which contains an array of interrupt sources
logically associated with a device.

Each driver-ist property is stored as type ISTProperty, which is an array of three
InterruptSetMember values, and conforms to the following rules:

■ The first InterruptSetMember value contains the interrupt member for the device’s
controller chip or hardware interrupt source—for example, a serial controller chip or a

C H A P T E R 9

Driver Services Library

248 Interrupt Management

card in an expansion slot. This interrupt member must always be defined for
hardware that is capable of requesting hardware interrupts.

■ If the device is capable of generating direct memory access (DMA) output interrupts,
the second InterruptSetMember value contains the interrupt member for the
interrupt source of the device’s DMA output interrupts. Otherwise, it contains
null values.

■ If the device is capable of generating DMA input interrupts, the third
InterruptSetMember value contains the interrupt member for the interrupt
source of the device’s DMA input interrupts. Otherwise, it contains null values.

■ If the device generates both DMA input and output interrupts with the same interrupt
source, the second InterruptSetMember value contains the interrupt member for
both DMA input and output interrupts. In this case, the third InterruptSetMember
contains null values.

Note that grouping these interrupt members in one driver-ist property is purely a
logically grouping. Any one of the three interrupt members can be located anywhere
within the IST hierarchy.

Extending the Interrupt Source Tree 9
This section discusses the ways that the IST can grow to accommodate PCI devices
and bridges.

Automatic IST Extension 9

The construction process described in “Interrupt Source Tree Construction” on page 246
builds an IST for all devices that are connected directly to the main logic board’s PCI bus.
This includes all devices on the Power Macintosh main logic board plus expansion slots
that are populated with single-function expansion cards. However, additional devices
may exist that are indirectly connected to the main logic board’s PCI bus by means of
PCI-to-PCI bridges. Examples of such devices are PCI-to-PCI expansion chassis cards
and multifunction expansion cards that use controller chips with built-in PCI interfaces.

A single-function device that is plugged into a main logic board slot will always have a
pre-built IST member available because the slot is always present and accounted for
when constucting the IST. Multifunction devices, based on PCI-to-PCI bridge devices,
aren’t treated so simply. While the pre-built IST member for the slot is still available for
use by the multifunction device, the number of devices on the other side of the PCI-to-PCI
bridge is unknown and must be accounted for.

Therefore, Mac OS dynamically extends the IST and the NameRegistry during system
initialization for all PCI-to-PCI bridges and for all devices behind them. Each PCI-to-
PCI bridge and functional device gets its own NameRegistry entry and IST member.
This makes each PCI-to-PCI bridge and functional device appear separately in the
NameRegistry and IST regardless of how many devices are physically bundled together
on the same expansion card. This is convenient for expansion cards that contains more
than one copy of a controller chip (for example a 4-port Ethernet card). The driver
developer needs only develop a driver that knows how to control a single controller chip

C H A P T E R 9

Driver Services Library

Interrupt Management 249

or port; Mac OS will automatically create an instance of the driver for each device that
matches the driver. While the driver developer can choose to override the default
mechanism, using this service can greatly decrease the complexity of some drivers.

Automatic IST Extension Operation 9

The nature of the PCI-to-PCI bridge devices available on the market today imposes some
limitations on automatic IST extensions. While today’s PCI-to-PCI bridge devices
transparently handle the addressing aspects of PCI buses, they do not do the same for
interrupt request signals. Also, there is no current standard among card vendors for
providing hardware registers that indicate which device is requesting service. Hence,
card vendors often simply wire the interrupt request signals from all devices together
into a single signal and feed that directly to the main logic board’s slot. The IST that is
constructed for the main logic board can tell that something wants service on the
multifunction expansion card, but it cannot tell exactly which device. To accommodate
this “lowest common denominator” behavior, the IST extensions from the slot IST
member uses dispatching modification options to poll the extended IST members, as
described in “InterruptHandler” beginning on page 252.

When polling is used, certain actions must be observed by the ISRs, IERs, and IDRs
attached to the extended IST members. Each PCI-toPCI bridge’s IST member has a
special bridge dispatching ISR installed. This transversal ISR handles all the devices
requesting interrupt service during a single IST transversal. Once all of the device’s ISRs
return kIsrIsNotComplete, the transversal ISR returns kIsrIsComplete to the
dispatcher to indicate that interrupt processing is complete. The transversal ISR also
implements a simple fairness algorithm that keeps any one device from dominating the
interrupt service requests. It makes sure that the same device isn’t serviced twice in a
row (unless only one device is requesting service), regardless of the number of IST
transversals.

In addition, separate software flags are maintained for each extended IST member to
enable and disable interrupt servicing. Invoking an extended IST member’s IDR and IER
functions has two implicit effects. First, invoking the IDR only prevents the extended IST
member’s ISR from being invoked; it does not disable the device’s ability to request an
interrupt. It is the responsibility of the driver to disable interrupt requests from the
actual device. Second, invoking the IER not only allows the extended IST member’s ISR
to be invoked; it also traverses the IST back to the main logic board’s slot IST member,
invoking the IER of each IST member encountered. Thus, a driver needs only invoke its
device’s IER to allow interrupt requests through the IST.

Explicit IST Extension 9

By the time the PCI devices built into the Macintosh system are initialized, an IST has
been constructed and populated with nodes for every interrupt source within the
system, including all PCI expansion cards and PCI-to-PCI bridges that use the default
PCI bridge IST extensions.

However, PCI expansion devices that cannot use the default PCI bridge IST extensions
or that have special requirements will not automatically receive nodes in the IST.

C H A P T E R 9

Driver Services Library

250 Interrupt Management

Examples of such devices are multifunction cards with non-PCI controller devices and
PCI-to-NuBus expansion chassis. Because these devices still represent additions to the
system hardware, the third-party driver writer needs to provide software that extends
both the Name Registry and the Apple-provided IST.

Note
PCI-to-NuBus expansion bus cards are a special case. NuBus devices
are controlled by 68K drivers and so require the Macintosh facilities
normally provided for NuBus devices. The interrupt handler for the
PCI-to-NuBus bridge must use or provide Slot Manager dispatching and
interrupt registration for NuBus device drivers. The initialization of a
PCI-to-NuBus bridge does not need to extend the Registry or the IST. ◆

If you are extending the system by means of PCI bus slots or a multifunction device, the
work to be done includes several basic steps:

■ When the device initialization code is first invoked, it will be passed the RegEntryID
value of the Registry node that represents the PCI expansion slot that the device
occupies. Use the RegistryPropertyGet function to get the driver-ist property
for the PCI expansion slot, which will have the InterruptSetMember value for the
slot’s interrupts.

■ Pay particular attention to the fact that the parent (or bridge or multifunction)
initialization code must be marked as initialize and open upon discovery. This is a
requirement because extension devices must be available in the Name Registry before
family experts are run. If this requirement is not met, extension devices may not be
made available to the system because their child devices will not be found. Initialize
and open upon discovery is described in “Driver Run-Time Structure” beginning on
page 90.

■ Use the GetInterruptFunctions function with the slot’s InterruptSetMember
value to get the default IDR registered with the parent member. Call the IDR to
disable the parent member’s interrupt propagation. This keeps spurious interrupts
from occurring before the IST extension is complete.

■ The device initialization code must extend the IST. Use the CreateInterruptSet
function to create a new interrupt set with the slot’s InterruptSetMember value as
the parent member. Make the interrupt set size the same as the number of new PCI
bus slots or the number of functions (in a multifunction device).

■ Register a transversal ISR with the parent member, using the slot’s
InterruptSetMember value. When invoked, this transversal ISR should
further route the slot interrupt to one of the interrupt members in the newly
created interrupt set.

■ If the device’s interrupt controller hardware can enable and disable interrupts for each
of the interrupt members in the new interrupt set, register tailored IERs and IDRs
with each of the interrupt members. Otherwise, the IER and IDR that the interrupt
members inherited from the parent member will moderate interrupts transparently to
the caller.

■ For each additional device or function, a node must also be added to the Name
Registry. Adding nodes to the Registry is described in “Name Creation and Deletion”
beginning on page 172.

C H A P T E R 9

Driver Services Library

Interrupt Management 251

■ Each new child entry in the Registry requires a complete set of properties to allow the
device to be located by its family experts. A complete set of properties is the set of
properties described by and installed by Open Firmware. For details, see the Open
Firmware standard and Table 8-1 on page 193.

■ In addition to the Open Firmware requirements, each new child entry in the Registry
must also have a driver-ist property installed. This lets subsequent drivers that
want to register an ISR with one of the newly created interrupt members find the
correct InterruptSetMember value.

■ Create properties using the rules described in the previous section and in “Property
Management” beginning on page 184. For each new child entry in the Registry, create
a driver-ist property with the corresponding new interrupt members that were
used to extend the IST.

■ Call the IDR for each of the newly created interrupt members to keep spurious
interrupts from occurring.

■ Call the IER for the parent member to enable interrupts for the system extension as
a whole.

Note
There will always be at least one new interrupt member created for each
new child entry in the Name Registry. However, keep in mind that the
driver-ist property is a logical grouping of interrupt members for a
device or function. Because of this grouping, you might end up creating
more interrupt members than child entries in the Registry. ◆

Native drivers can now be loaded against any of the new devices, as created by the
extension to the IST and the Name Registry, just like other native drivers.

IMPORTANT

There is no removal mechanism for sets or members. The current release
of Mac OS does not yet support hot-swappable plug-and-play devices. ▲

Basic Data Types 9
This section defines some data types and values that are fundamental to interrupt
management.

typedef KernelID InterruptSetID;

typedef long InterruptMemberNumber;

typedef struct InterruptSetMember {

InterruptSetID set;

InterruptMemberNumber member;

} InterruptSetMember;

C H A P T E R 9

Driver Services Library

252 Interrupt Management

enum{

kISTChipInterruptSource = 0,

kISTOutputDMAInterruptSource = 1,

kISTInputDMAInterruptSource = 2,

kISTPropertyMemberCount = 3

};

typedef InterruptSetMember ISTProperty[kISTPropertyMemberCount];

#define kISTPropertyName "driver-ist"

typedef long InterruptReturnValue;

enum

{

kFirstMemberNumber = 1,

kMemberNumberParent = -2,

kIsrIsNotComplete = -1,

kIsrIsComplete = 0

};

typedef Boolean InterruptSourceState;

enum

{

kSourceWasEnabled = true,

kSourceWasDisabled = false

};

Control Routines 9
This section describes three interrupt control routines, InterruptHandler,
InterruptEnabler, and InterruptDisabler. Their use by native drivers is described
in “Primary Interrupt Mechanisms” beginning on page 156. See also the sample code in
Listing 9-3 on page 266.

InterruptHandler 9

InterruptMemberNumber InterruptHandler

(InterruptSetMember member,

 void * refCon,

 UInt32 interruptCount);

member Member set ID of the IST member requesting service.

refCon 32-bit reference constant registered with the IST member.

interruptCount Count of the number of interrupts processed, including the
current one.

C H A P T E R 9

Driver Services Library

Interrupt Management 253

DESCRIPTION

When an ISR is invoked, member contains the ID of the IST member that is the currently
interrupting source. Since an ISR can be registered with multiple IST members, the
member parameter allows a single ISR to distinguish multiple interrupt sources. RefCon
contains the reference constant that was installed along with the ISR.

If the ISR returns a positive number, the dispatcher uses that number to identify which
child member should be invoked next.

If the ISR returns kIsrIsComplete, the interrupt dispatcher stops any further traversal
of the IST and treats the interrupt request as serviced. If the IST member’s interrupt
set has the kReturnToParentWhenComplete option set, the parent IST member is
reinvoked to give the parent a chance to have another child member invoked. Otherwise,
the dispatcher starts looking for interrupt sets between the parent and the root that have
dispatching options.

If the ISR returns kIsrIsNotComplete, the dispatcher’s default behavior is to invoke
the next interrupt set member (member.member + 1) in an attempt to satisfy the
interrupt request. If all of the members of the set have been invoked, the dispatcher
continues traversing the tree between the parent and the root, looking for an ISR to
satisfy the interrupt request.

If the IST member’s interrupt set has the kReturnToParentWhenNotComplete option
set, the parent IST member is reinvoked to allow it to decide which child member should
be invoked next. This process is repeated until one of the children members returns
kIsrIsComplete or the parent returns kIsrIsNotComplete. In the latter case, the
dispatcher continues traversing the tree between the parent and the root, looking for an
ISR to satisfy the interrupt request. If the root is reached, the interrupt request is treated
as spurious.

IMPORTANT

Since an ISR can be invoked when the device the ISR services is not
requesting service, an ISR must be able to detect this situation and
return kIsrIsNotComplete to the dispatcher. This lets the dispatcher
continue looking for the actual ISR that will service the interrupt
request. ▲

The interruptCount parameter can be used by transversal interrupt handlers to
determine if they have been reinvoked by the dispatcher. On each new interrupt tree
transversal, this value is unique. This means that interruptCount will be a different
value the first time a tranversal ISR is invoked. However, if the transversal ISR is
reinvoked during the same transversal process, the interruptCount value will be the
same as the first time it was invoked. By saving the value of interruptCount during
the previous tree traversal and verifying that the current value is the same, a transversal
ISR can tell when it is being reinvoked.

Note that the interruptCount value will never be equal to nil. On ISR installation,
the ISR’s saved copy of interruptCount should be initialized to nil so that the first
invocations of the ISR can behave properly.

C H A P T E R 9

Driver Services Library

254 Interrupt Management

IMPORTANT

The actual value of interruptCount shouldn’t interpreted in any way.
How this value is computed may change in the future. The only valid
interpretation of interruptCount is that it is unique for each interrupt
tree transversal process. ▲

InterruptEnabler 9

void InterruptEnabler (InterruptSetMember member,

 void * refCon);

member Member set ID of the IST member requesting service.

refCon 32-bit reference constant registered with the IST member.

DESCRIPTION

Apple-defined enabler functions do not use the passed values of refCon and should
therefore be passed nil. The refCon value lets user-defined enabler functions receive a
reference constant of the programmer’s choice. Invoking InterruptEnabler reenables
the interrupt member’s ability to propagate interrupts to Mac OS.

InterruptDisabler 9

InterruptSourceState InterruptDisabler

(InterruptSetMember member,

 void * refCon);

member Member set ID of the IST member requesting service.

refCon 32-bit reference constant registered with the IST member.

DESCRIPTION

Apple-defined enabler functions do not use the passed values of refCon and should
therefore be passed nil. The refCon value lets user-defined enabler functions receive a
reference constant of the programmer’s choice. Invoking InterruptDisabler disables
the interrupt member’s ability to propagate interrupts to Mac OS. On return, this routine
returns the interrupt member’s ability to propagate interrupts as it was before this
routine was invoked. A returned value of SourceWasEnabled means that the interrupt
member’s propagation state was enabled; a returned value of SourceWasDisabled
means it was disabled.

C H A P T E R 9

Driver Services Library

Interrupt Management 255

Interrupt Set Creation and Options 9
The routines described in this section deal with interrupt sets. CreateInterruptSet
extends an IST by creating a new interrupt set. GetInterruptSetOptions helps an
expert determine how the interrupt dispatcher will handle an interrupt set, and
ChangeInterruptSetOptions helps it change that behavior.

IMPORTANT

The Macintosh system’s IST for PCI cards is initialized and activated by
Apple software. Third-party I/O software needs only to update member
functions as necessary to support PCI cards. Extending the IST is
required only for multifunction cards and bridges that don’t use the
default PCI bridge IST extensions. ▲

CreateInterruptSet 9

OSStatus CreateInterruptSet(InterruptSetID parentSet,

 InterruptMemberNumber parentMember,

 InterruptMemberNumber setSize,

 InterruptSetID *setID,

 InterruptSetOptions options);

parentSet Member set ID.

parentMember Set member number.

setSize Number of child members to create.

setID Interrupt set ID.

options Options (see “Basic Data Types” on page 251).

DESCRIPTION

The CreateInterruptSet function extends an IST. When calling it, pass the member
set ID and the set member number in parentSet and parentMember to uniquely
identify which leaf member is to become the parent member. Pass the number of child
members to create in setSize. Pass a pointer to a variable of type InterruptSetID in
setID. CreateInterruptSet returns noErr if the creation process suceeded, and the
variable pointed to by setID contains the member set ID of the new set’s child members.

The options parameter operates in these ways to modify the default interrupt
dispatching behavior:

■ Option kReturnToParentWhenComplete modifies the behavior for successful
interrupt completion. Any time a child in a set with this option returns
kIsrIsComplete, the dispatcher reinvokes the parent’s transversal ISR. A parent
can thus reevaluate its children’s interrupt requests and can have another child
serviced immediately instead of having to traverse the entire interrupt tree again.

C H A P T E R 9

Driver Services Library

256 Interrupt Management

■ Option kReturnToParentWhenNotComplete modifies the behavior for unsuccess-
ful interrupt completion. Any time a child in a set with this option returns
kIsrIsNotComplete, the dispatcher reinvokes the parent’s transversal ISR. The
parent can then invoke another child to try to service the interrupt request. This
process is repeated until one of the children members returns kIsrIsComplete or
the parent returns kIsrIsNotComplete. In the latter case, the dispatcher continues
traversing the tree between the parent and the root, looking for an ISR to satisfy the
interrupt request. If the root is reached, the interrupt request is treated as spurious.

■ If no options are set, the dispatcher traverses the tree toward the root, looking for an
IST member’s interrupt set that has options set, until it arrives at the root.

The kReturnToParentWhenComplete and kReturnToParentWhenNotComplete
options are defined in “Basic Data Types” on page 251.

EXECUTION CONTEXT

CreateInterruptSet may be called only from task level, not from software or
hardware interrupt level.

RESULT CODES

GetInterruptSetOptions 9

OSStatus GetInterruptSetOptions (InterruptSetID set,

 InterruptSetOptions *options);

set Interrupt set ID of the interrupt set.

options Current dispatching options.

DESCRIPTION

GetInterruptSetOptions returns in options the dispatching behavior options for
the interrupt set identified by set.

EXECUTION CONTEXT

GetInterruptSetOptions may be called only from task level, not from software or
hardware interrupt level.

RESULT CODES

noErr 0 No error
paramErr –50 Bad parameter
memFullErr –108 Not enough room in heap

noErr 0 No error

C H A P T E R 9

Driver Services Library

Interrupt Management 257

ChangeInterruptSetOptions 9

OSStatus ChangeInterruptSetOptions (InterruptSetID setID,

 InterruptSetOptions *options);

setID Interrupt set ID of the interrupt set.

options New dispatching options.

DESCRIPTION

ChangeInterruptSetOptions lets an expert change the behavior of the interrupt
dispatcher for a specified interrupt set. The default behavior for most set members is to
return to the root. For example, with a multifunction PCI card the desired behavior
might be to return to the parent, so the interrupt dispatcher can revisit all set members to
determine whether all interrupts have been serviced or there is another to handle.

EXECUTION CONTEXT

ChangeInterruptSetOptions may be called only from task level, not from software
or hardware interrupt level.

RESULT CODES

Control Routine Installation and Examination 9
To install an interrupt handler, use InstallInterruptFunctions. This routine
replaces the earlier Slot Manager routine SIntInstall. After an ISR has been installed,
GetInterruptFunctions lets you examine it.

Note
ISR functions are never explicitly removed. To deregister an ISR,
reinstall the ISR function that was obtained by means of the
GetInterruptFunctions routine before the ISR was originaly
installed. Then call the IST disabler function to keep any further
interrupts from requesting service. ◆

The declarations for the interrupt handler, enabler, and disabler are the following:

typedef InterruptMemberNumber (*InterruptHandler)

(InterruptSetMember ISTmember,

 void * refCon,

 UInt32 theIntCount);

noErr 0 No error

C H A P T E R 9

Driver Services Library

258 Interrupt Management

typedef void (*InterruptEnabler)

(InterruptSetMember member,

 void * refCon);

typedef InterruptSourceState (*InterruptDisabler)

(InterruptSetMember member,

 void * refCon);

The interrupt set ID and interrupt member number values are available as driver-ist
properties associated with each device entry in the Name Registry. Primary, secondary,
and software interrupt mechanisms are described in “Interrupt Management” beginning
on page 240.

InstallInterruptFunctions 9

The InstallInterruptFunctions function installs interrupt service routines in an
interrupt member.

OSStatus InstallInterruptFunctions

(InterruptSetID setID,

 InterruptMemberNumber member,

 void *refCon,

 InterruptHandler handlerFunction,

 InterruptEnabler enableFunction,

 InterruptDisabler disableFunction);

setID Interrupt set ID of the IST member to be installed.

member Set member number of the IST member to be installed.

refCon 32-bit reference constant to be registered with the IST member.

handlerFunction Pointer to interrupt service routine (ISR).

enableFunction Pointer to interrupt enabler routine (IER).

disableFunction Pointer to interrupt disabler routine (IDR).

DESCRIPTION

Given the ID of an interrupt set in the interrupt tree and the number of a member in that
set, InstallInterruptFunctions installs the designated interrupt handler, enabler,
disabler, and acknowledge routines. Interrupt sets and the interrupt tree are discussed in
“Interrupt Management” beginning on page 240.

Parameter refCon can be any 32-bit value. Mac OS does not use it; it is merely stored
and passed to each invocation of the most recently installed ISR routine. Placing nil
in a handlerFunction, enableFunction, or disableFunction parameter will not
install a new routine—it will leave the current routine installed.

InstallInterruptFunctions returns noErr if the installation succeeded.

C H A P T E R 9

Driver Services Library

Interrupt Management 259

EXECUTION CONTEXT

InstallInterruptFunctions may be called only from task level, not from software
or hardware interrupt level.

RESULT CODES

GetInterruptFunctions 9

OSStatus

GetInterruptFunctions (InterruptSetID setID,

 InterruptMemberNumber member,

 void **refCon,

 InterruptHandler *handlerFunction,

 InterruptEnabler *enableFunction,

 InterruptDisabler *disableFunction);

setID Interrupt set ID of the IST member.

member Member set ID of the IST member.

refCon Pointer to returned reference constant.

handlerFunction Pointer to returned interrupt handler.

enableFunction Pointer to returned interrupt enabler function.

disableFunction Pointer to returned interrupt disabler function.

DESCRIPTION

The GetInterruptFunctions function fetches interrupt control routines installed in
an interrupt member. The caller passes the member set ID and the set member number in
setID and member to uniquely identify the interrupt member in the tree.

Upon successful completion, GetInterruptFunctions returns the reference constant,
the ISR, the IER, and the IDR to the caller.

EXECUTION CONTEXT

GetInterruptFunctions may be called only from task level, not from software or
hardware interrupt level.

RESULT CODES

noErr 0 No error
paramErr –50 Bad parameter

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 9

Driver Services Library

260 Interrupt Management

Software Interrupts 9
The Driver Services Library provides several routines to create, run, and remove
software interrupts. Some of these routines can be called only from certain execution
levels, as described in “Device Driver Execution Contexts” beginning on page 214.

Three common ways that software interrupts can be used to support a PCI native device
driver are the following:

■ For initializing or restarting a state machine in the driver.

■ For communicating with other drivers or with application code.

■ To raise the execution level of a task so it can use DSL services that are not available at
hardware interrupt level.

Software interrupt handlers communicate by means of the Name Registry, described in
Chapter 8. You can provide software interrupt communication in two ways:

■ You can create a permanent software interrupt handler at noninterrupt level and store
its SoftwareInterruptID value in the Registry. The driver can then retrieve the ID
and run the handler, using SendSoftwareInterrupt. This technique does not
queue interrupts, so the handler must be able to process multiple events.

■ You can store the driver’s taskID value in the Name Registry. The driver can then
retrieve the value and use it to make temporary CreateSoftwareInterrupt and
SendSoftwareInterrupt calls in pairs. This technique forces handler to process
one event per pair of calls. It allocates and frees system resources; therefore you must
be prepared for error messages from CreateSoftwareInterrupt if system
resources become exhausted.

Using these communication means, software interrupt services allow asynchronous
operations between controlling driver code and slave noninterruptable driver code.

IMPORTANT

Software interrupts cannot be used to allocate memory. ▲

CurrentTaskID 9

TaskID CurrentTaskID (void);

DESCRIPTION

CurrentTaskID returns the ID number of the currently running task. This routine can
be called only from the noninterrupt execution level.

EXECUTION CONTEXT

CurrentTaskID may be called only from task level, not from software or hardware
interrupt level.

C H A P T E R 9

Driver Services Library

Interrupt Management 261

CreateSoftwareInterrupt 9

OSStatus CreateSoftwareInterrupt

(SoftwareInterruptHandler handler,

 TaskID task,

 const void *p1,

 Boolean persistent,

 SoftwareInterruptID *softwareInterrupt)

handler Handler for the new software interrupt.

task Task ID.

p1 First parameter to be passed to the handler.

persistent Indicates whether the ID of the software interrupt should
be deleted when it is activated or should persist until
deleted by DeleteSoftwareInterrupt.

theSoftwareInterrupt Software interrupt ID.

DESCRIPTION

CreateSoftwareInterrupt creates a software interrupt for a specified task. It can be
called either from noninterrupt or secondary execution level.

Persistent software interrupts may be sent multiple times but only once per activation;
that is, the software interrupt must run before it can be sent again.

EXECUTION CONTEXT

CreateSoftwareInterrupt may be called from task level or software interrupt level
but not from hardware interrupt level.

RESULT CODES

SendSoftwareInterrupt 9

OSStatus SendSoftwareInterrupt

(SoftwareInterruptID softwareInterrupt,

 const void *p2);

softwareInterrupt Software interrupt ID.

p2 First parameter to be passed to the handler.

noErr 0 No error
paramErr –50 Bad parameter

C H A P T E R 9

Driver Services Library

262 Interrupt Management

DESCRIPTION

SendSoftwareInterrupt runs a software interrupt task. It can be called from any
execution level and acts as an asynchronous function.

Note
Currently, SendSoftwareInterrupt calls the user back at the same
execution level. In future versions of Mac OS it can be used to force
execution of code that can’t be called at interrupt level. ◆

EXECUTION CONTEXT

SendSoftwareInterrupt may be called from task level or software interrupt level but
not from hardware interrupt level.

RESULT CODES

DeleteSoftwareInterrupt 9

OSStatus DeleteSoftwareInterrupt

(SoftwareInterruptID softwareInterrupt)

softwareInterrupt Software interrupt ID.

DESCRIPTION

DeleteSoftwareInterrupt removes a software interrupt.

EXECUTION CONTEXT

DeleteSoftwareInterrupt may be called from task level or software interrupt level
but not from hardware interrupt level.

RESULT CODES

noErr 0 No error
qErr –1 Queue element not found
paramErr –50 Bad parameter

noErr 0 No error
qErr –1 Queue element not found
paramErr –50 Bad parameter

C H A P T E R 9

Driver Services Library

Interrupt Management 263

Secondary Interrupt Handlers 9
Secondary interrupt handlers are the primary synchronization mechanism that a driver
and its primary interrupt handlers may use. Secondary interrupt handlers must conform
to the interrupt execution environment rules, including absence of page faults, severe
restrictions on using system services, and so on. For further information, see “Device
Driver Execution Contexts” beginning on page 214.

The special characteristic of secondary interrupt handlers that makes them useful is that
the operating system guarantees that at most one secondary handler is active at any
time. This means that if you have a data structure that requires complex update
operations and each of the operations uses secondary interrupt handlers to access or
update the data structure, then all access to the data structure will be atomic even
though hardware interrupts are enabled during the access.

The DSL provides timers that can run secondary interrupt handlers when they expire.
See “Interrupt Timers” beginning on page 272.

Note
Although interrupts are accepted during the execution of secondary
interrupt handlers, no noninterrupt level execution can take place. This
can lead to severely degraded system responsiveness. Use the secondary
interrupt facility only when necessary. ◆

Secondary interrupt handlers have the form shown in the next section.

SecondaryInterruptHandlerProc2 9

typedef OSStatus (*SecondaryInterruptHandlerProc2) (void *p1,

 void *p2);

p1 First parameter.

p2 Second parameter.

DESCRIPTION

The secondary interrupt handler you write must have the interface shown above, with
two parameters. You must specify the values of the two parameters at the time you
queue the handler. For queuing information, see the next section.

RESULT CODE REQUIRED

noErr 0 No error
Err –1 Routine failed

C H A P T E R 9

Driver Services Library

264 Interrupt Management

Queuing Secondary Interrupt Handlers 9

Secondary interrupt handlers are usually queued during the processing of a hardware
interrupt. A secondary interrupt handler’s execution will be deferred until processing is
about to move back to noninterrupt level. You may, however, queue secondary interrupt
handlers from secondary interrupt level. In this case, the queued handler will be run
after all other such queued handlers, including the current handler, have finished.

Secondary interrupt handlers that are queued from hardware interrupt handlers
consume memory resources from the time they are queued until the time they finish
execution. They do this regardless of the execution context (see “Device Driver Execution
Contexts” beginning on page 214). You should make every attempt to limit the number
of simultaneously queued secondary interrupt handlers because the memory resources
available to them are limited.

QueueSecondaryInterruptHandler 9

OSStatus QueueSecondaryInterruptHandler

(SecondaryInterruptHandler2 handler,

 ExceptionHandler exceptionHandler,

 const void *p1,

 const void *p2);

handler The handler to be queued.

exceptionHandler Exception handler (not currently implemented).

p1 First handler parameter.

p2 Second handler parameter.

DESCRIPTION

QueueSecondaryInterruptHandler queues the secondary interrupt handler
indicated by handler. Only one kind of secondary interrupt handler, that with two
parameters, may be queued. Future versions of Mac OS may allow an exception handler
to be associated with the interrupt handler; the exceptionHandler parameter is
currently ignored.

EXECUTION CONTEXT

QueueSecondaryInterruptHandler may be called from task level, software
interrupt level, or hardware interrupt level.

RESULT CODES

noErr 0 No error
qErr –1 Queue element not found

C H A P T E R 9

Driver Services Library

Interrupt Management 265

Calling Secondary Interrupt Handlers 9

Secondary interrupt handlers can be called synchronously by the function
CallSecondaryInterruptHandler2. This service may be used from either
noninterrupt level or secondary interrupt level but not from hardware interrupt level.

CallSecondaryInterruptHandler2 9

OSStatus CallSecondaryInterruptHandler2

 (SecondaryInterruptHandlerProc2 handler,

 ExceptionHandler exceptionHandler,

 const void *p1,

 const void *p2);

handler The handler to be queued.

exceptionHandler Exception handler (not currently implemented).

p1 First handler parameter.

p2 Second handler parameter.

DESCRIPTION

CallSecondaryInterruptHandler2 calls the secondary interrupt handler indicated
by handler. The secondary interrupt handler is invoked immediately; it is not queued.

EXECUTION CONTEXT

CallSecondaryInterruptHandler2 may be called from task level or software
interrupt level, but not from hardware interrupt level.

RESULT CODES

Interrupt Code Example 9
The code sample in Listing 9-3 shows a typical interrupt registration process during
driver initialization.

noErr 0 No error
Err –1 Call failed

C H A P T E R 9

Driver Services Library

266 Interrupt Management

Listing 9-3 Interrupt registration

#include <Devices.h>

#include <Interrupts.h>

#include <NameRegistry.h>

// useful global data within my driver

DriverRefNum myDriverRefNum;

RegEntryID myRegEntryID;

InterruptSetMember myISTMember;

void * theDefaultRefCon;

InterruptHandler theDefaultHandlerFunction;

InterruptEnabler theDefaultEnableFunction;

InterruptDisabler theDefaultDisableFunction;

// the ISR function to be registered

InterruptMemberNumber

myISRHandler(InterruptSetMember member,

 void * refCon,

UInt32 theIntCount)

{

Boolean myDeviceWantsService(void);

void serviceMyDevice(void);

// see if your device was the one that requested an interrupt

if(myDeviceWantsService() == false)

return kIsrIsNotComplete

// do what ever is required to service your hardware here

serviceMyDevice();

// tell the system that this interrupt has been serviced

return kIsrIsComplete;

}

// the main entry point for interrupt initialization

OSErr

DoInitializeCommand(DriverRefNum myRefNum,

RegEntryID myRegID)

{

OSErr Status;

RegPropertyValueSize propertySize;

ISTProperty theISTProperty;

C H A P T E R 9

Driver Services Library

Interrupt Management 267

// remember our RefNum and Registry Entry ID

myDriverRefNum = myRefNum;

myRegEntryID = myRegID;

// get 'driver-ist' property from the Registry for my device

propertySize = sizeof(theISTProperty);

Status = RegistryPropertyGet(&myRegEntryID,

kISTPropertyName,

theISTProperty,

&propertySize);

// return if we got an error

if(Status != noErr)

return Status;

// remember the first InterruptSetMember in the 'driver-ist'

// as the IST member that my driver is connected to

myISTMember.setID = theISTProperty[kISTChipInterruptSource].setID;

myISTMember.member = theISTProperty[kISTChipInterruptSource].member;

// get the default "enabler" function for my IST member

Status = GetInterruptFunctions(myISTMember.setID,

myISTMember.member,

&theDefaultRefCon,

&theDefaultHandlerFunction,

&theDefaultEnableFunction,

&theDefaultDisableFunction);

// return if we got an error

if(Status != noErr)

return Status;

// register my ISR with my IST member. Don't register an

// "enabler" or "disabler" function since the IST member

// my driver is connected to is a Macintosh on-board device.

Status = InstallInterruptFunctions(myISTMember.setID,

 myISTMember.member,

 0,

(InterruptHandler)myISRHandler,

 (InterruptEnabler)0,

 (InterruptDisabler)0);

C H A P T E R 9

Driver Services Library

268 Timing Services

// return if we got an error

if(Status != noErr)

return Status;

// make sure that interrupts are enabled for my IST member

theDefaultEnableFunction(myISTMember,

 0);

return Status;

}

Timing Services 9

The timing services that the Driver Services Library provides to device drivers allow the
precise measurement of elapsed time as well as the execution of secondary interrupt
handlers at desired times. All DSL timing services run in native PowerPC code.

The accuracy of timer operations is quite good. However, certain limitations are inherent
in the timing mechanisms. These are described below.

Time Base 9
Timer hardware within the system is clocked at a rate that is model dependent. This rate
is called the time base. The timing services isolate software from the time base by
representing all times in AbsoluteTime values, the units required by the timing
services. You may use conversion routines to convert from Nanoseconds or Duration
values into AbsoluteTime system units. This conversion can introduce errors, but
errors are typically limited to one unit of the time base.

When performing sensitive timing operations, it can be important to know the
underlying time base. For example, if the time base is 10 milliseconds, there is little value
in setting timers for 1 millisecond. You can determine the hardware time base by using
GetTimeBaseInfo.

GetTimeBaseInfo 9

void GetTimeBaseInfo

(UInt32 *minAbsoluteTimeDelta,

 UInt32 *theAbsoluteTimeToNanosecondNumerator,

 UInt32 *theAbsoluteTimeToNanosecondDenominator,

 UInt32 *theProcessorToAbsoluteTimeNumerator,

 UInt32 *theProcessorToAbsoluteTimeDenominator);

C H A P T E R 9

Driver Services Library

Timing Services 269

minAbsoluteTimeDelta
Minimum number of AbsoluteTime units between time changes.

theAbsoluteTimeToNanosecondNumerator
Absolute to nanoseconds numerator.

theAbsoluteTimeToNanosecondDenominator
Absolute to nanoseconds denominator.

theProcessorToAbsoluteTimeNumerator
Processor time to absolute numerator.

theProcessorToAbsoluteTimeDenominator
Processor time to absolute denominator.

DESCRIPTION

Representing the time base is difficult; the value is typically an irrational number.
Mac OS solves this problem by returning a representation of the time base in fractional
form—two 32-bit integer values, a numerator and denominator. If you multiply an
AbsoluteTime value by the value of theAbsoluteTimeToNanosecondNumerator
and divide the result by the value of theAbsoluteTimeToNanosecondDenominator,
the result is nanoseconds.

The minAbsoluteTimeDelta value is the minimum number of AbsoluteTime units
that can change at any given time. For example, if the Power Macintosh hardware
changes the decrementer in quantities of 128, then the minAbsoluteTimeDelta value
returned by TimeBaseInfo would be 128.

EXECUTION CONTEXT

GetTimeBaseInfo may be called from task level, software interrupt level, or hardware
interrupt level.

Measuring Elapsed Time 9
Measurement of elapsed time is done by simply obtaining the time before and after the
event to be timed. The difference of these two values indicates the elapsed time. Time, in
this context, refers to a 64-bit AbsoluteTime count maintained by Mac OS. The count is
set to 0 by the operating system during its initialization at system startup time. Conversion
routines are provided in a shared library to convert from AbsoluteTime to 64-bit
Nanoseconds or 32-bit Duration values.

Basic Time Types 9
Callers wishing to specify a time relative to the present use the type Duration:

typedef long Duration;

C H A P T E R 9

Driver Services Library

270 Timing Services

Values of type Duration are 32 bits long. They are interpreted in a manner consistent
with the Macintosh System 7 Time Manager—positive values are in units of
milliseconds, negative values are in units of microseconds. Therefore the value 1500
is 1500 milliseconds or 1.5 seconds while the value –8000 is 8000 microseconds or
8 milliseconds. Notice that many values can be expressed in two different ways. For
example, 1000 and –1000000 both represent exactly one second. When two representa-
tions have equal value, they may be used interchangeably; neither is preferred or
inherently more accurate.

Values of type Duration may express times as short as 1 microsecond or as long as 24
days. However, two values of type Duration are reserved and have special meaning.
The value 0 specifies no duration. The value 0x7FFFFFFF, the largest positive 32-bit
value, specifies that many milliseconds, or a very long time from the present.

The Driver Services Library provides the following definitions for use with values of
type Duration:

enum

{

durationMicrosecond = -1,

durationMillisecond = 1,

durationSecond = 1000,

durationMinute = 1000 * 60,

durationHour = 1000 * 60 * 60,

durationDay = 1000 * 60 * 60 * 24,

durationForever = 0x7FFFFFFF,

durationImmediate = 0,

};

Another form for representing time is in Nanoseconds, the values of which are
represented by unsigned 64-bit integers:

typedef struct Nanoseconds

{

unsigned long hi;

unsigned long lo;

} Nanoseconds;

A second data type, AbsoluteTime, is used to specify absolute times in system-defined
units 64 bits long. As discussed in “Time Base” on page 268, the real duration of
AbsoluteTime units must be calculated:

typedef struct AbsoluteTime

{

unsigned long hi;

unsigned long lo;

} AbsoluteTime;

C H A P T E R 9

Driver Services Library

Timing Services 271

Obtaining the Time 9
You can read the internal representation of time to which all timer services are
referenced. This value starts at 0 during operating-system initialization and increases
throughout the system’s lifetime.

UpTime 9

AbsoluteTime UpTime (void);

DESCRIPTION

UpTime returns the time since OS initialization in AbsoluteTime units.

EXECUTION CONTEXT

UpTime may be called from task level, software interrupt level, or hardware
interrupt level.

Time Conversion Routines 9
The Driver Services Library provides the following conversion routines to convert
between Nanoseconds, Duration, and AbsoluteTime units:

Nanoseconds AbsoluteToNanoseconds (AbsoluteTime absoluteTime);

Nanoseconds DurationToNanoseconds (Duration duration);

Duration AbsoluteToDuration (AbsoluteTime absoluteTime);

AbsoluteTime NanosecondsToAbsolute (Nanoseconds nanoseconds);

AbsoluteTime DurationToAbsolute (Duration duration);

Duration NanosecondsToDuration (Nanoseconds nanoseconds);

AbsoluteTime AddAbsoluteToAbsolute (AbsoluteTime absoluteTime1,

 AbsoluteTime absoluteTime2);

AbsoluteTime SubAbsoluteFromAbsolute

(AbsoluteTime leftAbsoluteTime,

 AbsoluteTime rightAbsoluteTime);

AbsoluteTime AddNanosecondsToAbsolute

(Nanoseconds nanoseconds,

 AbsoluteTime absoluteTime);

C H A P T E R 9

Driver Services Library

272 Timing Services

AbsoluteTime AddDurationToAbsolute

(Duration duration,

 AbsoluteTime absoluteTime);

AbsoluteTime SubNanosecondsFromAbsolute

(Nanoseconds nanoseconds,

 AbsoluteTime absoluteTime);

AbsoluteTime SubDurationFromAbsolute

(Duration duration,

 AbsoluteTime absoluteTime);

Nanoseconds AbsoluteDeltaToNanoseconds

(AbsoluteTime leftAbsoluteTime,

 AbsoluteTime rightAbsoluteTime);

Duration AbsoluteDeltaToDuration

(AbsoluteTime leftAbsoluteTime,

 AbsoluteTime rightAbsoluteTime);

Note
The value of rightAbsoluteTime is usually larger than that
of leftAbsoluteTime. If you subtract a rightAbsoluteTime
value from a leftAbsoluteTime value, the result is 0, not a
negative number. ◆

EXECUTION CONTEXT

The time conversion routines may be called from task level, software interrupt level, or
hardware interrupt level.

Interrupt Timers 9
Interrupt timers allow you to specify that a secondary interrupt handler is to run when
the timer expires. They are asynchronous in nature. You can set an interrupt timer from
any driver execution context. Each interrupt timer is identified by a timer ID:

typedef KernelID TimerID;

IMPORTANT

Interrupt timers consume memory resources from the time they are
invoked until the time they expire or are canceled. They do this
regardless of the execution context (see “Device Driver Execution
Contexts” beginning on page 214). You should make every attempt to
limit the number of interrupt timers because the memory resources
available to them are limited. ▲

C H A P T E R 9

Driver Services Library

Timing Services 273

SetInterruptTimer 9

OSStatus SetInterruptTimer

(const AbsoluteTime *expirationTime,

 SecondaryInterruptHandler2 handler,

 void *p1,

 TimerID *timer);

expirationTime Time when the timer expires.

handler Address of a secondary interrupt handler.

p1 First parameter to be passed to handler.

timer Timer ID.

DESCRIPTION

The parameter expirationTime is the current time plus the amount of time delay
before calling the interrupt handler, expressed in AbsoluteTime units.

Parameter handler is the address of a secondary interrupt handler that is to be run
when the specified time is reached.

Parameter p1 is the value that is passed as the first parameter to the secondary interrupt
handler when the timer expires. The value of the second parameter passed to the
secondary interrupt handler is set to the current program counter at the time the
timer expired.

Parameter timer is updated with the ID of the timer that is created. This ID may be
used in conjunction with CancelTimer, described on page 275.

IMPORTANT

If you use SetInterruptTimer in your code, you must provide a
copy of System Enabler version 1.0.1 to Power Macintosh 9500 users
who have Enabler version 1.0. If Enabler version 1.0.1 or later is already
installed, the installer should not replace it. Only the Power Macintosh
9500 has a problem with SetInterruptTimer, and it occurs on only a
few early units. Other Power Macintosh models are not affected. For
further information, see the folder “New 9500 Enabler” in the current
PCI Device Driver Kit. ▲

EXECUTION CONTEXT

SetInterruptTimer may be called from task level, software interrupt level, or
hardware interrupt level.

RETURN CODE

noErr 0 No error

C H A P T E R 9

Driver Services Library

274 Timing Services

DelayFor 9

OSStatus DelayFor (Duration expirationTime);

expirationTime Amount of time to delay.

DESCRIPTION

DelayFor blocks execution for a given time. Parameter expirationTime is the
amount of time to suspend execution, expressed as a positive number in milliseconds or
as a negative number in microseconds. DelayFor is not available at the hardware
interrupt level.

EXECUTION CONTEXT

DelayFor may be called only from task level, not from software or hardware
interrupt level.

RETURN CODES

DelayForHardware 9

OSStatus DelayForHardware (AbsoluteTime absoluteTime);

absoluteTime Amount of time to delay.

DESCRIPTION

DelayForHardware spins execution for a given time, so the computer does no useful
work. Parameter absoluteTime is the amount of time to delay in processor-dependent
units. You can call NanosecondsToAbsolute to obtain timing for the current PowerPC
processor. DelayForHardware may be called at the hardware interrupt level.

EXECUTION CONTEXT

DelayForHardware may be called from task level, software interrupt level, or
hardware interrupt level.

RETURN CODES

noErr 0 No error
Err –1 Routine failed

noErr 0 No error
Err –1 Routine failed

C H A P T E R 9

Driver Services Library

Atomic Memory Operations 275

Canceling Interrupt Timers 9
Currently running asynchronous timers can be canceled. When you attempt to cancel an
asynchronous timer a race condition begins between your cancelation request and
expiration of the timer. It is therefore possible that the timer will expire and that your
cancelation attempt will fail even though the timer had not yet expired at the instant the
cancelation attempt was made.

With Mac OS version 7.5, if a primary interrupt handler queues a secondary handler that
is to cancel a timer by calling CancelTimer, and if the secondary handler queues
another secondary handler, the operating system guarantees that the timer will either
execute or be canceled before the other secondary handler runs.

CancelTimer 9

OSStatus CancelTimer (TimerID timer, AbsoluteTime *timeRemaining);

timer Timer ID.

timeRemaining Time left on timer when it was canceled.

DESCRIPTION

CancelTimer cancels a timer previously created by SetInterruptTimer, described
on page 273. It returns in timeRemaining the amount of time that was left in the
timer when it was canceled. It returns an error if the timer has either already expired
or been canceled.

EXECUTION CONTEXT

CancelTimer may be called from task level, software interrupt level, or hardware
interrupt level.

RETURN CODES

Atomic Memory Operations 9

This section describes DSL functions that manipulate the contents of memory.

noErr 0 No error
Err –1 Routine failed

C H A P T E R 9

Driver Services Library

276 Atomic Memory Operations

Byte Operations 9
The Driver Services Library provides several 32-, 16-, and 8-bit atomic memory
operations for use by device drivers. These routines take logical address pointers and
ensure that the operations are atomic with respect to all devices (for example, other
processors and DMA engines) that participate in the coherency architecture of the Power
Macintosh system.

IMPORTANT

Memory locations used by these operations must be long word aligned;
if they are stored in a structure, you should use the compiler directive
#pragma options align=power. ▲

Boolean

CompareAndSwap (long oldValue, long newValue, long *Value);

SInt32 IncrementAtomic (SInt32 *value);

SInt32 DecrementAtomic (SInt32 *value);

SInt32 AddAtomic (SInt32 amount, SInt32 *value);

UInt32 BitAndAtomic (UInt32 mask, UInt32 *value);

UInt32 BitOrAtomic (UInt32 mask, UInt32 *value);

UInt32 BitXorAtomic (UInt32 mask, UInt32 *value);

SInt16 IncrementAtomic16 (SInt16 *value);

SInt16 DecrementAtomic16 (SInt16 *value);

SInt16 AddAtomic16 (SInt32 amount, SInt16 *value);

UInt16 BitAndAtomic16 (UInt32 mask, UInt16 *value);

UInt16 BitOrAtomic16 (UInt32 mask, UInt16 *value);

UInt16 BitXorAtomic16 (UInt32 mask, UInt16 *value);

SInt8 IncrementAtomic8 (SInt8 *value);

SInt8 DecrementAtomic8 (SInt8 *value);

SInt8 AddAtomic8 (SInt32 amount, SInt8 *value);

UInt8 BitAndAtomic8 (UInt32 mask, UInt8 *value);

UInt8 BitOrAtomic8 (UInt32 mask, UInt8 *value);

UInt8 BitXorAtomic8 (UInt32 mask, UInt8 *value);

DESCRIPTION

The atomic routines perform various operations on the memory address specified
by value:

■ The CompareAndSwap routine compares the value at the specified address with
oldValue. The value of newValue is written to the specified address only if
oldValue and the value at the specified address are equal. CompareAndSwap

C H A P T E R 9

Driver Services Library

Atomic Memory Operations 277

returns true if newValue is written to the specified address; otherwise, it returns
false. A false return value does not imply that oldValue and the value at the
specified address are not equal; it only implies that CompareAndSwap did not write
newValue to the specified address.

■ IncrementAtomic increments the value by 1 and DecrementAtomic decrements it
by 1. These functions return the value as it was before the change.

■ AddAtomic adds the specified amount to the value at the specified address and
returns the result.

■ BitAndAtomic performs a logical and operation between the bits of the specified
mask and the value at the specified address, returning the result. Similarly,
BitOrAtomic performs a logical OR operation and BitXorAtomic performs a
logical XOR operation.

EXECUTION CONTEXT

The atomic operation routines may be called from task level, software interrupt level, or
hardware interrupt level.

Bit Operations 9

Boolean TestAndSet (UInt32 bit

 UInt8 *startAddress);

Boolean TestAndClear (UInt32 bit

 UInt8 *startAddress);

bit The bit number in the range 0 through 7.

startAddress The address of the byte in which the bit is located.

DESCRIPTION

TestAndSet and TestAndClear set and clear a single bit in a byte at a specified
address. They return true if the bit was already set or cleared and false otherwise.

EXECUTION CONTEXT

TestAndSet and TestAndClear may be called from task level, software interrupt
level, or hardware interrupt level.

C H A P T E R 9

Driver Services Library

278 Queue Operations

Queue Operations 9

The Driver Services Library provides the following I/O parameter block queue
manipulation functions:

OSErr PBQueueCreate (QHdrPtr *qHeader);

OSErr PBQueueInit (QHdrPtr qHeader);

OSErr PBQueueDelete (QHdrPtr qHeader);

void PBEnqueue (QElemPtr qElement, QHdrPtr qHeader);

OSErr PBEnqueueLast (QElemPtr qElement, QHdrPtr qHeader);

OSErr PBDequeue (QElemPtr qElement, QHdrPtr qHeader);

OSErr PBDequeueFirst (QHdrPtr qHeader, QElemPtr *theFirstqElem);

OSErr PBDequeueLast (QHdrPtr qHeader, QElemPtr *theLastqElem);

DESCRIPTION

PBQueueCreate creates a new I/O parameter block queue. PBQueueInit initializes
it and PBQueueDelete deletes it. PBEnqueue places the element pointed to by
qElement next in the queue and PBEnqueueLast places it last. PBDequeue removes
the next element in the queue. PBDequeueFirst removes the first element and
PBDequeueLast removes the last element. For detailed information about the I/O
parameter block queue, see Inside Macintosh: Devices.

EXECUTION CONTEXT

The three queue routines, PBQueueInit, PBQueueCreate, and PBQueueDelete, may
be called only from task level, not from software or hardware interrupt level.

The five queue element routines may be called from task level, software interrupt level,
or hardware interrupt level.

RETURN CODES (QUEUE ROUTINES)

RETURN CODES (ELEMENT ROUTINES)

noErr 0 No error
memFullErr –108 Not enough room in heap

noErr 0 No error
qErr –1 Queue element not found

C H A P T E R 9

Driver Services Library

String Operations 279

String Operations 9

The DSL provides a number of C and Pascal string manipulation functions that are
available to drivers.

EXECUTION CONTEXT

All the string operation routines may be called from task level, software interrupt level,
or hardware interrupt level.

StrCopy 9

StringPtr PStrCopy (StringPtr dst, ConstStr255Param src);

char *CStrCopy (char *dst, const char *src);

DESCRIPTION

PStrCopy copies the Pascal string from src to dst. CStrCopy copies characters up to
and including the null character from src to dst C strings. These routines assume that
the two strings do not overlap.

StrNCopy 9

StringPtr PStrNCopy

 (StringPtr dst, ConstStr255Param src, UInt32 max);

char *CStrNCopy (char *dst, const char *src, UInt32 max);

DESCRIPTION

PStrNCopy copies the Pascal string from src to dst. At most max chars are copied.
CStrNCopy copies up to max characters from src to dst C strings. If src string is
shorter than max, dst string will be padded with null characters. If src string is longer
than max, dst string will not be null terminated.

C H A P T E R 9

Driver Services Library

280 String Operations

StrCat 9

StringPtr PStrCat (StringPtr dst, ConstStr255Param src);

char *CStrCat (char *dst, const char *src);

DESCRIPTION

PStrCat appends characters from src to dst Pascal strings. CStrCat appends
characters from src to dst C strings. The initial character of src overwrites the null
character at the end of dst. A terminating null character is always appended.

StrNCat 9

StringPtr PStrNCat

(StringPtr dst, ConstStr255Param src,UInt32 max);

char *CStrNCat (char *dst, const char *src, UInt32 max);

DESCRIPTION

PStrNCat appends up to max characters from src to dst Pascal strings. CStrNCat
appends up to max characters from src to dst C strings. The initial character of src
overwrites the null character at the end of dst. A terminating null character is always
appended. Thus, the maximum length of dst could be CStrLen(dst)+max+1.

StrCmp 9

short PStrCmp (ConstStr255Param str1, ConstStr255Param str2);

short CStrCmp (const char *str1, const char *str2);

DESCRIPTION

PStrCmp and CStrCmp compare the Pascal and C strings str1 and str2 by comparing
the values of corresponding characters in each string. These functions treat variations of
case, diacritical marks, or other localization factors as different characters.

RETURN CODES

str1 less than str2 –1
str1 equals str2 0
str1 greater than str2 1

C H A P T E R 9

Driver Services Library

String Operations 281

StrNCmp 9

short PStrNCmp

(ConstStr255Param str1, ConstStr255Param str2, UInt32 max);

short CStrNCmp

(const char *str1, const char *str2, UInt32 max);

DESCRIPTION

PStrNCmp and CStrNCmp compare the first max C and Pascal strings str1 and str2 by
comparing the values of corresponding characters in each string. These functions treat
variations of case, diacritical marks, or other localization factors as different characters.

RETURN CODES

StrLen 9

UInt32 PStrLen (ConstStr255Param src);

UInt32 CStrLen (const char *src);

DESCRIPTION

CStrLen returns the length of the C string src in characters. This does not include
the terminating null character. PStrLen returns the length of the Pascal string src
in characters.

PStrToCStr and CStrToPStr 9

void PStrToCStr (char *dst, const Str255 src);

void CStrToPStr (Str255 dst, const char *src);

DESCRIPTION

PStrToCStr and CStrToPStr convert Pascal strings to C strings and vice versa.

str1 less than str2 –1
str1 equals str2 0
str1 greater than str2 1

C H A P T E R 9

Driver Services Library

282 Debugging Support

Debugging Support 9

The following debugging functions are available to driver writers.

void SysDebug (void);

void SysDebugStr (StringPtr str);

DESCRIPTION

SysDebug lets you enter the system debugger. SysDebugStr lets you enter the system
debugger and display the Pascal string pointed to by str.

EXECUTION CONTEXT

The debugging routines may be called from task level, software interrupt level, or
hardware interrupt level.

Service Limitations 9

Table 9-2 lists the DSL routines that can be called at the different interrupt levels
described in “Device Driver Execution Contexts” beginning on page 214. A dot (•) in the
column indicates that the service is available at that level.

The righthand column in Table 9-2 identifies memory allocation services. These services
can be called only from task level, and not from a software interrupt. Memory allocation
and deallocation can occur when a native driver processes the any of following
commands:

Close
Initialize
Finalize
Open
Replace
Superseded

The Name Registry routines RegistryPropertyGet, RegistryPropertyGetSize,
and RegistryPropertySet are available at secondary interrupt level. All other Name
Registry routines are available only at task level.

Applications can freely use the Name Registry and the Driver Loader Library, but with
the current release of Mac OS only drivers should use the Driver Services Library.

IMPORTANT

It is the responsibility of the driver writer to conform to these
limitations; code that violates them will not work with future
releases of Mac OS. ▲

C H A P T E R 9

Driver Services Library

Service Limitations 283

Table 9-2 Services available to drivers

Routine Task level

Software
interrupt
level

Hardware
interrupt
level

Memory
allocation

AbsoluteDeltaToDuration • • •
AbsoluteDeltaToNanoseconds • • •
AbsoluteToDuration • • •
AbsoluteToNanoseconds • • •
AddAbsoluteToAbsolute • • •
AddAtomic • • •
AddAtomic8 • • •
AddAtomic16 • • •
AddDurationToAbsolute • • •
AddNanosecondsToAbsolute • • •
BitAndAtomic • • •
BitAndAtomic8 • • •
BitAndAtomic16 • • •
BitOrAtomic • • •
BitOrAtomic8 • • •
BitOrAtomic16 • • •
BitXorAtomic • • •
BitXorAtomic8 • • •
BitXorAtomic16 • • •
BlockCopy • • •
BlockMove • • •
BlockMoveData • • •
BlockMoveDataUncached • • •
BlockMoveUncached • • •

continued

C H A P T E R 9

Driver Services Library

284 Service Limitations

BlockZero • • •
BlockZeroUncached • • •
CallSecondaryInterruptHandler2 • •
CancelTimer • • •
ChangeInterruptSetOptions •
CheckpointIO • •
CompareAndSwap • • •
CreateInterruptSet •
CreateSoftwareInterrupt • •
CStrCat • • •
CStrCmp • • •
CStrCopy • • •
CStrLen • • •
CStrNCat • • •
CStrNCopy • • •
CStrToPStr • • •
CurrentExecutionLevel • • •
CurrentTaskID •
DecrementAtomic • • •
DecrementAtomic8 • • •
DecrementAtomic16 • • •
DelayFor •
DelayForHardware • • •
DeleteSoftwareInterrupt • •

continued

Table 9-2 Services available to drivers (continued)

Routine Task level

Software
interrupt
level

Hardware
interrupt
level

Memory
allocation

C H A P T E R 9

Driver Services Library

Service Limitations 285

DeviceProbe •
DurationToAbsolute • • •
DurationToNanoseconds • • •
FlushProcessorCache • • •
GetDataCacheLineSize • • •
GetInterruptFunctions •
GetInterruptSetOptions •
GetIOCommandInfo • •
GetLogicalPageSize • • •
GetPageInformation •
GetTimeBaseInfo • • •
IncrementAtomic • • •
IncrementAtomic8 • • •
IncrementAtomic16 • • •
InstallInterruptFunctions •
IOCommandIsComplete • •
MemAllocatePhysicallyContiguous • •
MemDeallocatePhysicallyContiguous • •
NanosecondsToAbsolute • • •
NanosecondsToDuration • • •
PBDequeue • • •
PBDequeueFirst • • •
PBDequeueLast • • •
PBEnqueue • • •

continued

Table 9-2 Services available to drivers (continued)

Routine Task level

Software
interrupt
level

Hardware
interrupt
level

Memory
allocation

C H A P T E R 9

Driver Services Library

286 Service Limitations

PBEnqueueLast • • •
PBQueueCreate •
PBQueueDelete •
PBQueueInit •
PoolAllocateResident • •
PoolDeallocate • •
PrepareMemoryForIO* • •
PStrCat • • •
PStrCmp • • •
PStrCmp • • •
PStrCopy • • •
PStrLen • • •
PStrNCat • • •
PStrNCmp • • •
PStrNCopy • • •
PStrToCStr • • •
QueueSecondaryInterruptHandler • • •

RegistryPropertyGet •

RegistryPropertyGetSize •

RegistryPropertySet† •
SendSoftwareInterrupt • •
SetInterruptTimer • • •
SetProcessorCacheMode •
SubAbsoluteFromAbsolute • • •

continued

Table 9-2 Services available to drivers (continued)

Routine Task level

Software
interrupt
level

Hardware
interrupt
level

Memory
allocation

C H A P T E R 9

Driver Services Library

Service Limitations 287

* May be called from a native driver’s DoDriverIO routine and from any subroutine called from DoDriverIO
† The size of the property must not change.

SubDurationFromAbsolute • • •
SubNanosecondsFromAbsolute • • •
SynchronizeIO • • •
SysDebug • • •
SysDebugStr • • •
TestAndClear • • •
TestAndSet • • •
UpTime • • •

Table 9-2 Services available to drivers (continued)

Routine Task level

Software
interrupt
level

Hardware
interrupt
level

Memory
allocation

C H A P T E R 1 0

Expansion Bus Manager 10Figure 10-0
Listing 10-0
Table 10-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1 0

Expansion Bus Manager

290

Expansion ROM Contents

This chapter describes a number of services for PCI cards, collectively called the

Expansion Bus Manager,

 that are included in the firmware and system software in
the second generation of Power Macintosh computers. It is divided into the following
major sections:

■

“Expansion ROM Contents” briefly summarizes the conformance of expansion ROMs
on Macintosh-compatible PCI cards with the PCI specification.

■

“Nonvolatile RAM,” beginning on page 290, illustrates how nonvolatile RAM is
allocated in a typical Power Macintosh computer.

■

“PCI Nonmemory Space Cycle Generation,” beginning on page 299, lists routines that
you can use to access memory in the various PCI address spaces.

■

“Card Power Controls,” beginning on page 311, describes calls that Mac OS uses to
control PCI card power levels.

Expansion ROM Contents 10

The expansion ROM on a PCI card for Macintosh computers must conform to the format
and information content defined in Chapter 6 of the PCI specification. The following
notes apply to the required device identification fields when used with Macintosh
computers:

■

The vendor ID must be the identification assigned by the PCI Special Interest Group.

■

The device and revision IDs must be assigned by the vendor and need not be
registered with Apple.

■

The header type and class codes must conform to those specified in the

PCI Local Bus
Specification,

 Revision 2.0.

Nonvolatile RAM 10

Power Macintosh computers that support the PCI bus contain at least 4 KB of

nonvolatile RAM (NVRAM).

 The NVRAM chips can be flash ROM, or RAM
powered by the computer’s local battery, so that they retain data between system
startups. This section describes typical NVRAM configurations and discusses how
you can store device properties in NVRAM.

C H A P T E R 1 0

Expansion Bus Manager

Nonvolatile RAM

291

Typical NVRAM Structure 10

A typical example of allocating 8 KB of NVRAM memory space in a Power Macintosh
computer is shown in Table 10-1.

The allocations shown in Table 10-1 provide permanent configuration data storage, both
for the Macintosh system and for PCI expansion cards. The sections that follow describe
how this storage is typically used.

Operating-System Partition 10

The first 4 KB of NVRAM space in a typical configuration may be reserved for use by
operating systems other than Mac OS. The Macintosh firmware and system software
does nothing with this space except to initialize the first 2 bytes to show that the
available NVRAM size is 4 KB.

Note

Operating systems that use this space would need to provide their own
protocols for allocating fields and for defining, updating, and checking
data. In particular, they would need to follow rules for determining
whether fields in the NVRAM operating-system partition use big-endian
or little-endian addressing.

◆

Apple-Reserved Partitions 10

Apple typically reserves 2048 bytes of NVRAM space for use by Macintosh firmware
and system software, as shown in Table 10-1. Part of this allocation constitutes the
256 bytes of parameter RAM (PRAM) that all Macintosh computers have traditionally
provided for use by Mac OS.

Card firmware and application software can access some of the Macintosh PRAM
space by using the Macintosh Toolbox routines described in

Inside Macintosh:
Operating System Utilities.

Table 10-1

Typical NVRAM space allocations

Length
(bytes) Description

4096 Operating-system partition

768 Reserved by Apple for diagnostics

256 Reserved by Apple for parameter RAM

1024 Reserved by Apple for Name Registry properties

2048 Open Firmware partition

C H A P T E R 1 0

Expansion Bus Manager

292

Nonvolatile RAM

Open Firmware Partition 10

The remaining 2048 bytes of NVRAM space might typically be used by the Open
Firmware startup process to support PCI expansion cards.

The

little-endian?

 variable, discussed in “Addressing Mode Determination” on
page 20, is stored in the Open Firmware NVRAM space.

Using NVRAM to Store Name Registry Properties 10

NVRAM can be used to store device properties permanently. However, such storage is
necessary only for devices used during Mac OS startup, because other devices can store
an unlimited amount of permanent information on disk in the Mac OS system
Preferences folder.

If the

kRegPropertyValueIsSavedToNVRAM

 modifier of a property entry is set, the
contents of that property entry will be preserved in NVRAM. During Mac OS startup,
the Macintosh firmware will retrieve the entry value from NVRAM and place it in the
device tree. This modifier is described in “Data Structures and Constants” on page 196.

Properties stored in NVRAM are available to boot devices before the devices have been
installed. For example, properties stored in NVRAM can be used to configure a primary
display or to define the net address of a network boot device. In both cases, the device
driver can access user-changeable information before disk storage services are available.

To provide facilities for multiple boot devices, each node in the Name Registry can store
a single, small property in NVRAM; the Name Registry uses the following format to
store them:

■

device location (6 bytes), an absolute location within the PCI system hardware
universe. It corresponds to the slot ID in NuBus systems. The format of this value is
not public, and its value is not visible to drivers.

■

property name (4 bytes), a 1-byte to 4-byte string that is a creator ID assigned by
Apple Developer Technical Support. Creator IDs are assigned on a first-come,
first-served basis and form unique labels for products such as applications and driver
files. You can use the C/F Registration Requests HyperCard stack to register a
creator ID. The stack sends an AppleLink message to Apple Developer Technical
Support, which registers your request and replies with a confirmation message. You
do not need to be an Apple partner or associate to make use of this service.

■

property value (8 bytes maximum), a value that is stored by

RegistryPropertySet

or

RegistryPropertyCreate

 (provided

kRegPropertyValueIsSavedToNVRAM

is set) and is retrieved by

RegistryPropertyGet

.

The Macintosh device location algorithm encodes only five levels of PCI-to-PCI bridges.
Device located more than five levels from the host bridge cannot store properties in
NVRAM.

C H A P T E R 1 0

Expansion Bus Manager

Nonvolatile RAM

293

Note

Using a creator ID (instead of a generic mnemonic) as the name of an
NVRAM property value offers protection against acquiring the wrong
value when a user configures a system and then moves a hardware
device to a different slot or bus. If all drivers define their NVRAM
property names with unique creator IDs, a driver can determine
whether an NVRAM value is owned by its device.

◆

Use the Name Registry routines described in Chapter 8 to access nodes saved to
NVRAM. The Macintosh firmware will return an error message if a driver or application
performs one of the following illegal actions:

■

Tries to store two properties in NVRAM for the same node. The application should
enumerate its properties, fetch the property modifier, and remove incorrect
(unknown) properties or clear their NVRAM bits.

■

Tries to store more than 8 bytes in an NVRAM property.

■

Specifies a property name longer than 4 bytes (31 characters).

Because only a single property may be stored in NVRAM for each device, drivers will
need to protect themselves against accessing an old NVRAM property that may already
be in place. The recommended algorithm is as follows:

1. Iterate to find all properties for the device.

2. If a property has the NVRAM modifier bit set, then check the property name.

3. If the property name is correct, use the property value.

4. If the property name is incorrect, delete the property and use default settings.

5. Exit and use the found property value. Use default settings if no property was set or
an incorrectly named property was deleted.

Listing 10-1 shows four sample routines that are useful when manipulating NVRAM:

■

RetrieveDriverNVRAMParameter

 retrieves

the

single

property

stored

in
Macintosh NVRAM and checks it.

■

GetDriverNVRAMProperty

 looks at a driver property in NVRAM. This routine can
be called outside an intialization context.

■

UpdateDriverNVRAMProperty

 updates a driver property in NVRAM.

■

CreateDriverNVRAMProperty

 creates a driver property that is stored in NVRAM.

C H A P T E R 1 0

Expansion Bus Manager

294

Nonvolatile RAM

Listing 10-1

Sample NVRAM manipulation code

#define

CopyOSTypeToCString(osTypePtr,

resultString)

do

{

\

BlockCopy(osTypePtr,

resultString,

sizeof

(OSType));

\

resultString[sizeof

(OSType)]

=

0;

\

}

while

(0)

/*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

 *
 * RetrieveDriverNVRAMParameter retrieves the single property stored in nonvolatile
 * memory (NVRAM). By convention, this property is named using our registered
 * creator code. Because the PCI system stores properties indexed by physical slot
 * number, we may retrieve an incorrect property if the user moves cards around.
 * To protect against this, we check the property name.
 *
 * This function must be called from an initialization context.
 *
 * Return status:
 * noErr Success: the NVRAM property was retrieved.
 * nrNotFoundErr Failure: there was no NVRAM property.
 * paramErr Failure: there was an NVRAM property, but not ours.
 * other Failure: unexpected Name Registry error.
 */
OSErr

RetrieveDriverNVRAMProperty(

 RegEntryIDPtr regEntryIDPtr, /* driver's Name Registry ID */
 OSType driverCreatorID, /* registered creator code */
 UInt8 driverNVRAMRecord[8]
)
{

 OSErr status;
 RegPropertyIter cookie;
 RegPropertyNameBuf propertyName;
 RegPropertyValueSize regPropertyValueSize;
 RegPropertyModifiers propertyModifiers;
 Boolean done;
 char creatorNameString[sizeof (OSType) + 1];

 /*
 * search our properties for one with the NVRAM modifier set
 */
 status = RegistryPropertyIterateCreate(regEntryIDPtr, &cookie);
 if (status == noErr) {
 while (status == noErr) {
 /*
 * Get the next property and check its modifier. Break if this is the
 * NVRAM property (there can be only one for our entry ID).
 */

C H A P T E R 1 0

Expansion Bus Manager

Nonvolatile RAM 295

 status = RegistryPropertyIterate(&cookie, propertyName, &done);
 if (status == noErr && done == FALSE) {
 status = RegistryPropertyGetMod(
 regEntryIDPtr,
 propertyName,
 &propertyModifiers
);
 if (status == noErr
 && (propertyModifiers & kRegPropertyValueIsSavedToNVRAM) != 0)
 break;
 }
 /*
 * There was no NVRAM property. Return nrNotFoundErr by convention.
 */
 if (status == noErr && done)
 status = nrNotFoundErr;
 }
 RegistryPropertyIterateDispose(&cookie);
 /*
 * If status == noErr, we have found an NVRAM property. Now,
 * 1. If it is our creator code, we have found the property, so
 * we retrieve the values and store them in the driver's globals.
 * 2. If it was found with a different creator code, the user has
 * moved our card to a slot that previously had a different card
 * installed, so delete this property and return (noErr) to use
 * the factory defaults.
 * 3. If it was not found, the property was not set, so we exit
 * (noErr); the caller will have preset the values to
 * "factory defaults."
 */
 if (status == noErr) {
 /*
 * Cases 1 or 2, check the property.
 */
 CopyOSTypeToCString(&driverCreatorID, creatorNameString);
 if (CStrCmp(creatorNameString, propertyName) == 0) { /* Match */
 status = RegistryPropertyGetSize(
 regEntryIDPtr,
 propertyName,
 ®PropertyValueSize
);
 if (status == noErr
 && regPropertyValueSize == sizeof driverNVRAMRecord) {
 status = RegistryPropertyGet(
 regEntryIDPtr,
 propertyName,
 driverNVRAMRecord,

C H A P T E R 1 0

Expansion Bus Manager

296 Nonvolatile RAM

 ®PropertyValueSize
);
 }
 }
 else {
 /*
 * This is an NVRAM property, but it isn't ours. Delete the
 * property and return an error status so the caller uses
 * "factory settings"
 */
 status = RegistryPropertyDelete(
 regEntryIDPtr,
 propertyName
);
 /*
 * Since we're returning an error anyway, we ignore the
 * status code.
 */
 status = paramErr;
 }
 }
 }
 return (status);
}

/*
 * Get the NVRAM property. Return an error if it does not exist, is the wrong size,
 * or is not marked "store in NVRAM." This may be called from a
 * noninitialization context.
 * Errors:
 * nrNotFoundErr Not found in the registry
 * nrDataTruncatedErr Wrong size
 * paramErr Not marked "store in NVRAM"
 */
OSErr

GetDriverNVRAMProperty(

 RegEntryIDPtr regEntryIDPtr, /* driver's Name Registry ID */
 OSType driverCreatorID, /* registered creator code */
 UInt8 driverNVRAMRecord[8] /* mandated size */
)
{

 OSErr status;
 char creatorNameString[sizeof (OSType) + 1];
 RegPropertyValueSize size;
 RegPropertyModifiers modifiers;

C H A P T E R 1 0

Expansion Bus Manager

Nonvolatile RAM 297

 CopyOSTypeToCString(&driverCreatorID, creatorNameString);
 status = RegistryPropertyGetSize(
 regEntryIDPtr,
 creatorNameString,
 &size
);
 if (status == noErr && size != sizeof driverNVRAMRecord)
 status = nrDataTruncatedErr;
 if (status == noErr) {
 status = RegistryPropertyGetMod(
 regEntryIDPtr,
 creatorNameString,
 &modifiers
);
 }
 if (status == noErr
 && (modifiers & kRegPropertyValueIsSavedToNVRAM) == 0)
 status = paramErr;
 if (status == noErr) {
 status = RegistryPropertyGet(
 regEntryIDPtr,
 creatorNameString,
 driverNVRAMRecord,
 &size
);
 }
 return (status);
}

/*
 * Update the NVRAM property. Return an error if it was not created. This may be
 * called from PBStatus (or other noninitialization context).
 */
OSErr

UpdateDriverNVRAMProperty(

 RegEntryIDPtr regEntryIDPtr, /* driver's Name Registry ID */
 OSType driverCreatorID, /* registered creator code */
 UInt8 driverNVRAMRecord[8] /* mandated size */
)
{

 OSErr status;
 char creatorNameString[sizeof (OSType) + 1];

 CopyOSTypeToCString(&driverCreatorID, creatorNameString);
 /*
 * Replace the current value of the property with its new value. In this
 * example, we are replacing the entire value and, potentially, changing
 * its size. In production software, you may need to read an existing

C H A P T E R 1 0

Expansion Bus Manager

298 Nonvolatile RAM

 * property and modify its contents. This shouldn't be too hard to do.
 */
 status = RegistryPropertySet(/* update existing value */
 regEntryIDPtr,
 creatorNameString,
 driverNVRAMRecord,
 sizeof driverNVRAMRecord
);
 return (status);
}

/*
 * Create the NVRAM property. This must be called from the driver
 * initialization function.
 */
OSErr

CreateDriverNVRAMProperty(

 RegEntryIDPtr regEntryIDPtr, /* driver's Name Registry ID */
 OSType driverCreatorID, /* registered creator code */
 UInt8 driverNVRAMRecord[8] /* mandated size */
)
{

 OSErr status;
 char creatorNameString[sizeof (OSType) + 1];
 RegPropertyValueSize size;
 RegPropertyModifiers modifiers;

 CopyOSTypeToCString(&driverCreatorID, creatorNameString);
 /*
 * Does the property currently exist (with the correct size)?
 */
 status = RegistryPropertyGetSize(/
* returns noErr if the property exists */
 regEntryIDPtr,
 creatorNameString,
 &size
);
 if (status == noErr) {
 /*
 * Replace the current value of the property with its new value. In this
 * example, we are replacing the entire value and, potentially, changing
 * its size. In production software, you may need to read an existing
 * property and modify its contents. This shouldn't be too hard to do.
 */
 status = RegistryPropertySet(/* update existing value */
 regEntryIDPtr,
 creatorNameString,

C H A P T E R 1 0

Expansion Bus Manager

PCI Nonmemory Space Cycle Generation 299

 driverNVRAMRecord,
 sizeof driverNVRAMRecord
);
 }
 else {
 status = RegistryPropertyCreate(/* make a new property */
 regEntryIDPtr,
 creatorNameString,
 driverNVRAMRecord,
 sizeof driverNVRAMRecord
);
 }
 /*
 * If status equals noErr, the property has been stored; set its "save to
 * nonvolatile RAM" bit.
 */
 if (status == noErr) {
 status = RegistryPropertyGetMod(
 regEntryIDPtr,
 creatorNameString,
 &modifiers
);
 }
 if (status == noErr) {
 /*
 * Set the NVRAM bit and update the modifiers.
 */
 modifiers |= kRegPropertyValueIsSavedToNVRAM;
 status = RegistryPropertySetMod(
 regEntryIDPtr,
 creatorNameString,
 modifiers
);
 }
 return (status);
}

PCI Nonmemory Space Cycle Generation 10

“PCI Host Bridge Operation,” beginning on page 8, describes how the Macintosh
implementation of PCI supports ordinary memory access cycles. Because some PCI cards
may need to use other types of PCI cycles—I/O, configuration, interrupt acknowledge,
or special cycles—the Expansion Manager includes routines that create these cycle types.
These routines are described in the next sections.

C H A P T E R 1 0

Expansion Bus Manager

300 PCI Nonmemory Space Cycle Generation

All of the nonmemory access routines use the type RegEntryIDPtr to identify device
nodes in the device tree, as described in Chapter 8, “Macintosh Name Registry.” Drivers
should use the RegEntryIDPtr value passed to them when they were initialized. Using
the RegEntryIDPtr type lets the system software determine the target device’s location
in the device tree, select the appropriate PCI bus to access the device, and generate the
correct cycle on that bus.

I/O Space Cycle Generation 10
The PCI property assigned-addresses provides vector entries that represent the
physical addresses of devices on expansion cards. Apple has added another property—
AAPL,address—that provides a vector of 32-bit logical address values, where the
nth value corresponds to the nth assigned-addresses vector entry. When accessing
device functions located in memory space, you should use the corresponding
AAPL,address property as the device’s base. The same technique is recommended
when you are accessing high-performance device functions in IO space.

Using the AAPL,address property, a driver can find the logical address of an I/O
resource. Accessing the logical address generates an IO cycle on the PCI bus. Using the
logical base address, a driver can generate a PCI I/O cycle in the same way it accesses a
PCI device in memory space. This provides the fastest possible interface to I/O space.
For sample code that illustrates this technique, see Listing 7-15 on page 146.

IMPORTANT

Between PCI I/O accesses, software must call the SynchronizeIO
function (described on page 234) to ensure that the accesses affect the
PCI device in the correct order. ▲

Alternatively, you can use the Expansion Bus Manager routines described in this section.
They provide byte swapping, enforced in-order execution, and a node-based interface.
These extra services add overhead; therefore, for transfer-intensive accesses, such as
accessing FIFOs located in I/O space, it is better to use the logical address from the
AAPL,address property.

To access a register in memory or I/O space using an AAPL,address property, do
the following:

1. At initialization, resolve the assigned-addresses and AAPL,address properties.

2. Search the assigned-addresses vector for an address range in I/O space.

3. Store the corresponding AAPL,address vector entry in a variable such as

volatile UInt16 *gIORegisterBase;

4. To read the (16-bit) register at offset 0x04, you can then do

value = gIORegisterBase[0x04 / sizeof (UInt16)];

As with memory accesses, you will need to byte swap the returned value to obtain a
Macintosh big-endian result. Byte swapping routines are described on page 311.

C H A P T E R 1 0

Expansion Bus Manager

PCI Nonmemory Space Cycle Generation 301

The rest of this section describes six routines that let you read and write data to specific
I/O addresses, using the physical base address found in the assigned-addresses
property (not AAPL,address).

ExpMgrIOReadByte 10

You can use the ExpMgrIOReadByte function to read the byte value at a specific
address in PCI I/O space.

OSErr ExpMgrIOReadByte (RegEntryIDPtr node,

LogicalAddress ioAddr,

UInt8 *valuePtr);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMgrIOReadByte returns a
result code of deviceTreeInvalidNodeErr.

ioAddr The sum of the assigned-addresses base address of the device plus
the offset to the desired I/O address.

valuePtr The returned 8-bit value.

DESCRIPTION

The ExpMgrIOReadByte function reads the byte at the I/O address for device node
node determined by address ioAddr.

RESULT CODES

ExpMgrIOReadWord 10

You can use the ExpMgrIOReadWord function to read the word value at a specific
address in PCI I/O space.

OSErr ExpMgrIOReadWord (RegEntryIDPtr node,

LogicalAddress ioAddr,

UInt16 *valuePtr);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMgrIOReadWord returns a
result code of deviceTreeInvalidNodeErr.

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

C H A P T E R 1 0

Expansion Bus Manager

302 PCI Nonmemory Space Cycle Generation

ioAddr The sum of the assigned-addresses base address of the device plus
the offset to the desired I/O address.

valuePtr The returned 16-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.

DESCRIPTION

The ExpMgrIOReadWord function reads the word at the I/O address for device node
node determined by address ioAddr.

RESULT CODES

ExpMgrIOReadLong 10

You can use the ExpMgrIOReadLong function to read the long word value at a specific
address in PCI I/O space.

OSErr ExpMgrIOReadLong (RegEntryIDPtr node,

 LogicalAddress ioAddr,

 UInt32 *valuePtr);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMgrIOReadLong returns a
result code of deviceTreeInvalidNodeErr.

ioAddr The sum of the assigned-addresses base address of the device plus
the offset to the desired I/O address.

valuePtr The returned 32-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.

DESCRIPTION

The ExpMgrIOReadLong function reads the long word starting at the I/O address for
device node node determined by address ioAddr, returning its byte-swapped value in
valuePtr.

RESULT CODES

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

C H A P T E R 1 0

Expansion Bus Manager

PCI Nonmemory Space Cycle Generation 303

ExpMgrIOWriteByte 10

You can use the ExpMgrIOWriteByte function to write a byte to an address in PCI
I/O space.

OSErr ExpMgrIOWriteByte (RegEntryIDPtr node,

 LogicalAddress ioAddr,

 UInt8 value);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMgrIOWriteByte returns a
result code of deviceTreeInvalidNodeErr.

ioAddr The sum of the assigned-addresses base address of the device plus
the offset to the desired I/O address.

value The 8-bit value.

DESCRIPTION

The ExpMgrIOWriteByte function writes the value of value to the I/O address for
device node node determined by address ioAddr.

RESULT CODES

ExpMgrIOWriteWord 10

You can use the ExpMgrIOWriteWord function to write a word to an address in PCI
I/O space.

OSErr ExpMgrIOWriteWord (RegEntryIDPtr node,

 LogicalAddress ioAddr,

 UInt16 value);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMgrIOWriteWord returns a
result code of deviceTreeInvalidNodeErr.

ioAddr The sum of the assigned-addresses base address of the device plus
the offset to the desired I/O address.

value The 16-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

C H A P T E R 1 0

Expansion Bus Manager

304 PCI Nonmemory Space Cycle Generation

DESCRIPTION

The ExpMgrIOWriteWord function writes the byte-swapped value of value to the I/O
address for device node node determined by address ioAddr.

RESULT CODES

ExpMgrIOWriteLong 10

You can use the ExpMgrIOWriteLong function to write a long word to an address in
PCI I/O space.

OSErr ExpMgrIOWriteLong (RegEntryIDPtr node,

 LogicalAddress ioAddr,

 UInt32 value);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMgrIOWriteLong returns a
result code of deviceTreeInvalidNodeErr.

ioAddr The sum of the assigned-addresses base address of the device plus
the offset to the desired I/O address.

value The 32-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.

DESCRIPTION

The ExpMgrIOWriteLong function writes the byte-swapped value of value to the I/O
address for device node node starting at address ioAddr.

RESULT CODES

Configuration Space Cycle Generation 10
The Expansion Bus Manager contains six routines that let you read and write data to
specific addresses in the PCI configuration space for a specified device tree node.

All of the configuration space access routines use the type RegEntryIDPtr to identify
device nodes in the device tree, as described in Chapter 8, “Macintosh Name Registry.”
Using RegEntryIDPtr lets the system software and the bridge generate the correct PCI
configuration cycle for the target device.

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

C H A P T E R 1 0

Expansion Bus Manager

PCI Nonmemory Space Cycle Generation 305

ExpMgrConfigReadByte 10

You can use the ExpMgrConfigReadByte function to read the byte value at a specific
address in PCI configuration space.

OSErr ExpMgrConfigReadByte (RegEntryIDPtr node,

 LogicalAddress configAddr,

 UInt8 *valuePtr);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMgrConfigReadByte returns a
result code of deviceTreeInvalidNodeErr.

configAddr The configuration address (a value between 0 and 255).

valuePtr The returned 8-bit value.

DESCRIPTION

The ExpMgrConfigReadByte function reads the byte at the address in PCI
configuration space for device node node determined by offset configAddr, returning
its value in valuePtr.

RESULT CODES

ExpMgrConfigReadWord 10

You can use the ExpMgrConfigReadWord function to read the word value at a specific
address in PCI configuration space.

OSErr ExpMgrConfigReadWord (RegEntryIDPtr node,

 LogicalAddress configAddr,

 UInt16 *valuePtr);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMgrConfigReadWord returns a
result code of deviceTreeInvalidNodeErr.

configAddr The configuration address (a value between 0 and 255).

valuePtr The returned 16-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

C H A P T E R 1 0

Expansion Bus Manager

306 PCI Nonmemory Space Cycle Generation

DESCRIPTION

The ExpMgrConfigReadWord function reads the word at the address in PCI
configuration space for device node node determined by offset configAddr, returning
its byte-swapped value in valuePtr.

RESULT CODES

ExpMgrConfigReadLong 10

You can use the ExpMgrConfigReadLong function to read the long word value at a
specific address in PCI configuration space.

OSErr ExpMgrConfigReadLong (RegEntryIDPtr node,

 LogicalAddress configAddr,

 UInt32 *valuePtr);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMgrConfigReadLong returns a
result code of deviceTreeInvalidNodeErr.

configAddr The configuration address (a value between 0 and 255).

valuePtr The returned 32-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.

DESCRIPTION

The ExpMgrConfigReadLong function reads the long word starting at the address in
PCI configuration space for device node node determined by offset configAddr,
returning its byte-swapped value in valuePtr.

RESULT CODES

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

C H A P T E R 1 0

Expansion Bus Manager

PCI Nonmemory Space Cycle Generation 307

ExpMgrConfigWriteByte 10

You can use the ExpMgrConfigWriteByte function to write a byte to an address in
PCI configuration space.

OSErr ExpMgrConfigWriteByte (RegEntryIDPtr node,

 LogicalAddress configAddr,

 UInt8 value);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMgrConfigWriteByte returns
a result code of deviceTreeInvalidNodeErr.

configAddr The configuration address (a value between 0 and 255).

value The 8-bit value.

DESCRIPTION

The ExpMgrConfigWriteByte function writes the value of value to the address in
PCI configuration space for device node node determined by offset configAddr.

RESULT CODES

ExpMgrConfigWriteWord 10

You can use the ExpMgrConfigWriteWord function to write a word to an address in
PCI configuration space.

OSErr ExpMgrConfigWriteWord (RegEntryIDPtr node,

 LogicalAddress configAddr,

 UInt16 value);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMgrConfigWriteWord returns
a result code of deviceTreeInvalidNodeErr.

configAddr The configuration address (a value between 0 and 255).

value The 16-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

C H A P T E R 1 0

Expansion Bus Manager

308 PCI Nonmemory Space Cycle Generation

DESCRIPTION

The ExpMgrConfigWriteWord function writes the byte-swapped value of value to
the address in PCI configuration space for device node node determined by offset
configAddr.

RESULT CODES

ExpMgrConfigWriteLong 10

You can use the ExpMgrConfigWriteLong function to write a long word to an address
in PCI configuration space.

OSErr ExpMgrConfigWriteLong (RegEntryIDPtr node,

 LogicalAddress configAddr,

 UInt32 value);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMgrConfigWriteLong returns
a result code of deviceTreeInvalidNodeErr.

configAddr The configuration address (a value between 0 and 255).

value The 32-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.

DESCRIPTION

The ExpMgrConfigWriteLong function writes the byte-swapped value of value
to the address in PCI configuration space for device node node starting at offset
configAddr.

RESULT CODES

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

C H A P T E R 1 0

Expansion Bus Manager

PCI Nonmemory Space Cycle Generation 309

Interrupt Acknowledge Cycle Generation 10
The routines described in this section generate interrupt acknowledge cycles on the PCI
bus. All interrupt acknowledge routines use the type RegEntryIDPtr to identify device
nodes in the device tree, as described in Chapter 8, “Macintosh Name Registry.” Using
RegEntryIDPtr lets the system software and the PCI bridge generate the correct PCI
interrupt acknowledge cycle for the target device.

Note
Mac OS does not use PCI interrupt acknowledge cycles. The
functionality is provided so that if a PCI device needs an interrupt
acknowledge cycle the driver has a way to create the required
cycle on the PCI bus. ◆

Interrupt acknowledge cycles for PCI are always read actions. The target node chosen for
the functions described in this section should be the single node in the system capable of
responding to interrupt acknowledge cycles.

ExpMgrInterruptAcknowledgeReadByte 10

You can use the ExpMgrInterruptAcknowledgeReadByte function to read the byte
value resulting from a PCI interrupt acknowledge cycle.

OSErr

ExpMgrInterruptAcknowledgeReadByte (RegEntryIDPtr entry,

 UInt8 *valuePtr);

entry Pointer to a Name Registry entry ID.

valuePtr Pointer to a buffer to hold the value read.

ExpMgrInterruptAcknowledgeReadWord 10

You can use the ExpMgrInterruptAcknowledgeReadWord function to read the word
value resulting from a PCI interrupt acknowledge cycle.

OSErr

ExpMgrInterruptAcknowledgeReadWord (RegEntryIDPtr entry,

 UInt16 *valuePtr);

entry Pointer to a Name Registry entry ID.

valuePtr Pointer to a buffer to hold the value read.

C H A P T E R 1 0

Expansion Bus Manager

310 PCI Nonmemory Space Cycle Generation

ExpMgrInterruptAcknowledgeReadLong 10

You can use the ExpMgrInterruptAcknowledgeReadLong function to read the long
word value resulting from a PCI interrupt acknowledge cycle.

OSErr

ExpMgrInterruptAcknowledgeReadLong (RegEntryIDPtr entry,

 UInt32 *valuePtr);

entry Pointer to a Name Registry entry ID.

valuePtr Pointer to a buffer to hold the value read.

Special Cycle Generation 10
The routines described in this section generate special cycles on the PCI bus.

Some special cycle routines use the type RegEntryIDPtr to identify device nodes in
the device tree, as described in Chapter 8, “Macintosh Name Registry.” Using
RegEntryIDPtr lets the system software and the bridge generate the correct PCI
special cycle for the target device.

Note
Special cycles on the PCI bus are broadcast-type cycles. They are always
long word write actions. If a node interface is provided, the node chosen
for these functions should be behind the bridge that defines the PCI bus
in the system on which the special cycle occurs. ◆

ExpMgrSpecialCycleBroadcastLong 10

You can use the ExpMgrSpecialCycleBroadcastLong function to broadcast the long
word value in value to all PCI buses in the system.

OSErr ExpMgrSpecialCycleBroadcastLong (UInt32 value);

value The value to be broadcast.

C H A P T E R 1 0

Expansion Bus Manager

Card Power Controls 311

ExpMgrSpecialCycleWriteLong 10

You can use the ExpMgrSpecialCycleWriteLong function to write the long word
value in value to the PCI bus that contains the device node identified by the name entry
pointed to by entry.

OSErr ExpMgrSpecialCycleWriteLong (RegEntryIDPtr entry,

 UInt32 value);

entry Pointer to a Name Registry entry ID.

value The value to be written.

Byte Swapping Routines 10
The Macintosh system firmware provides two routines that help you swap bytes
between big-endian and little-endian data formats:

UInt16 EndianSwap16Bit (UInt16 data16);

UInt32 EndianSwap32Bit (UInt32 data32);

data16 2-byte input.

data32 4-byte input.

EndianSwap16Bit and EndianSwap32Bit return byte swapped versions of their
input values, thereby converting big-endian data to little-endian or little-endian data to
big-endian.

Card Power Controls 10

If a PCI expansion card normally consumes more than 3 A at 5 V or 2 A at 3.3 V, it should
be capable of entering a low-power mode. It is generally useful for all PCI cards to be
able to enter a low-power mode so they will conform to energy-saving system standards.
Family experts are usually responsible for managing the power consumption character-
istics of associated native drivers and may issue power commands or request power
information at any time.

A card’s driver may elect to ignore power switching commands issued by a family
expert by returning the appropriate response. It may also return an appropriate
indication to the family expert if a switch from high power to low power might interrupt
a current or pending operation.

C H A P T E R 1 0

Expansion Bus Manager

312 Card Power Controls

Guidelines 10
Observe the following power management guidelines for specific classes of drivers:

■ As discussed in “Power Services” beginning on page 372, networking drivers should
conform to the Open Transport family expert’s power management guidelines. The
expert handles all interactions with the Power Manager for the driver.

■ As discussed in “Graphics Driver Routines” beginning on page 316, graphics drivers
should support the GetSync and SetSync status and control calls to implement the
VESA DPMS standard for power management. The Display Manager will handle all
interaction with the Power Manager on behalf of the driver.

■ SCSI drivers and other classes of drivers for which the family expert interface is not
fully defined, or for which a family expert does not currently exist, may need to
interact with the Power Manager directly to support power management on
PCI-based Power Macintosh computers. However, the current Power Manager
interface is not guaranteed to be compatible with future Mac OS releases. Specific
issues in this area are discussed in “SCSI Device Power Management” beginning on
page 387.

Sample Code 10
Listing 10-2 shows sample code that retrieves power consumption information from a
PCI device.

Listing 10-2 Determining power consumption

/*

 * IEEE 1275 defines the "power-consumption" property.
 */
#define kDevicePowerProperty "power-consumption"
/*

 * Power values are encoded in a vector of "maximum in microwatts." Unspecified
 * valuesshall be zero if other values are provided. Power consumption is 0 for
 * missing values. If the property is missing, the default value will be used.
 */
enum {
 kUnspecifiedStandby,
 kUnspecifiedFullPower,
 kFiveVoltStandby,
 kFiveVoltFullPower,
 kThreeVoltStandby,
 kThreeVoltFullPower,
 kIOPowerStandby,
 kIOPowerFullPower,
 kReservedStandby,
 kReservedFullPower
};

C H A P T E R 1 0

Expansion Bus Manager

Card Power Controls 313

/*

 * The function uses this structure to equate registry entry values with
 * DriverGestalt selectors.
 */
typedef struct PowerInfo {
 OSType driverGestaltSelector;
 short correctIndex;
 short fallbackIndex;
} PowerInfo;
static const PowerInfo gPowerInfo[] = {
 { kDriverGestalt5MaxHighPower, kFiveVoltFullPower, kUnspecifiedFullPower },
 { kDriverGestalt5MaxLowPower, kFiveVoltStandby, kUnspecifiedStandby },
 { kDriverGestalt3MaxHighPower, kThreeVoltFullPower, kUnspecifiedFullPower },
 { kDriverGestalt3MaxLowPower, kThreeVoltStandby, kUnspecifiedStandby },
 { 0, 0, 0 }
};

/*
 * Retrieve the driver power consumption vector and search it for the desired power
 * consumption value. Return the desired value, or a default value if the desired
 * value is unavailable. This function does not allocate memory or return any errors.
 */
UInt32

GetDevicePowerConsumption(

 RegEntryIDPtr regEntryIDPtr, /
* driver's Name Registry ID */
 OSType driverGestaltSelector, /
* PBStatus parameter */
 UInt32 defaultPowerConsumption /
* default return value */
)
{

 OSErr status;
 UInt32 result;
 short i;
 short index;
 ItemCount nValues;
 RegPropertyValueSize size;
 UInt32 microWatts[kReservedFullPower];

 result = defaultPowerConsumption;
 status = RegistryPropertyGetSize(
 regEntryIDPtr,
 kDevicePowerProperty,
 &size
);

C H A P T E R 1 0

Expansion Bus Manager

314 Card Power Controls

 if (status == noErr && size <= sizeof microWatts) {
 status = RegistryPropertyGet(
 regEntryIDPtr,
 kDevicePowerProperty,
 (RegPropertyValue *) microWatts,
 &size
);
 }
 if (status == noErr) {
 nValues = size / sizeof microWatts[0];
 for (i = 0; gPowerInfo[i].driverGestaltSelector != 0; i++) {
 if (gPowerInfo[i].driverGestaltSelector == driverGestaltSelector) {
 index = gPowerInfo[i].correctIndex;
 if (index >= nValues)
 index = gPowerInfo[i].fallbackIndex;
 if (index < nValues)
 result = microWatts[index];
 break;
 }
 }
 }
 return (result);
}

C H A P T E R 1 1

Graphics Drivers 11Figure 11-0
Listing 11-0
Table 11-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1 1

Graphics Drivers

316

Graphics Driver Description

This chapter discusses the requirements for designing a native PCI graphics or video
display driver for Mac OS on the second generation of Power Macintosh computers. PCI
display drivers have a category of

kServiceCategoryNdrvDriver

 and a service type
of

kNdrvTypeIsVideo

. They export a driver description structure and use the

DoDriverIO

 entry point.

For specific information about generic native drivers, see Chapter 7, “Writing Native
Drivers.” You can also find general information about Macintosh drivers in

Designing
Cards and Drivers for the Macintosh Family,

 third edition, and

Inside Macintosh: Devices

.
These books are listed in “Apple Publications” beginning on page xxi. For information
about Macintosh pixel formats, see Appendix C, “Graphic Memory Formats.”

IEEE Standard 1275 includes graphics extensions that the P1275 Working Group
continues to update. For latest information, you can access the FTP site listed in
“Institute of Electrical and Electronic Engineers” on page xxiv.

Apple has revised the way that Macintosh computers automatically sense monitor
characteristics. For more information see “Display Timing Modes,” beginning on
page 338, and

Macintosh New Technical Notes HW-30,

 which is available from Apple
Developer Support.

Graphics Driver Description 11

For the Display Manager to load and install a driver, the run-time requirements should
be set to

kDriverIsOpenedUponLoad

 and

kDriverIsUnderExpertControl

. The
device name is used as the name for installation in the unit table. Graphics drivers
should report

kServiceCategoryNdrvDriver

 as the OS run-time service category
and

kNdrvTypeIsVideo

 as the type within the category.

A typical driver description structure for a PCI graphics card driver is shown in
Listing 7-1 on page 89.

Graphics Driver Routines 11

In the past, graphics drivers and Mac OS relied on a card’s NuBus declaration ROM to
get information on the card’s capabilities. In the second generation of Power Macintosh
computers, the programming interface for PCI graphics drivers has been revised to let
the drivers provide the same information. Mac OS has also been revised to fetch this
information from drivers instead of from a card’s ROM.

Because of potential compilation problems, applications should avoid using high-level
Device Manager routines when accessing PCI graphics drivers directly. Use the low-level

PBOpen

,

PBClose

,

PBControlSync

, and

PBStatusSync

 routines (described in

Inside
Macintosh: Devices

) instead of

FSOpen

,

FSClose

,

Control

, or

Status

.

The next sections detail the specific control and status calls to which a graphics driver
must respond.

C H A P T E R 1 1

Graphics Drivers

Graphics Driver Routines

317

Control Calls 11

The following sections present the graphics driver control calls. Not all video or display
drivers need to respond to every one of these calls.

Reset (csCode = 0) 11

The

Reset

 routine is obsolete for graphics drivers in the second generation of Power
Macintosh computers. The driver should return

controlErr

.

KillIO (csCode = 1) 11

The optional

KillIO

 routine stops any I/O requests currently being processed and
removes any pending I/O requests. If the card does not support asynchronous calls it
must return

controlErr

.

SetMode (csCode =2) 11

The required

SetMode

 routine sets the pixel depth of the screen.

OSErr = Control(theDeviceRefNum, cscSetMode, &theVDPageInfo);

--> csMode

Desired relative bit depth

-- csData

Unused

--> csPage

Desired display page

<-- csBaseAddr

Base address of video RAM for this

csMode

To improve the screen appearance during mode changes, devices with settable color
tables should set all entries of the Color Lookup table (CLUT) to 50 percent gray before
changing the mode. If the video card supports 16-bit or 32-bit pixel depths, the

SetMode

routine should set an internal flag to indicate direct mode operations.

SetEntries (csCode = 3) 11

The

SetEntries

 control routine is required. If the video card is an indexed device, the

SetEntries

 control routine should change the contents of the card’s CLUT.

OSErr =

PBControl(theDeviceRefNum, cscSetEntries, &theVDSetEntryRecord);

--> csTable

Pointer to

ColorSpec

 array

--> csStart

First entry in table

--> csCount

Number of entries to set

C H A P T E R 1 1

Graphics Drivers

318

Graphics Driver Routines

If the value of

csStart

 is 0 or positive, the routine must install

csStart

 entries
starting at that position. If it is –1, the routine must access the contents of the value field
in

csTable

 to determine which entries are to be changed. Both

csStart

 and

csCount

are 0 based—their values are 1 less than the desired amount. For a description of a CLUT
and the

ColorSpec

 structure, see the Color QuickDraw section of

Inside Macintosh:
Imaging With QuickDraw.

If the card does not have a CLUT (that is, if the

csDeviceType

 returned from

GetVideoParameters

 does not equal

clutType

), the system should never issue a

SetEntries

 control call. If it does, the

SetEntries

 control routine should return

controlErr

. With direct devices, the

GrayPage

 and

SetGamma

 routines are
responsible for initializing the hardware properly.

SetGamma (csCode = 4) 11

The optional

SetGamma

 control routine sets the gamma table in the driver that corrects
RGB color values.

OSErr = Control(theDeviceRefNum, cscSetGamma, &theVDGammaRecord);

--> csGTable

Pointer to gamma table

The gamma table compensates for nonlinearities in a display’s color response by
providing either a function or a lookup value that associates each displayed color
with an absolute RGB value.

To reduce visible flashes resulting from color table changes, the

SetGamma

 routine
works in conjunction with the

SetEntries

 control routine on indexed devices. The

SetGamma

 routine first loads new gamma correction data into the driver’s private
storage; the next

SetEntries

 control call applies the gamma correction as it
changes the CLUT.

SetGamma

 calls are always followed by

SetEntries

 control calls
on indexed devices.

For direct devices, the SetGamma routine first sets up the gamma correction data table.
Next, it synthesizes a black-to-white linear ramp color table. Finally, it applies the
new gamma correction to the color table and sets the data directly in the hardware.
Proper correction is particularly important to image-processing applications running
on direct devices.

Displays that do not use gamma table correction tend to look oversaturated and dark.
Although determining the correct values for a gamma table can be difficult without
special tools, the table’s contribution to image quality can be striking.

If

NIL is passed for the csGTable value, the driver should build a linear ramp in the
gamma table to allow for an uncorrected display.

On a cathode ray tube, phosphors luminesce when they are struck by an electron beam.
Unfortunately, there is not a direct correspondence between the luminance of the
phosphors and the strength of the electron beam. To create a linear relationship, the
actual response is measured and the inverse of its deviation from linearity is applied as a
correction factor. Figure 11-1 illustrates this process.

C H A P T E R 1 1

Graphics Drivers

Graphics Driver Routines 319

Figure 11-1 Luminosity and electron beam strength

Although this example is described in terms of electron beams and phosphors of a
cathode ray tube, similar relationships exist between diode current and LED brightness
in active matrix displays.

Gamma Table Implementation 11
The Power Macintosh gamma table structure is defined in the header file QuickDraw.h.
Its definition is diagrammed in Figure 11-2.

Figure 11-2 Gamma table structure

The gamma table is a variable length data structure. As shown in Figure 11-2, the
structure GammaTbl sits at the front of a pool of memory that holds the data required to
apply gamma correction.

The last member of the fixed-length portion of the structure gFormulaData is also the
entry point to the variable-length portion of the structure. This variable-length portion is
divided into two sets, formula data and correction data.

Luminosity

Electron beam strength

Normal response
Inverted response
Resultant

Fixed-size header

Formula data

Correction data

size = sizeof(GammaTbl)

size = gFormulaSize

size = gChanCnt * gDataCnt
 ((gDataWidth + 7) DIV 8

struct GammaTbl
{
	 short gVersion;
	 short gType;
	 short gFormulaSize;
	 short gChanCnt;
	 short gDataCnt;
	 short gDataWidth;
	 short gFormulaData[1];
};
typedef struct GammaTbl GammaTbl;

C H A P T E R 1 1

Graphics Drivers

320 Graphics Driver Routines

Field descriptions

gVersion The version of the GammaTbl data structure. 0 == gVersion is the
only version of the GammaTbl data structure currently defined.

gType Since gamma tables are created empirically, they can either attempt
to correct the response curve of a specific CLUT, a specific display,
or a specific combination of CLUT and display. 0 == gType
indicates that the curve is derived from a display, not a CLUT. In
this case, two different hardware modules can share the same
gamma table.

gFormulaSize See gFormulaData, below.
gChanCnt The number of tables of correction data. If there is more than one

channel of correction data, the channels are ordered red, green,
blue. If there is only one channel of correction data, the same
correction is applied to the red, green, and blue channels of the
hardware. The only valid values for gChanCnt are 1 and 3.

gDataCnt The number of entries of correction information per channel.
gDataWidth How many significant bits of information are available in each

entry, packed to the next larger byte size.
gFormulaData The entry point to the variable-length portion of the gamma table,

consisting of the formula data, if any, followed by the correction
data. If a gamma table is hardware-invariant (0 == gType), then the
formula data is never inspected. If a gamma table varies with the
hardware (in which case gType is the ID of the frame buffer), and
gFormulaSize != 0, then gFormulaData[0] is inspected to see
if it is the ID of the monitor currently connected. If the monitor IDs
match, the gamma table is considered valid; otherwise it is
considered to be the wrong table.

Correction Data 11

The Correction Data area of the gamma table contains the gamma correction data. If
more than one channel’s information is present, a block of information for each channel
appears in red, green, blue order. There is no field of the GammaTbl structure that
directly maps to the correction data; instead, correction data is appended to the
gFormulaData field. To understand how correction data is organized, consider the
QuickDraw representation of RGB color:

struct RGBColor

{

unsigned short red; // magnitude of red channel

unsigned short green; // magnitude of green channel

unsigned short blue; // magnitude of blue channe

};

typedef struct RGBColor RGBColor;

Effectively, the purpose of a gamma table is to map a red, green, or blue channel into
another channel. This mapping serves two purposes: to move from 16 bits of significance
to gDataWidth bits, and to apply luminance correction.

C H A P T E R 1 1

Graphics Drivers

Graphics Driver Routines 321

The mapping is usually accomplished by taking the most significant 8 bits of a given
channel and using it as an index into that channel’s correction data. Two examples of
this, with 8 == gDataWidth, are illustrated in Figure 11-3.

Figure 11-3 Examples of gamma table correction

Gamma Table Errors 11

Graphics drivers should return an error code if the following fields of GammaTbl do not
contain these values:

0 == gVersion This is currently the only defined version of the gamma table
structure.

0 == gType This indicates that the gamma table is not dependent on the frame
buffer hardware. Few existing gamma tables are frame buffer–
specific. This field formerly contained a NuBus construct, drHWId,
which is no longer applicable.

1 == gChanCnt || 3 == gChanCnt
Only one or three channels of correction data are supported.

GrayPage (csCode = 5) 11

The required GrayPage routine fills the specified video page with a dithered gray
pattern in the current video mode. The page number is 0 based.

OSErr = Control(theDeviceRefNum, cscGrayPage, &theVDPageInfo);

-- csMode Unused
-- csData Unused
--> csPage Desired display page to gray
-- csBaseAddr Unused

02ab (16-bit QD channel magnitude) (16-bit QD channel magnitude) fd38

(8-bit gamma corrected magnitude) 06 fe (8-bit gamma corrected magnitude)

Array Index 00 01 02 80 81 82 fd fe ff

Correction Data [00 03 06 9c 9d 9e fe ff ff]

C H A P T E R 1 1

Graphics Drivers

322 Graphics Driver Routines

The purpose of the GrayPage routine is to eliminate visual artifacts on the screen during
mode changes. When the mode changes, the contents of the frame buffer immediately
acquire a new color meaning. To avoid annoying color flashes, two events must occur:

■ SetMode or SwitchMode sets the entire contents of the CLUT to 50 percent gray
before changing the mode, so that all possible indexes in either the old or new depth
appear the same.

■ GrayPage fills the frame buffer with one of these 50 percent dither patterns:

0xAAAAAAAA represents 32 pixels at 1 bpp

0xCCCCCCCC represents 16 pixels at 2 bpp

0xF0F0F0F0 represents 8 pixels at 4 bpp

0xFF00FF00 represents 4 pixels at 8 bpp

0xFFFF0000 represents 2 pixels at 16 bpp

0xFFFFFFF represents 1 pixel at 32 bpp (invert to get the next pixel)

For direct devices, GrayPage also builds a three-channel linear gray color table,
gamma-corrects the table, and loads it into the color table hardware.

SetGray (csCode = 6) 11

The optional SetGray routine is used with indexed devices to specify whether
subsequent SetEntries calls fill a card’s CLUT with actual colors or with the
luminance-equivalent gray tones.

OSErr = Control(theDeviceRefNum, cscSetGray, &theVDGrayRecord);

--> csMode Enable or disable luminance mapping

For actual colors (luminance mapping disabled), SetGray is passed a csMode value
of 0; for gray tones (luminance mapping enabled), it is passed a csMode value of 1.
Luminance equivalence should be determined by converting each RGB value into the
hue-saturation-brightness system and then selecting a gray value of equal brightness.
Mapping colors to luminance-equivalent gray tones lets a color monitor emulate a
monochrome monitor exactly.

If a driver is told to disable luminance mapping and the connected display is known to
be a monochrome device, the driver should set csMode to 1 and keep luminance
mapping enabled.

A direct device should always save the csMode value. Luminance mapping, however,
should never occur in control routines that modify the CLUT.

C H A P T E R 1 1

Graphics Drivers

Graphics Driver Routines 323

SetInterrupt (csCode = 7) 11

The optional SetInterrupt routine controls the generation of VBL interrupts.

OSErr =

Control(theDeviceRefNum, cscSetInterrupt, &theVDFlag Record);

--> csMode Enable or disable interrupts
-- filler Unused

To enable interrupts, pass a csMode value of 0; to disable interrupts, pass a csMode
value of 1. The VDFlagRecord data structure is defined on page 353.

DirectSetEntries (csCode = 8) 11

DirectSetEntries is optional. Normally, color table animation is not used on a direct
device, but there are some special circumstances under which an application may
want to change the color table hardware. The DirectSetEntries routine provides
the direct device with indexed mode functionality identical to the regular SetEntries
control routine.

OSErr = PBControl(theDeviceRefNum, cscDirectSetEntries,

&theVDSetEntryRecord);

--> csTable Pointer to ColorSpec array
--> csStart First entry in table
--> csCount Number of entries to set

The DirectSetEntries routine has exactly the same functions and parameters as the
regular SetEntries routine, but it works only on a direct device. If this call is issued to
an indexed device, it should return controlErr.

SetDefaultMode (csCode = 9) 11

The SetDefaultMode routine is obsolete for graphics drivers in the second generation
of Power Macintosh computers. The driver should return controlErr. Graphics
drivers should instead use the SavePreferredConfiguration routine described on
page 325.

C H A P T E R 1 1

Graphics Drivers

324 Graphics Driver Routines

SwitchMode (csCode = 10) 11

The SwitchMode routine is required.

OSErr = Control(theDeviceRefNum, cscSwitchMode,

 &theVDSwitchInfoRecord);

--> csMode Relative bit depth to switch to
--> csData DisplayModeID to switch into
--> csPage Video page number to switch into
<-- csBaseAddr Base address of the new DisplayModeID

The VDSwitchInfoRec structure, described on page 352, indicates what depth mode to
switch to, the DisplayModeID value for the new display mode, and the number of the
video page to switch to. The driver uses the csBaseAddr field of VDSwitchInfoRec to
return to the base address of the video page specified by csPage.

Note
Unlike NuBus declaration ROM–based drivers, the SwitchMode
routine should not modify the driver’s AuxDCE dCtlSlotId field. ◆

SetSync (csCode = 11) 11

The optional SetSync routine complements GetSync, described on page 331. It can be
used to implement the VESA Device Power Management Standard (DPMS) as well as to
enable a sync-on-green, sync-on-red, or sync-on-blue mode for a frame buffer.

enum {

kDisableHorizontalSyncBit = 0,

kDisableVerticalSyncBit = 1,

kDisableCompositeSyncBit = 2,

kEnableSyncOnBlue = 3,

kEnableSyncOnGreen = 4,

kEnableSyncOnRed = 5

}

The following illustrates a typical use of SetSync:

OSErr = Control(theDeviceRefNum, cscSetSync, &theVDSyncInfoRec);

Following is the information that the status routine must return in the fields of the
VDSyncInfoRec record (defined on page 331) passed by SetSync:

→ csMode Bit map of the sync bits that need to be disabled or enabled.
→ csFlag A mask of the bits that are valid in the csMode field. In this manner,

a 1 in bit 2 of csFlag indicates that bit 2 in the csMode field is
valid and the driver should set or clear the hardware bit accordingly.

C H A P T E R 1 1

Graphics Drivers

Graphics Driver Routines 325

To preserve compatibility with the current Energy Saver control panel, the following
special case should be implemented. If the csFlags parameter of a SetSync routine is
0, the routine should be interpreted as if the csFlags parameter were 0x3. This
interpretation is necessary because the Energy Saver control panel sends a csMode
value of 0 and a csFlags value of 0 in its parameter block when it wants the display
to enable all the horizontal, vertical, and composite sync lines. With the new definition,
this would have no effect; the result would be that the display would never come out
of sleep mode.

The SetSync routine can be used to implement the VESA DPMS standard by disabling
the horizontal or vertical sync lines, or both. The VESA DPMS standard specifies four
software-controlled modes of operation: On, Standby, Suspend, and Off. Mode switches
are accomplished by controlling the horizontal and vertical sync signals. Table 11-1
illustrates the relationship between modes and signals.

In the case of a display using the only the composite sync line, only the On and Off
power saving modes are possible.

SavePreferredConfiguration (csCode = 16) 11

The required SavePreferredConfiguration routine complements the
GetPreferredConfiguration control routine described on page 333. It is used by
clients to save the preferred relative bit depth (depth mode) and display mode. This
means that a PCI card should save this information in NVRAM so that it persists across
system restarts. Note that NVRAM use is limited to 8 bytes. For more information about
NVRAM in the second generation of Power Macintosh computers, see “Typical NVRAM
Structure” beginning on page 291.

OSErr = Control(theDeviceRefNum, cscSavePreferredConfiguration,

 &theVDSwitchInfo);

The Monitors control panel can use this routine to set the preferred resolution and
update the resolution list displayed to the user. Following is the information that the

Table 11-1 Implementing VESA DPMS modes with SetSync

Mode
Horizontal
sync

Vertical
sync Video

Powqer
savings Recovery period

On Pulses Pulses Active None n.a.

Standby No pulses Pulses Blanked Minimal Short or immediate

Suspend Pulses No pulses Blanked Significant Substantial

Off No pulses No pulses Blanked Maximum System dependent

C H A P T E R 1 1

Graphics Drivers

326 Graphics Driver Routines

control routine must return in the fields of the VDSwitchInfoRec record passed by
SavePreferredConfiguration:

--> csMode Relative bit depth of preferred resolution
--> csData DisplayModeID of preferred resolution
-- csPage Unused
-- csBaseAddr Unused

Note
The driver is not required to save any of the information across reboots.
However, it is strongly recommended that the relative bit depth and the
DisplayModeID value be saved in NVRAM. ◆

SetHardwareCursor (csCode = 22) 11

SetHardwareCursor is a required routine for drivers that support hardware cursors.
QuickDraw uses the SetHardwareCursor control call to set up the hardware cursor
and determine whether the hardware can support it. The driver must determine whether
it can support the given cursor and, if so, program the hardware cursor frame buffer (or
equivalent), set up the CLUT, and return noErr. If the driver cannot support the cursor
it must return controlErr. The driver must remember whether this call was successful
for subsequent GetHardwareCursorDrawState or DrawHardwareCursor calls, but
should not change the cursor’s x or y coordinates or its visible state.

OSErr = Control (theDeviceRefNum, cscSetHardwareCursor,
 &theVDSetHardwareCursorRec);

--> csCursorRef Reference to cursor data

The driver should call the VSL routine VSLPrepareCursorForHardwareCursor with
csCursorRef and the appropriate hardware cursor descriptor. This routine, described
on page 346, will do all the neccessary conversion for the cursor passed in csCursorRef
to match the hardware described in the hardware cursor descriptor. If the cursor passed
in csCursorRef is compatable with the hardware cursor descriptor, the VSL call will
return true; otherwise, it will return false. It will also pass back a cursor image at the
appropriate bit depth and pixel format for the hardware and a CTabPtr color table that
specifies the colors for the cursor.

The driver should be able to copy the cursor image passed back from
VSLPrepareCursorForHardwareCursor directly into its hardware cursor
frame buffer (or equivalent) and program its CLUT, using the color table in a
fashion similar to the SetEntries control call. As in the SetEntries control
call, the driver must apply any gamma correction to the color table.

If a driver's hardware can support multiple hardware cursor formats, the driver can
make multiple calls to VSLPrepareCursorForHardwareCursor with different
hardware cursor descriptors until the call succeeds or all hardware cursor formats
are exhausted.

C H A P T E R 1 1

Graphics Drivers

Graphics Driver Routines 327

If the driver must access the cursor data structure passed in csCursorRef, it can
typecast it to a CursorImageRec defined in Quickdraw.h. However, the format of the
cursor passed in with csCursorRef is subject to change in future releases of Mac OS; it
is recommended that VSLPrepareCursorForHardwareCursor be used because it
will be kept up to date with the format of csCursorRef.

DrawHardwareCursor (csCode = 23) 11

DrawHardwareCursor is a required routine for drivers that support hardware cursors.
It sets the cursor’s x and y coordinates and visible state. If the cursor was successfully set
by a previous call to SetHardwareCursor, the driver must program the hardware with
the given x, y, and visible parameters and then return noErr. If the cursor was not
successfully set by the last SetHardwareCursor call, the driver must return
controlErr.

OSErr = Control (theDeviceRefNum, cscDrawHardwareCursor,

 &theVDDrawHardwareCursorRec);

--> csCursorX X coordinate
--> csCursorY Y coordinate
--> csCursorVisible true if the cursor must be visible

The client will have already accounted for the cursor’s hot spot, so the csCursorX and
csCursorY values are the x and y coordinates of the upper left corner of the cursor
image. Depending on the position of the hot spot, the upper left corner may be above or
to the left of the visible screen; thus, csCursorX and csCursorY are signed values. The
driver is responsible for ensuring proper clipping if the cursor lies partially off the screen.

If csCursorVisible is false, the driver must make the cursor invisible; otherwise,
the driver must make the cursor visible.

SetPowerState (csCode = 25) 11

The optional SetPowerState routine lets the display hardware be placed in various
power states.

OSErr = Control(theDeviceRefNum, cscSetPowerState,

 &theVDPowerStateRec);

--> powerState Switch display hardware to this state
<-- powerFlags Describes the status of the new state

The powerState constants correlate with the VESA Device Power Management
Standards. The system pairs SetPowerState and SetSync calls. The display hardware
should only be placed in a low power state if the graphics controller can also place

C H A P T E R 1 1

Graphics Drivers

328 Graphics Driver Routines

the connected display in a low power state. In other words, never place the display
hardware in a low power state that visibly disrupts video if the connected display would
remain active after a corresponding SetSync call. The driver is responsible for restoring
its state when full power is restored.

Set the kPowerStateNeedsRefreshBit bit in powerFlags if VRAM decays in the
new powerState condition. When the driver transitions from a powerState
condition in which VRAM decays to one in which VRAM is stable, the system will
refresh the VRAM.

Status Calls 11
The following sections present the graphics driver status calls. Not all video or display
drivers need to respond to every one of these calls.

GetMode (csCode = 2) 11

The required GetMode routine returns the current relative bit depth, page, and
base address.

OSErr = Status(theDeviceRefNum, cscGetMode, &theVDPageInfo);

<-- csMode Current relative bit depth
 -- csData Unused
<-- csPage Current display page
<-- csBaseAddr Base address of video RAM for the current

DisplayModeID and relative bit depth

GetEntries (csCode = 3) 11

The required GetEntries routine returns the specified number of consecutive CLUT
entries, starting with the specified first entry.

OSErr =

PBStatus(theDeviceRefNum, cscGetEntries, &theVDSetEntryRecord);

<-> csTable Pointer to ColorSpec array
--> csStart First entry in table
--> csCount Number of entries to set

If gamma correction is used, the values returned may not be the same as the values
orignally passed by the SetEntries control call. If the value of csStart is 0 or
positive, the routine must return csCount entries starting at that position. If the value
of csStart is –1, the routine must access the contents of the Value fields in csTable
to determine which entries are to be returned. Both csStart and csCount are 0 based;
their values are 1 less than the desired amount.

C H A P T E R 1 1

Graphics Drivers

Graphics Driver Routines 329

Although direct devices do not have logical color tables, the GetEntries routine
should continue to return the current contents of the CLUT, just as it would for an
indexed device.

GetPages (csCode = 4) 11

The required GetPages routine returns the total number of video pages available in the
current video card mode, not the current page number. This is a counting number and is
not 0 based.

OSErr =

Status(theDeviceRefNum, cscGetPages, &theVDPageInfo);

 -- csMode Unused
 -- csData Unused
<-- csPage Number of display pages available
 -- csBaseAddr Unused

GetBaseAddress (csCode = 5) 11

The required GetBaseAddress routine returns the base address of a specified page in
the current mode.

OSErr = Status(theDeviceRefNum, cscGetBaseAddr, &theVDPageInfo);

 -- csMode Unused
 -- csData Unused
 --> csPage Desired page
 <-- csBaseAddr Base address of VRAM for the desired page

The GetBaseAddress routine lets video pages be written to even when they are
not displayed.

GetGray (csCode = 6) 11

The required GetGray routine describes the behavior of subsequent SetEntries
control calls to indexed devices.

OSErr = Status(theDeviceRefNum, cscGetGray, &theVDGrayRecord);

 <-- csMode Luminance mapping enabled or disabled

The csMode parameter returns 0 if luminance mapping is disabled or 1 if it is enabled.

C H A P T E R 1 1

Graphics Drivers

330 Graphics Driver Routines

GetInterrupt (csCode = 7) 11

The optional GetInterrupt status routine returns a value of 0 if VBL interrupts are
enabled and a value of 1 if VBL interrupts are disabled.

OSErr =

Status(theDeviceRefNum, cscGetInterrupt, &theVDFlagRecord);

<-- csMode Interrupts enabled or disabled
-- filler Unused

The VDFlagRecord data structure is defined on page 353.

GetGamma (csCode = 8) 11

The GetGamma routine returns a pointer to the current gamma table.

OSErr = Status(theDeviceRefNum, cscGetGamma, &theVDGammaRecord);

<-- csGTable Pointer to gamma table

The calling application cannot preallocate memory because of the unknown size
requirements of the gamma data structure.

GetDefaultMode (csCode = 9) 11

The GetDefaultMode control call is obsolete for PCI graphics drivers. The driver
should return statusErr. Graphics drivers in the second generation of Power
Macintosh computers use the GetPreferredConfiguration routine described
on page 333.

GetCurrentMode (csCode = 10) 11

The required GetCurrentMode routine uses a VDSwitchInfoRec structure.PCI
graphics drivers return the current DisplayModeID value in the csData field.

OSErr = Status (theRefNum, cscGetCurMode, &theVDSwitchInfoRec);

<-- csMode Current relative bit depth
<-- csData DisplayModeID of current resolution
<-- csPage Current page
<-- csBaseAddr Base address of current page

C H A P T E R 1 1

Graphics Drivers

Graphics Driver Routines 331

GetSync (csCode = 11) 11

The use of the optional GetSync and SetSync routines has been expanded to manage
the settings of all synchronization-related parameters of a frame buffer controller, not
just the horizontal and vertical syncs. GetSync and SetSync can be used to implement
the VESA DPMS as well as enable a sync-on-green mode for the frame buffer.

A VDSyncInfoRec data structure has been defined for the GetSync and SetSync
routines:

struct VDSyncInfoRec {

 unsigned char csMode;

unsigned char csFlags;

}

The csMode parameter specifies the state of the sync lines according to these bit
definitions:

enum {

kDisableHorizontalSyncBit = 0,

kDisableVerticalSyncBit = 1,

kDisableCompositeSyncBit = 2,

kEnableSyncOnBlue = 3,

kEnableSyncOnGreen = 4,

kEnableSyncOnRed = 5

};

To implement the DPMS standard, bits 0 and 1 of the csMode field should have the
following values:

GetSync can be used in two ways: to get the current status of the hardware and to get
the capabilities of the frame buffer controller. These two different kinds of information
are discussed in the next sections.

Reporting the Frame Buffer Controller’s Capabilities 11

To find out what the frame buffer controller can do with its sync lines, the user of the
GetSync routine passes a value of 0xFF in the csMode flag. The driver zeroes out those
bits that represent a feature that is not supported by the frame buffer controller. The
available bit values are those for the csMode parameter of VDSyncInfoRec, listed
on page 331.

Bit 1 Bit 0 Status

0 0 Active

0 1 Standby

1 0 Idle

1 1 Off

C H A P T E R 1 1

Graphics Drivers

332 Graphics Driver Routines

For example, a driver that is capable of controlling the horizontal, vertical, and
composite syncs, and can enable sync on red, would return a value of 0x27:

csMode = 0x0 |

(1 << kDisableHorizontalSyncBit) |

(1 << kDisableVerticalSyncBit) |

(1 << kDisableCompositeSyncBit) |

(1 << kEnableSyncOnRed)

An additional bit is defined to represent those frame buffers that are not capable of
controlling the individual syncs separately but can control them as a group:

enum {

kNoSeparateSyncControlBit = 6

}

A driver that cannot control the syncs separately sets this bit to tell the client that the
horizontal, vertical, and composite syncs are not independently controllable and can
only be controlled as a group. Using the previous example, the driver reports a csMode
of 0x47:

csMode = 0x0 |

(1 << kDisableHorizontalSyncBit) |

(1 << kDisableVerticalSyncBit) |

(1 << kDisableCompositeSyncBit) |

(1 << kEnableSyncOnRed) |

(1 << kNoSeparateSyncControlBit)

Reporting the Current Sync Status 11

The other use of the GetSync status routine is to get the current status of the sync lines.
The client passes 0x00 in the csMode field. The returned value represents the current
status of the sync lines. Bit 6 (kNoSeparateSyncControlBit) has no meaning in
this case.

GetConnection (csCode = 12) 11

The required GetConnection routine gathers information about the attached display.

OSErr = Status (yourDeviceRefNum, cscGetConnection,

&theVDDisplayConnectInfoRec);

<-- csDisplayType Display type of attached display
<-- csConnectTaggedType Type of tagging
<-- csConnectTaggedData Tagging data
<-- csConnectFlags Connection flags
<-- csDisplayComponent Return display component, if available

C H A P T E R 1 1

Graphics Drivers

Graphics Driver Routines 333

See “Responding to GetConnectionInfo” beginning on page 339 for more information on
how to implement the GetConnection routine.

GetModeTiming (csCode = 13) 11

The GetModeTiming routine is required to report timing information for the desired
displayModeID.

OSErr =

Status(yourDeviceRefNum, cscGetModeTiming, &theVDTimingInfoRec);

--> csTimingMode Desired DisplayModeID
<-- csTimingFormat Format for timing info (kDeclROMtables)
<-- csTimingData Scan timing for desired DisplayModeID
<-- csTimingFlags Report whether this scan timing is

optional or required

See “Display Timing Modes” beginning on page 338 for more details on the
GetModeTiming routine.

GetModeBaseAddress 11

The GetModeBaseAddress call is obsolete in the second generation of Power
Macintosh computers. The driver should return statusErr.

GetPreferredConfiguration (csCode = 16) 11

The required GetPreferredConfiguration routine complements
SavePreferredConfiguration, described on page 325.
GetPreferredConfiguration returns the data that was set using
SavePreferredConfiguration.

OSErr = Status(theDeviceRefNum, cscGetPreferredConfiguration,

&theVDSwitchInfo);

<-- csMode Relative bit depth of preferred resolution
<-- csData DisplayModeID of preferred resolution
-- csPage Unused
-- csBaseAddr Unused

C H A P T E R 1 1

Graphics Drivers

334 Graphics Driver Routines

GetNextResolution (csCode = 17) 11

The required GetNextResolution routine reports all display resolutions that the
driver supports.

OSErr = Status

(theDeviceRefNum, cscGetNextResolution, &theVDResolutionInfoRec);

--> csPreviousDisplayModeID ID of the previous display mode
<-- csDisplayModeID ID of the display mode following

csPreviousDisplayModeID.

<-- csHorizontalPixels Number of pixels in a horizontal line
<-- csVerticalLines Number of lines in a screen
<-- csRefreshRate Vertical refresh rate of the screen
<-- csMaxDepthMode Max relative bit depth for this DisplayModeID

GetNextResolution passes a csPreviousDisplayModeID value and returns the
next supported display mode. The csDisplayModeID field is updated and the
csHorizontalPixels, csVerticalLines, and csRefreshRate fields are set. The
csMaxDepthMode field is also set with the highest supported video bit depth. This
uses the same convention as in the past; kDepthMode1 is the first relative bit depth
supported, not necessarily 1 bit per pixel. For futher information about depth modes,
see the next section.

Observe these cautions:

■ The DisplayModeID values used do not need to be the same as the ones Apple uses.
However, the DisplayModeID value 0 and all values with the high bit set
(0x80000000 through 0xFFFFFFFF) are reserved by Apple.

■ To get the first resolution supported by a display, the caller will pass a value of
kDisplayModeIDFindFirstResolution in the csPreviousDisplayModeID
field of the VDResolutionInfoRec structure.

■ To get the second resolution, the caller will pass the csDisplayModeID value of the
first resolution in the structure’s csPreviousDisplayModeID field.

■ When a call has the last supported resolution in the csPreviousDisplayModeID
field, the driver should return a value of kDisplayModeIDNoMoreResolutions in
the csDisplayModeID field. No error should be returned.

■ If an invalid value is passed in the csPreviousDisplayModeID field, the driver
should return a paramErr value without modifying the structure.

■ If the csPreviousDisplayModeID field is kDisplayModeIDCurrent, the driver
should return information about the current displayModeID.

The constants just described are defined in the file Video.h and are listed in “Data
Structures” beginning on page 351.

C H A P T E R 1 1

Graphics Drivers

Graphics Driver Routines 335

GetVideoParameters (csCode = 18) 11

The required GetVideoParameters routine returns video parameter information.

OSErr = Status (theDeviceRefNum, cscGetVideoParameters,

 &theVDVideoParametersRec);

--> csDisplayModeID ID of the desired DisplayModeID
--> csDepthMode Relative bit depth
<-> *csVPBlockPtr Pointer to a VPBlock
<-- csPageCount Number of pages supported for resolution

and relative bit depth
<-- csDeviceType Direct, fixed, or CLUT

The GetVideoParameters routine accepts csDisplayModeID, csDepthMode,
and a pointer to a VPBlock structure, which it fills in with the data for the specified
csDisplayModeID and csDepthMode. It also returns the pageCount for that
particular bit depth, as well as the deviceType.

Note
In PCI-based graphics drivers, the csVPBlockPtr->vpBaseOffset is
always 0. The base address of video RAM for the current page, is the
BaseAddress value returned by the GetCurrentMode routine. ◆

GetGammaInfoList (csCode = 20) 11

The GetGammaInfoList routine is optional. Clients wishing to find a graphics card’s
available gamma tables formerly accessed the Slot Manager data structures. PCI graphics
drivers must return this information directly.

In the future, gamma tables will be part of the display’s domain, not the graphics
driver’s domain. In the meantime, graphics drivers must still provide support for
them by responding to the GetGammaInfoList and RetrieveGammaTable calls.
The GetGammaInfoList routine iterates over the gamma tables supported by the
driver for the attached display.

OSErr = Status

(theDeviceRefNum, cscGetGammaInfoList, &theVDGammaListRec);

--> csPreviousGammaTableID ID of the previous gamma table
<-- csGammaTableID ID of the gamma table following

csPreviousDisplayModeID

<-- csGammaTableSize Size of the gamma table in bytes
<-- csGammaTableName Gamma table name (C string)

C H A P T E R 1 1

Graphics Drivers

336 Graphics Driver Routines

The csGammaTableName parameter is a C string with a maximum of 31 characters. The
driver needs to copy the name from its storage to the storage passed in by the caller.
It can use CStrCopy, described on page 279. The caller uses csGammaTableSize to
allocate storage to read the entire structure, using the RetrieveGammaTable routine.

Observe these cautions:

■ A client will pass a csPreviousGammaTableID of kGammaTableIDFindFirst
to get the first gamma table ID. The driver should return this value in the
csGammaTableID field.

■ If the last gamma table ID is passed in the csPreviousGammaTableID field, the
driver should put a kGammaTableIDNoMoreTables in the csGammaTableID field
and return noErr.

■ If an invalid gamma table ID is passed in the csPreviousGammaTableID field, the
driver should return paramErr and should not modify the data structure.

■ A client can pass csPreviousGammaTableID with a value of
kGammaTableIDSpecific. This tells the driver that the csGammaTableID
contains the ID of the table that the client wants information about. This is a
way to bypass iteration through all the tables when the caller already knows
the GammaTableID.

■ Although the GetGammaInfoList call appears to perform its iteration operations
similarly to the GetNextResolution call, there is an important difference.
GetGammaInfoList only returns information for gamma tables that are applicable
to the attached display; GetNextResolution returns the information regardless of
what display is connected.

RetrieveGammaTable (csCode = 21) 11

The optional RetrieveGammaTable routine copies the designated gamma table into
the designated location.

OSErr = Status (theDeviceRefNum, cscRetrieveGammaTable,

 &theVDRetrieveGammaRec);

--> csGammaTableID ID of gamma table to retrieve
<-> csGammaTablePtr Location to copy table into

RetrieveGammaTable is used after a client has used the GetGammaInfoList routine
to iterate over the available gamma tables and subsequently decides to retrieve one. It is
the responsibility of the client to allocate and dispose of the memory pointed to by
csGammaTablePtr.

C H A P T E R 1 1

Graphics Drivers

Graphics Driver Routines 337

SupportsHardwareCursor (csCode = 22) 11

Graphics drivers that support hardware cursors must return true in response to the
SupportsHardwareCursor status call.

OSErr = Status (theDeviceRefNum, cscSupportsHardwareCursor,

&theVDSupportsHardwareCursorRec);

<-- csSupportsHardwareCursor true if hardware cursor is supported

GetHardwareCursorDrawState (csCode = 23) 11

GetHardwareCursorDrawState is a required routine for drivers that support
hardware cursors.

OSErr = Status (theDeviceRefNum, cscGetHardwareCursorDrawState,

&theVDHardwareCursorDrawStateRec);

<-- csCursorX X coordinate from last DrawHardwareCursor call
<-- csCursorY Y coordinate from last DrawHardwareCursor call
<-- csCursorVisible true if the cursor is visible
<-- csCursorSet true if cursor was successfully set by the last

SetHardwareCursor call

The csCursorSet parameter should be true if the last SetHardwareCursor control
call was successful and false otherwise. If csCursorSet is true, the csCursorX,
csCursorY, and csCursorVisible values must match the parameters passed in to
the last DrawHardwareCursor control call.

After driver initialization the cursor’s visible state and set state should be false.
After a mode change the cursor should be made invisible but the set state should
remain unchanged.

GetPowerState (csCode = 25) 11

The optional GetPowerState routine reports the display hardware’s current
power state.

OSErr = Status (theDeviceRefNum, cscGetPowerState,
 &theVDPowerStateRec);

<-- powerState Current power state of display hardware
<-- powerFlags Status of current state

Set kPowerStateNeedsRefreshBit in powerFlags if VRAM decays in the current
power state.

C H A P T E R 1 1

Graphics Drivers

338 Display Timing Modes

Display Timing Modes 11

Macintosh graphics drivers have always sensed the type of display attached to the
graphics card. They did this with three lines on the connector to perform a hardware
sense code algorithm. This algorithm is detailed in the Macintosh New Technical Note
HW-30, described in “Apple Publications” beginning on page xxi. Once the sense code
was determined, the graphics driver trimmed its list of available timing modes to those
that it calculated were possible.

Having the driver determine which timing modes are possible is very unflexible. New
displays have required new sense codes that old drivers do not recognize and new
technologies, such as the Display Data Channel (DDC) technology, provide additional
information that old drivers do not know how to interpret.

Thus, the graphics driver strategy for Mac OS is changing with the second generation of
Power Macintosh Computers. This new strategy emphasizes timing mode decisions
done through the Display Manager instead of the graphics driver. This approach has
these advantages:

■ It gives display designers maximum flexibility to create displays that support
multiple timing modes.

■ It lets card desgners focus on hardware and be less concerned with the display that
is attached.

■ It supports the Video Electronics Standards Association (VESA) DDC standard
(Level 2B), but does not force cards to interpret DDC content.

Display Manager Requirements 11
The Display Manager needs support from the graphics driver in order to implement
the trimming of the available timing modes. In the past, the driver has trimmed these
modes depending on the display that was sensed. Now the driver must perform the
following functions:

■ Report as available (that is, do not trim) all timing modes that are supported by
the current graphics card hardware—for example, trim only those modes that
require different amounts or configurations of VRAM. When responding to
GetNextResolution calls, the driver must return all timing modes supported by
the current frame buffer. Do this for DDC displays, multiple scan displays, and
single-mode displays.

■ If an unknown sense code is found, program the hardware as if a 13- or 14-inch
Monitor were sensed.

■ If no display is sensed, return an error code from the Initialize or Open routine.

C H A P T E R 1 1

Graphics Drivers

Display Timing Modes 339

■ When responding to GetModeTiming, report as not valid and not safe those timing
modes not validated by the sensing algorithm. Do this by clearing the modeValid
and modeSafe flags.

■ When responding to GetConnectionInfo, perform the extended sense algorithm
specified in the next section.

■ Support DDC in the future.

Note
The reason for reporting invalid modes is that the Display Manager
interfaces with smart displays and allows those displays to adjust the
valid and safe flags monitor by monitor. The card has to know less about
the actual capabilities of the display, and the display manufacturer has
more flexibility about which modes will be active. ◆

Responding to GetConnectionInfo 11
The GetConnectionInfo call has been modified to support the new monitor sensing
scheme described in the previous section. Specifically, changes has been made to a
previously reserved field. This section describes the new functionality that graphics
drivers need to support to be compatible with the new timing mode trimming procedure.

New Field and Bit Definitions 11

The csConnectTagged field, an unsigned short, in the previous definition has been
split into two fields, csConnectTaggedType and csConnectTaggedData:

struct VDDisplayConnectInfoRec {

unsigned short csDisplayType; /* type of display*/

unsigned char csConnectTaggedType; /* type of tagging*/

unsigned char csConnectTaggedData; /* tagging data*/

unsigned long csConnectFlags; /* tells about the

connection*/

unsigned long csDisplayComponent; /* if the card has a direct

connection to the display,

it returns the display

component here (future)*/

unsigned long csConnectReserved; /* reserved*/

};

These two new fields are used to report monitor sensing information, as long as the bit
kTaggingInfoNonStandard of the csConnectFlags field is not set (see next section).
If that bit is set, then the csConnectTaggedType and csConnectTaggedData fields

C H A P T E R 1 1

Graphics Drivers

340 Display Timing Modes

are private and Mac OS will not interpret them. Following are the bit definitions for the
csConnectFlags field:

enum (

kAllModesValid = 0,

kAllModesSafe = 1,

kReportsTagging = 2, // driver reports tagging

kHasDirectConnection = 3,

kIsMonoDev = 4,

kUncertainConnection = 5,

kTaggingInfoNonStandard = 6,

kReportsDDCConnection = 7,

kHasDDCConnection = 8

};

Reporting csConnectTaggedType and csConnectTaggedData 11

GetConnectionInfo is designed to be a real-time call, particularly when it is used for
tagging. When a driver receives this call, it should read the sense lines, obtaining the raw
sense code and the extended sense code.

IMPORTANT

The driver is required to do this everytime it gets this call.
It cannot just report the codes it sensed during initialization. ▲

When the kTaggingInfoNonStandard bit of csConnectFlags is cleared to 0, then
csConnectTaggedType and csConnectTagged data are used to report the raw sense
code and the extended sense code, respectively.

The following enumeration shows the constants used for csConnectTaggedType
when kTaggingInfoNonStandard is 0:

typedef unsigned char RawSenseCode;

enum {

kRSCZero = 0,

kRSCOne = 1,

kRSCTwo = 2,

kRSCThree = 3,

kRSCFour = 4,

kRSCFive = 5,

kRSCSix = 6,

kRSCSeven = 7

};

C H A P T E R 1 1

Graphics Drivers

Display Timing Modes 341

The RawSenseCode data type contains constants for the possible raw sense code values
when “standard” sense code hardware is implemented. For such sense code hardware,
the raw sense is obtained as follows:

■ Instruct the frame buffer controller not to drive any of the monitor sense lines actively.

■ Read the state of the monitor sense lines 2, 1, and 0. Line 2 is the MSB, 0 the LSB.

IMPORTANT

When the kTaggingInfoNonStandard bit of csConnectFlags
is false, then the RawSenseCode constants are valid
csConnectTaggedType values in VDDisplayConnectInfo. ▲

The following enumeration shows the constants used for csConnectTaggedData
when kTaggingInfoNonStandard is 0:

typedef unsigned char ExtendedSenseCode;

enum {

kESCZero21Inch = 0x00,/* 21" RGB */

kESCOnePortraitMono = 0x14,/* portrait monochrome*/

kESCTwo12Inch = 0x21,/* 12" RGB*/

kESCThree21InchRadius = 0x31,/* 21" RGB (Radius)*/

kESCThree21InchMonoRadius = 0x34,/* 21" monochrome (Radius)*/

kESCThree21InchMono = 0x35,/* 21" monochrome*/

kESCFourNTSC = 0x0A,/* NTSC */

kESCFivePortrait = 0x1E,/* Portrait RGB*/

kESCSixMSB1 = 0x03,/* Multiscan band-1 (12"

 thru 16")*/

kESCSixMSB2 = 0x0B,/* Multiscan band-2 (13"

 thru 19")*/

kESCSixMSB3 = 0x23,/* Multiscan band-3 (13"

 thru 21")*/

kESCSixStandard = 0x2B,/* 13" or 14" RGB or 12"

 monochrome*/

kESCSevenPAL = 0x00,/* PAL */

kESCSevenNTSC = 0x14,/* NTSC */

kESCSevenVGA = 0x17,/* VGA */

kESCSeven16Inch = 0x2D,/* 16" RGB (GoldFish)*/

kESCSevenPALAlternate = 0x30,/* PAL (alternate) */

kESCSeven19Inch = 0x3A,/* Third-party 19”*/

kESCSevenNoDisplay = 0x3F /* No display connected */

};

The ExtendedSenseCode data type contains enumerated constants for the values that
are possible when the extended sense algorithm is applied to hardware that implements
the “standard” sense code algorithm.

C H A P T E R 1 1

Graphics Drivers

342 Display Timing Modes

For such sense code hardware, the algorithm is as follows, where sense line A
corresponds to 2, B to 1, and C to 0:

■ Drive sense line A low and read the values of B and C.

■ Drive sense line B low and read the values of A and C.

■ Drive sense line C low and read the values of A and B.

In this way, a 6-bit number of the form BC/AC/AB is generated.

IMPORTANT

When the kTaggingInfoNonStandard bit of csConnectFlags
is false, then these constants are valid csConnectTaggedData
values in VDDisplayConnectInfo. ▲

Table 11-2 shows examples of csConnectTaggedType and csConnectTaggedData
values for certain monitors.

Connection Information Flags 11
The following values have been added to the connection information flags to supply
required information to the Display Manager:

■ kReportsDDCConnection = 7 means that the card supports the DDC and would
report a connection if a DDC display were connected.

■ kHasDDCConnection = 8 means the card has a DDC connection to the display.

■ kTaggingInfoNonStandard = 5 means that the information reported in
csConnectTaggedType and csConnectTaggedData fields does not correspond to
the Apple sense codes.

The flag kHasDirectConnect has been renamed kHasDirectConnection.

Timing Information 11
The file Video.h contains constants for Apple-defined timings. A driver returns the
timing for a given display mode by GetTimingInfo. The csTimingData field of the
VDTimingInfoRec contains the timing constant for the display mode. The Display
Manager and smart monitors use it to adjust the valid and safe flags. The
VDTimingInfoRec structure is described on page 352.

Table 11-2 Sample csConnectTaggedType and csConnectTaggedData values

Display csConnectTaggedType csConnectTaggedData

21" Apple RGB 0 0x00

20" Apple Multiscan 6 0x23

14" Apple RGB 6 0x2B

C H A P T E R 1 1

Graphics Drivers

Reporting Display Resolution Values 343

Timing information should reflect the actual timing driving the display. For example,
even if a card creates a large graphics device with hardware pan and zoom for a 13-inch
RGB display, it should still return timingApple13.

Some Apple displays (such as that for the Macintosh Quadra 840AV) support display
modes such as 640x480 on a 16-inch display. The display is being driven at 16-inch
timing, but the graphics device is built smaller. The timing information for that display
mode should still be timingApple16.

Reporting Display Resolution Values 11

In the NuBus environment, the driver’s primary initialization routine trims the
supported display resolutions (functional sResources) to those that are available on
the display that is sensed. This makes it difficult to support new displays, as possible
supported resolutions might have been deleted by the card’s primary initialization
routine. The Display Manager now takes care of verifying that a particular resolution is
supported by the current display, using GetModeConnection and GetTimingInfo.

The following sections detail what the different routines should do to implement the
reporting of all possible display resolutions. See the previous section, “Display Timing
Modes” beginning on page 338, for background information on timing modes.

Implementing the GetNextResolution Call 11
A driver should leave all modes (resolutions) supported by the current video card
hardware (for example, trim the modes that correspond to different amounts of VRAM).
The driver should do this for all displays, even single-mode displays. This will help to
decouple the graphics driver from knowing the capabilities of new displays.

Implementing the GetModeConnection Call 11
The Display Manager uses GetModeConnection to ascertain the capabilities of a
connected display. For this call, the driver should not attempt to determine whether the
various modes are valid or safe. This means the kAllModesValid and kAllModesSafe
bits of the csConnectFlags field should be set to 0. By setting these bit fields to 0, the
driver forces the Display Manger to make a GetModeTiming status call for each timing
mode instead of assuming that they all have the same state.

Implementing the GetModeTiming Call 11
GetModeTiming is used by the Display Manager to gather scan timing information.
If the driver does not believe the display is capable of being driven with the desired
resolution, it marks the kModeValid and kModeSafe bits of the csTimingFlags field
false. This indicates to the Display Manager that the driver doesn’t think the display
can handle the resolution but will let the Display Manager make the final decision,
possibly by asking another software module for more information.

C H A P T E R 1 1

Graphics Drivers

344 Supporting the Hardware Cursor

Programming the Hardware 11
A graphics driver should program the hardware to a valid and safe resolution, according
to the sensed display. It should still report data as detailed in the previous sections. The
driver could also program the hardware to its previous resolution (before the last system
restart), assuming that this information is valid for the current display.

Supporting the Hardware Cursor 11

PCI-based Power Macintosh computers implement a hardware cursor capability that
graphics drivers may support. The status and control calls to which such drivers must
respond are the following:

■ SupportsHardwareCursor status call (csCode = 22), described on page 337

■ GetHardwareCursorDrawState status call (csCode = 23), described on page 337

■ SetHardwareCursor control call (csCode = 22), described on page 326

■ DrawHardwareCursor control call (csCode = 23), described on page 327

Only drivers that provide a hardware cursor need to respond to these calls.

A utility routine, VSLPrepareCursorForHardwareCursor, helps drivers convert
QuickDraw’s internal cursor representation into their hardware cursor’s format. This
routine is described in “Hardware Cursor Utility” beginning on page 346.

Video Services Library 11

The Macintosh Video Services Library (VSL) provides video interrupt services for
vertical blanking, horizontal blanking, and other tasks. It also contains a utility that can
be used by graphics drivers that respond to hardware cursor calls as described in
“Supporting the Hardware Cursor” beginning on page 344.

Interrupt Services 11
This section describes functions in the VSL that help video drivers signal the Macintosh
software to service display interrupts associated with the display attached to the
frame buffer.

A driver can create as many interrupt services as it supports. The model described here
supports different types of video interrupts, such as horizontal blanking and frame
interrupts. It opens the door for specialized interrupts for specific applications (such as
broadcast). For each queue it supports, the driver is responsible for calling
VSLDoInterruptService when the associated interrupt happens.

C H A P T E R 1 1

Graphics Drivers

Video Services Library 345

VSLNewInterruptService 11

OSErr VSLNewInterruptService (RegEntryIDPtr serviceOwner,

 InterruptServiceType serviceType,

 InterruptServiceId* serviceID);

serviceOwner RegEntryIDPtr passed to the driver at install time.

serviceType Type of interrupt to be created.

serviceID Returned to specify the service for further calls to the VSL.

typedef unsigned long InterruptServiceId;

typedef ResType InterruptServiceType;

enum {

kVBLService = 'vbl '; // vertical blanking

kHBLService = 'hbl '; // horizontal blanking

kFrameService = 'fram'; // interlace mode

};

DESCRIPTION

VSLNewInterruptService creates a new interrupt for a graphics device. The service
owner is the RegEntryIDPtr value passed to the driver at install time. This is used to
identify the owner. The service type is a resType value indicating the type of interrupt
to be created. At this time only one interrupt of a given type can be created by a driver.
The serviceID value is returned by VSL and is used to specify the service for any
further calls to VSL.

VSLNewInterruptService can be called only at driver install, open, and close times—
times when memory management calls are safe.

VSLDoInterruptService 11

OSErr VSLDoInterruptService(InterruptServiceId serviceID);

serviceID Value returned by VSLNewInterruptService.

DESCRIPTION

VSLDoInterruptService executes tasks associated with an interrupt service. When a
graphics driver gets an interrupt, it determines which service corresponds to that
interrupt and calls VSLDoInterruptService with the serviceID value for that
service. VSLDoInterruptService executes any tasks associated with the service.

C H A P T E R 1 1

Graphics Drivers

346 Video Services Library

VSLDisposeInterruptService 11

OSErr VSLDisposeInterruptService(InterruptServiceId serviceID);

serviceID Value returned by VSLNewInterruptService.

DESCRIPTION

VSLDisposeInterruptService disposes of an interrupt service. When a graphics
driver is closing for good, so that the card interrupt will no longer be serviced, it should
call VSLDisposeInterruptService. The VSL will take over servicing any tasks still
in the service.

VSLDisposeInterruptService can only be called at driver install, open, and close
times—times when memory management calls are safe.

Hardware Cursor Utility 11
Drivers that support hardware cursors are passed a reference to a cursor stored in
QuickDraw’s internal representation. This cursor format must be converted into the
hardware cursor’s format. This conversion could include translating bit depths,
interpreting the cursor mask, and matching colors.

To facilitate support for hardware cursors, the VSL provides a utility routine that
performs the cursor conversion. By setting up a record that describes the hardware
cursor’s format, a driver can call this routine to do the conversion for it.

VSLPrepareCursorForHardwareCursor 11

Boolean VSLPrepareCursorForHardwareCursor

(void *cursorRef,

 HardwareCursorDescriptorPtr hardwareDescriptor,

 HardwareCursorInfoPtr hwCursorInfo);

cursorRef Reference to the cursor passed in by QuickDraw.

hardwareDescriptor Hardware cursor format.

hwCursorInfo Passed back to the driver to program the hardware cursor.

DESCRIPTION

If the cursorRef passed to the driver is capable of being rendered by the hardware
cursor, VSLPrepareCursorForHardwareCursor returns true; otherwise, it returns
false. Cases where the routine returns false include a cursor needing more colors
than the hardware can supply, a cursor that is too big, and a cursor requiring special
pixel types that the hardware doesn’t support, such as inverted pixels.

C H A P T E R 1 1

Graphics Drivers

Video Services Library 347

The driver uses the following structure to describe its hardware cursor:

enum {

kTransparentEncoding = 0,

kInvertingEncoding

};

enum {

kTransparentEncodingShift = (kTransparentEncoding << 1),

kTransparentEncodedPixel = (0x01 << kTransparentEncodingShift),

kInvertingEncodingShift = (kInvertingEncoding << 1),

kInvertingEncodedPixel = (0x01 << kInvertingEncodingShift),

};

enum {

kHardwareCursorDescriptorMajorVersion = 0x0001,

kHardwareCursorDescriptorMinorVersion = 0x0000

};

struct HardwareCursorDescriptorRec {

UInt16 majorVersion;

UInt16 minorVersion;

UInt32 height;

UInt32 width;

UInt32 bitDepth;

UInt32 maskBitDepth;

UInt32 numColors;

UInt32 *colorEncodings;

UInt32 flags;

UInt32 supportedSpecialEncodings;

UInt32 specialEncodings[16];

};

typedef struct HardwareCursorDescriptorRec

HardwareCursorDescriptorRec, *HardwareCursorDescriptorPtr;

The majorVersion and minorVersion fields describe the version of the descriptor
record. The driver must set these to kHardwareCursorDescriptorMajorVersion
and kHardwareCursorDescriptorMinorVersion. Doing so will provide
compatibility with the conversion routine if the descriptor is changed in future releases
of the VSL.

The height and width fields specify the maximum cursor height and width, in pixels,
supported by the hardware.

The bitDepth field specifies the bit depth of the hardware cursor.

C H A P T E R 1 1

Graphics Drivers

348 Video Services Library

The maskBitDepth field is currently unused but reserved for future use. The driver
must set this field to 0.

The numColors field specifies the number of colors supported by the hardware.

The colorEncodings field points to an array that specifies the hardware pixel
encodings that map to the colors in the hardware cursor color table. The first entry in this
array specifies the hardware cursor pixel value that corresponds to the first entry in the
hardware cursor’s color table; the second entry in this array specifies the pixel value for
the second entry in the hardware’s color table, and so on.

The flags field is used for extra information about the hardware. Currently, all flag bits
are reserved and must be set to 0.

The supportedSpecialEncodings field specifies the type of special pixels supported
by the hardware cursor and how they’re implemented.

The special pixel types supported by the descriptor are transparent pixels and inverting
pixels. Transparent pixels are invisible, and the frame buffer pixel underneath a
transparent hardware cursor pixel is seen. Inverting hardware cursor pixels invert the
frame buffer pixel underneath.

The specialEncodings field is an array that specifies the pixel values for special
encodings. Use the constants kTransparentEncoding and kInvertingEncoding to
index into the array.

EXAMPLES

The following hardware descriptor specifies a typical two-color hardware cursor:

UInt32 cursorColorEncodings[] =

{

0, 1

};

HardwareCursorDescriptorRec hardwareCursorDescriptor =

{

kHardwareCursorDescriptorMajorVersion,// major version number

kHardwareCursorDescriptorMinorVersion,// minor version number

32, // height

32, // width

2, // pixel depth

0, // mask depth

2, // number of cursor colors

&cursorColorEncodings, // color pixel encodings

0, // flags

kTransparentEncodedPixel | // supports transparent pixels

C H A P T E R 1 1

Graphics Drivers

Video Services Library 349

kInvertingEncodedPixel, // supports inverting pixels

2, // transparent pixel encoding

3, // inverting pixel encoding

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // unused encodings

}

The foregoing describes a 2-bit-per-pixel hardware cursor that can be up to 32 by 32
pixels in size and supports transparent and inverting pixels. A cursor pixel value of 0
will display the first color in the cursor’s color map, and a pixel value of 1 will display
the second color. A cursor pixel value of 2 will display the color of the screen pixel
underneath the cursor. A cursor pixel value of 3 will display the inverse of the color of
the screen pixel underneath the cursor.

The following hardware descriptor describes a three-color hardware cursor:

UInt32 cursorColorEncodings[] =

{

1, 2, 3

};

HardwareCursorDescriptorRec hardwareCursorDescriptor =

{

kHardwareCursorDescriptorMajorVersion,// major version number

kHardwareCursorDescriptorMinorVersion,// minor version number

32, // height

32, // width

2, // pixel depth

0, // mask depth

3, // number of cursor colors

&cursorColorEncodings, // color pixel encodings

0, // flags

kTransparentEncodedPixel, // supports transparent pixels

0, // transparent pixel encoding

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // unused encodings

};

The foregoing describes a 2-bit-per-pixel hardware cursor that can be up to 32 by 32
pixels in size and supports transparent pixels. A cursor pixel value of 1 displays the first
color in the cursor’s color map, a pixel value of 2 displays the second color, and a pixel
value of 3 displays the third color. A cursor pixel value of 0 displays the color of the
screen pixel underneath the cursor. If the cursor requires inverting pixels (for example,
the I-beam text edit cursor), a call to VSLPrepareCursorForHardwareCursor will
return false and the driver should let the cursor be implemented in software.

C H A P T E R 1 1

Graphics Drivers

350 Video Services Library

The VSLPrepareCursorForHardwareCursor call will return the information that the
driver needs to program the hardware cursor in the following data structure:

enum {

kHardwareCursorInfoMajorVersion = 0x0001,

kHardwareCursorInfoMinorVersion = 0x0000

};

struct HardwareCursorInfoRec {

UInt16 majorVersion;

UInt16 minorVersion;

UInt32 cursorHeight;

UInt32 cursorWidth;

CTabPtr colorMap;

Ptr hardwareCursor;

UInt32 reserved[6];

};

typedef struct HardwareCursorInfoRec HardwareCursorInfoRec,

*HardwareCursorInfoPtr;

The majorVersion and minorVersion fields describe what version of the info record
is being used. The driver must set these to kHardwareCursorInfoMajorVersion
and kHardwareCursorInfoMinorVersion. Doing so will provide compatibility with
the conversion routine if the descriptor is changed in future releases of the VSL.

The cursorHeight and cursorWidth fields specify the height and width of the cursor
passed in from QuickDraw.

The colorMap field is the table of colors that the cursor uses. A table big enough
to hold all of the colors supported by the hardware cursor must be passed to the
VSLPrepareCursorForHardwareCursor call, which will fill this table with the
appropriate colors. These colors are taken from the color table in the gDevice record
for the driver’s display. The driver must perform any required gamma correction
on this color table.

The hardwareCursor field points to the buffer containing the converted image for
the hardware cursor. A buffer big enough to hold the largest cursor supported by the
hardware must be passed to the VSLPrepareCursorForHardwareCursor call, which
will fill this buffer with the appropriate pixel values. The conversion call will not
neccessarily fill the entire buffer if the cursor passed from QuickDraw is smaller than the
largest cursor supported by the hardware. The hardwareCursor buffer image’s row
bytes will equal cursorWidth times the pixel depth of the hardware cursor. The driver
must set the extra pixels to be transparent.

The reserved field is an array of reserved values, and the driver must set these to 0.

C H A P T E R 1 1

Graphics Drivers

Data Structures 351

Data Structures 11

Mac OS uses the data structures listed in this section to communicate with graphics
drivers. The interface file Video.h contains the latest information about these structures.

struct VPBlock {
 long vpBaseOffset; /*always 0 for Slot Mgr independent drivers*/
 short vpRowBytes; /*width of each row of video memory*/
 Rect pBounds; /*BoundsRect for the video display */
 short vpVersion; /*PixelMap version number*/
 short vpPackType;
 long vpPackSize;
 long vpHRes; /*horiz res of the device (pixels per inch)*/
 long vpVRes; /*vert res of the device (pixels per inch)*/
 short vpPixelType; /*defines the pixel type*/
 short vpPixelSize; /*number of bits in pixel*/
 short vpCmpCount; /*number of components in pixel*/
 short vpCmpSize; /*number of bits per component*/
 long vpPlaneBytes; /*offset from one plane to the next*/
};

In PCI-based graphics drivers, the vpBaseOffset is always 0. The base address of
video RAM for the current page, is the BaseAddress value returned by the
GetCurrentMode routine.

struct VDEntryRecord {
 Ptr csTable; /*pointer to color table entry*/
};

struct VDGrayRecord {
 Boolean csMode; /*same as GDDevType value (0=color, 1=mono)*/
 SInt8 filler;
};

struct VDSetEntryRecord {
 ColorSpec *csTable; /*pointer to an array of color specs*/
 short csStart; /*which spec in array to start with, or -1*/
 short csCount; /*number of color spec entries to set*/
};

struct VDGammaRecord {
 Ptr csGTable; /*pointer to gamma table*/
};

C H A P T E R 1 1

Graphics Drivers

352 Data Structures

struct VDSwitchInfoRec {
 UInt16 csMode; /*relative bit depth*/
 UInt32 csData; /*display mode ID*/
 UInt16 csPage; /*page to switch in*/
 Ptr csBaseAddr; /*base address of page (return value)*/
 UInt32 csReserved; /*reserved (set to 0) */
};

struct VDTimingInfoRec {
 UInt32 csTimingMode; /* timing mode (a la InitGDevice) */
 UInt32 csTimingReserved; /* reserved */
 UInt32 csTimingFormat; /* what format is the timing info */
 UInt32 csTimingData; /* data supplied by driver */
 UInt32 csTimingFlags; /* information*/
};

struct VDDisplayConnectInfoRec {
 UInt16 csDisplayType; /* type of display connected */
 UInt8 csConnectTaggedType; /* type of tagging */
 UInt8 csConnectTaggedData; /* tagging data */
 UInt32 csConnectFlags; /* info about the connection */
 UInt32 csDisplayComponent; /* display component if card has direct
 connection to display (future) */
 UInt32 csConnectReserved; /* reserved */

struct VDPageInfo {
 short csMode;
 long csData;
 short csPage;
 Ptr csBaseAddr;
};

struct VDResolutionInfoRec {

DisplayModeID csPreviousDisplayModeID; /* ID of the previous resolution

in a chain*/

DisplayModeID csDisplayModeID; /* ID of the next resolution*/

unsigned long csHorizontalPixels; /* # of pixels in a horizontal

line at the max depth*/

unsigned long csVerticalLines; /* # of lines in a screen at the

max depth*/

Fixed csRefreshRate; /* vertical refresh rate, Hz*/

DepthMode csMaxDepthMode; /* 0x80-based max bit depth*/

unsigned long csResolutionFlags; /* flag bits*/

unsigned long csReserved; /* reserved*/

};

C H A P T E R 1 1

Graphics Drivers

Data Structures 353

typedef struct VDResolutionInfoRec VDResolutionInfoRec;

/* csResolutionFlags bit flags for VDResolutionInfoRec*/

enum {

kResolutionHasMultipleDepthSizes = 0

/* this mode has different csHorizontalPixels, csVerticalLines at

different depths (usually slightly larger at lower depths)*/

};

struct VDVideoParametersInfoRec {
 DisplayModeID csDisplayModeID; /* ID of the target resolution */
 DepthMode csDepthMode; /* resolution’s relative bit depth */
 VPBlockPtr csVPBlockPtr; /* pointer to video parameter block */
 UInt32 csPageCount; /* number of pages supported by the
 resolution */
 VideoDeviceType csDeviceType; /* direct, fixed, or CLUT */
 UInt32 csReserved; /* reserved */
};

struct VDFlagRecord {
 SInt8 csMode; /* interrupts enabled or disabled */
 SInt8 filler; /* reserved */
};

struct VDGetGammaListRec {
 GammaTableID csPreviousGammaTableID; /* ID of previous gamma table */
 GammaTableID csGammaTableID; /* ID of gamma table following
 csPreviousDisplayModeID */
 UInt32 csGammaTableSize; /* size of gamma table in bytes */
 char csGammaTableName[32]; /* gamma table name (C string) */
};

struct VDRetrieveGammaRec {
 GammaTableID csGammaTableID; /* ID of gamma table to retrieve */
 GammaTbl *csGammaTablePtr; /* location to copy desired gamma to */
};

struct VDSupportsHardwareCursorRec {
 Boolean csSupportsHardwareCursor; /* true if HW cursor supported */
 SInt8 filler;
};

struct VDSetHardwareCursorRec {
 void *csCursorRef;
};

C H A P T E R 1 1

Graphics Drivers

354 Data Structures

struct VDDrawHardwareCursorRec {
 SInt32 csCursorX;
 SInt32 csCursorY;
 SInt32 csCursorVisible;
};

struct VDSyncInfoRec {
 UInt8 csMode;
 UInt8 csFlags;
};

struct VDConvolutionInfoRec {
 DisplayModeID csDisplayModeID; /* ID of resolution we want info on */
 DepthMode csDepthMode; /* Relative bit depth */
 UInt32 csPage;
 UInt32 csFlags;
 UInt32 csReserved;
};

struct VDPowerStateRec {

unsigned long powerState;

unsigned long powerFlags;

unsigned long powerReserved1;

unsigned long powerReserved2;

};

typedef UInt32 DisplayModeID;
typedef UInt32 VideoDeviceType;
typedef UInt32 GammaTableID;

/* Power Mode constants for VDPowerStateRec.powerState.*/

kAVPowerOff,

kAVPowerStandby,

kAVPowerSuspend,

kAVPowerOn

};

enum {

/* Power Mode constants for VDPowerStateRec.powerFlags.*/

kPowerStateNeedsRefreshBit= 0,

kPowerStateNeedsRefreshMask= (1L << 0)

};

C H A P T E R 1 1

Graphics Drivers

Data Structures 355

/* bit definitions for the get/set sync call*/
enum {
 kDisableHorizontalSyncBit = 0,
 kDisableVerticalSyncBit = 1,
 kDisableCompositeSyncBit = 2,
 kEnableSyncOnBlue = 3,
 kEnableSyncOnGreen = 4,
 kEnableSyncOnRed = 5,
 kNoSeparateSyncControlBit = 6,
 kHorizontalSyncMask = 0x01,
 kVerticalSyncMask = 0x02,
 kCompositeSyncMask = 0x04,
 kDPMSSyncMask = 0x7,
 kSyncOnBlueMask = 0x08,
 kSyncOnGreenMask = 0x10,
 kSyncOnRedMask = 0x20,
 kSyncOnMask = 0x38
};

/* Bit definitions for the get/set convolution call*/
enum {
 kConvolved = 0,
 kLiveVideoPassThru = 1,
 kConvolvedMask = 0x01,
 kLiveVideoPassThruMask = 0x02
};

/* csTimingFormat values in VDTimingInfo */
/* timing info follows DeclROM format */
enum {
 kDeclROMtables = 'decl'
};

enum {
timingInvalid = 0, /* unknown timing; user must confirm*/

timingApple_512x384_60hz = 130, /* 512x384 (60 Hz) Rubik timing*/

timingApple_560x384_60hz = 135, /* 560x384 (60 Hz) Rubik-560 timing*/

timingApple_640x480_67hz = 140, /* 640x480 (67 Hz) HR timing*/

timingApple_640x400_67hz = 145, /* 640x400 (67 Hz) HR-400 timing*/

timingVESA_640x480_60hz = 150, /* 640x480 (60 Hz) VGA timing*/

timingApple_640x870_75hz = 160, /* 640x870 (75 Hz) FPD timing*/

timingApple_640x818_75hz = 165, /* 640x818 (75 Hz) FPD-818 timing*/

timingApple_832x624_75hz = 170, /* 832x624 (75 Hz) GoldFish timing*/

timingVESA_800x600_56hz = 180, /* 800x600 (56 Hz) SVGA timing*/

timingVESA_800x600_60hz = 182, /* 800x600 (60 Hz) SVGA timing*/

C H A P T E R 1 1

Graphics Drivers

356 Data Structures

timingVESA_800x600_72hz = 184, /* 800x600 (72 Hz) SVGA timing*/

timingVESA_800x600_75hz = 186, /* 800x600 (75 Hz) SVGA timing*/

timingVESA_1024x768_60hz = 190, /* 1024x768 (60 Hz) VESA 1K-60Hz*/

timingVESA_1024x768_70hz = 200, /* 1024x768 (70 Hz) VESA 1K-70Hz*/

timingApple_1024x768_75hz = 210, /* 1024x768 (75 Hz) Apple 19" RGB*/

timingApple_1152x870_75hz = 220, /* 1152x870 (75 Hz) Apple 21" RGB*/

timingAppleNTSC_ST = 230, /* 512x384 (60 Hz, interlaced,

 nonconvolved)*/

timingAppleNTSC_FF = 232, /* 640x480 (60 Hz, interlaced,

 nonconvolved)*/

timingAppleNTSC_STconv = 234, /* 512x384 (60 Hz, interlaced,

 nonconvolved)*/

timingAppleNTSC_FFconv = 236, /* 640x480 (60 Hz, interlaced,

 nonconvolved)*/

timingApplePAL_ST = 238, /* 640x480 (60 Hz, interlaced,

 nonconvolved)*/

timingApplePAL_FF = 240, /* 768x576 (60 Hz, interlaced,

 nonconvolved)*/

timingApplePAL_STconv = 242, /* 640x480 (60 Hz, interlaced,

 nonconvolved)*/

timingApplePAL_FFconv = 244, /* 768x576 (60 Hz, interlaced,

 nonconvolved)*/

timingVESA_1280x960_75hz = 250, /* 1280x960 (75 Hz)*/

timingVESA_1280x1024_60hz = 260, /* 1280x1024 (60 Hz)*/

timingVESA_1280x1024_75hz = 262, /* 1280x1024 (75 Hz)*/

timingVESA_1600x1200_60hz = 280, /* 1600x1200 (60 Hz) VESA proposed*/

timingVESA_1600x1200_65hz = 282, /* 1600x1200 (65 Hz) VESA proposed*/

timingVESA_1600x1200_70hz = 284, /* 1600x1200 (70 Hz) VESA proposed*/

timingVESA_1600x1200_75hz = 286, /* 1600x1200 (75 Hz) VESA proposed*/

timingVESA_1600x1200_80hz = 288 /* 1600x1200 (80 Hz) VESA proposed

 (pixel clock is 216 Mhz dot clock)*/

/* csConnectFlags values in VDDisplayConnectInfo */
enum {
 kAllModesValid = 0,
 kAllModesSafe = 1,
 kReportsTagging = 2,
 kHasDirectConnection = 3,
 kIsMonoDev = 4,
 kUncertainConnection = 5,
 kTaggingInfoNonStandard = 6,
 kReportsDDCConnection = 7,
 kHasDDCConnection = 8
};

C H A P T E R 1 1

Graphics Drivers

Data Structures 357

/* csDisplayType values in VDDisplayConnectInfo */
enum {

kUnknownConnect = 1,
kPanelConnect = 2, /* for use with fixed-in-place LCD panels */
kPanelTFTConnect = 2, /* alias for kPanelConnect */
kFixedModeCRTConnect = 3, /* for use with fixed-mode

(i.e. very limited range) displays */
kMultiModeCRT1Connect= 4, /* 320x200 maybe, 12" maybe, 13" (default),

16" certain, 19" maybe, 21" maybe */
kMultiModeCRT2Connect= 5, /* 320x200 maybe, 12" maybe, 13" certain,

16" (default), 19" certain, 21" maybe */
kMultiModeCRT3Connect= 6, /* 320x200 maybe, 12" maybe, 13" certain,

16" certain, 19" default, 21" certain */
kMultiModeCRT4Connect= 7, /* expansion to large multimode

(not yet used) */
kModelessConnect = 8, /* expansion to modeless model

(not yet used) */
kFullPageConnect = 9, /* 640x818 (to get 8bpp in 512K case)

and 640x870 (these two only) */
kVGAConnect = 10, /* 640x480 VGA default--

question everything else */
kNTSCConnect = 11, /* NTSC ST (default), FF, STconv, FFconv */
kPALConnect = 12, /* PAL ST (default), FF, STconv, FFconv */
kHRConnect = 13, /* 640x400 (to get 8bpp in 256K case)

and 640x480 (these two only) */
kPanelFSTNConnect = 14 /* for use with fixed-in-place LCD FSTN

(aka "Supertwist") panels */
};

/* csTimingFlags values in VDTimingInfoRec */
enum {

kModeValid = 0, /* says that this mode should NOT be trimmed */
kModeSafe = 1, /* this mode does not need confirmation */
kModeDefault = 2, /* default mode for this type connection */
kModeShowNow = 3, /* this mode should always be shown (even

though it may require a confirm) */
kModeNotResize = 4, /* should not be used to resize the display,

e.g. mode selects different connector on card */
kModeRequiresPan = 5 /* has more pixels than are actually displayed */

};

C H A P T E R 1 1

Graphics Drivers

358 Data Structures

typedef unsigned short DepthMode;
enum {
 kDepthMode1 = 128,
 kDepthMode2 = 129,
 kDepthMode3 = 130,
 kDepthMode4 = 131,
 kDepthMode5 = 132,
 kDepthMode6 = 133

typedef unsigned char RawSenseCode;

enum {
 kRSCZero = 0,
 kRSCOne = 1,
 kRSCTwo = 2,
 kRSCThree = 3,
 kRSCFour = 4,
 kRSCFive = 5,
 kRSCSix = 6,
 kRSCSeven = 7
};

typedef unsigned char ExtendedSenseCode;
enum {

kESCZero21Inch = 0x00, /* 21" RGB */
kESCOnePortraitMono = 0x14, /* portrait Monochrome */
kESCTwo12Inch = 0x21, /* 12" RGB */
kESCThree21InchRadius = 0x31, /* 21" RGB (Radius) */
kESCThree21InchMonoRadius= 0x34, /* 21" monochrome (Radius) */
kESCThree21InchMono = 0x35, /* 21" monochrome */
kESCFourNTSC = 0x0A, /* NTSC */
kESCFivePortrait = 0x1E, /* Portrait RGB */
kESCSixMSB1 = 0x03, /* Multiscan band-1 (13" thru 16") */
kESCSixMSB2 = 0x0B, /* Multiscan band-2 (13" thru 19") */
kESCSixMSB3 = 0x23, /* Multiscan band-3 (13" thru 21") */
kESCSixStandard = 0x2B, /* 13"/14" RGB or 12" Monochrome */
kESCSevenPAL = 0x00, /* PAL */
kESCSevenNTSC = 0x14, /* NTSC */
kESCSevenVGA = 0x17, /* VGA */
kESCSeven16Inch = 0x2D, /* 16" RGB (GoldFish) */
kESCSevenPALAlternate = 0x30, /* PAL (alternate) */
kESCSeven19Inch = 0x3A, /* Third-party 19” */
kESCSevenNoDisplay = 0x3F /* No display connected */

};

C H A P T E R 1 1

Graphics Drivers

Replacing Graphics Drivers 359

enum {

kDisplayModeIDCurrent = 0x0, // reference the current DisplayModeID

kDisplayModeIDInvalid = 0xffffffff, // a bogus DisplayModeID in all cases

kDisplayModeIDFindFirstResolution = 0xfffffffe, // used in

// GetNextResolution to

// reset iterator

kDisplayModeIDNoMoreResolutions = 0xfffffffd // used in

// GetNextResolution to

// indicate end of list

}

enum {

kGammaTableIDFindFirst = 0xfffffffe, // get the first gamma table ID

kGammaTableIDNoMoreTables = 0xfffffffd,// used to indicate end of list

kGammaTableIDSpecific = 0x0 // return the info for the given table ID

}

Replacing Graphics Drivers 11

Mac OS is able to replace the ROM-based PCI graphics driver. You can use this feature to
fix a bug or add additional functionality that was not found in the ROM-based driver.
This section details several guidelines for replacing the driver. Prerequisite information
is contained in “Driver Replacement,” beginning on page 150.

Note
Replacing a graphics driver may disrupt the user’s experience if the
screen flashes or is redrawn. The following discussion suggests ways to
prevent or control this. ◆

Starting with version 1.1 of the System Enabler, Mac OS issues a kSupersededCommand
to the outgoing driver and a kReplaceCommand to the new driver. Note that a driver
that gets the kSupersededCommand will not get a kFinalizeCommand. Similarly, the
driver getting the kReplaceCommand will not get the kInitializeCommand.

To implement these new calls, the ROM-based driver must support the kSuperseded
command. In the call’s implementation, the driver must place in the Name Registry any
information that will be needed by the new driver. It should not reset the video
hardware (for example, by turning the video sync signals off).

A kCloseCommand will always be issued before kFinalizeCommand or
kSupersedeCommand. When this command is received, the driver should turn off all
interrupts and remove all VSL services. When responding to kFinalizeCommand and
kSupersededCommand, it should remove the interrupt services.

The new driver needs to support the kReplaceCommand. After reading the state
information from the Name Registry (which the old driver put there), it must make sure

C H A P T E R 1 1

Graphics Drivers

360 Replacing Graphics Drivers

that all the current information is correctly initialized in the hardware. When responding
to the kReplaceCommand it should not reprogram the hardware, because this might
make the display flash.

The kReplaceCommand routine can ask Mac OS to redraw the screen by creating a
property named needFullInit in the device node of the Name Registry. On finding
that property, the Mac OS will redraw the screen and then delete the property.
Redrawing the screen might be required if the new driver needed to change a parameter
in the hardware (such as rowBytes) that is reflected in the OS data structures.

C H A P T E R 1 2

Network Drivers 12Figure 12-0
Listing 12-0
Table 12-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1 2

Network Drivers

362

Dynamic Loading

This chapter describes what must be done to create STREAMS drivers for the Apple
Open Transport networking hardware. It also describes the minimal functionality that
must be supported by any driver that works with the Open Transport implementations
of AppleTalk and TCP/IP. In this chapter, STREAMS drivers are also called

port drivers.

Open Transport uses the STREAMS model for implementing protocols and drivers to
provide flexibility for mixing and matching protocols. This approach also allows a wide
range of third-party STREAMS modules and drivers to be easily ported to the Open
Transport environment.

Part of the flexibility of the STREAMS environment comes from its being a messaging
interface with only a few well-defined messages. The most common types of messages
are

M_DATA

 (for sending raw data),

M_PROTO

 (for sending normal commands), and

M_PCPROTO

 (for sending high-priority commands). Since STREAMS does not define the
content of

M_PROTO

 or

M_PCPROTO

 messages, it is necessary for modules to agree on a
message format if they are to communicate. Apple uses the Transport Provider Interface
(TPI) message format for most protocol modules and the

Data Link Provider Interface
(DLPI)

 for STREAMS port drivers.

This document assumes familiarity with the STREAMS environment and with the set of
STREAMS messages defined by the DLPI specification (

Data Link Provider Interface
Specification

 by Unix International, OSI Workgroup).

Dynamic Loading 12

Open Transport supports two methods of dynamically loading STREAMS modules. A
STREAMS module may be written as an Apple Shared Library Manager (ASLM) shared
library or as a Code Fragment Manager (CFM) code fragment. STREAMS modules
written for 68000-family processors must use the ASLM. The CFM is the preferred
mechanism for PowerPC modules, but the ASLM may also be used, especially if the
module loads C++ classes dynamically.

In this chapter, whenever a STREAMS module or driver is described as exporting a
function it means that it exports the function using the named export method of the
appropriate DLL. For the ASLM, this means using the

extern

 keyword in front of the
name of the function in the export file. For the CFM, this means using the

–export

switch when linking a shared library.

IMPORTANT

Port drivers for the second generation of Power Macintosh computers
must be written to conform to the new native driver architecture, using
the CFM only. Open Transport will get all of the information it needs
from the Macintosh Name Registry, described in Chapter 8.

▲

C H A P T E R 1 2

Network Drivers

Finding the Driver

363

Finding the Driver 12

For Open Transport to be able to use a port driver, it needs to know that the driver exists.
This is accomplished by having a port scanner register the port driver with Open
Transport. On Power Macintosh computers with the native driver architecture, Open
Transport provides this scanner, and driver writers only need to know how to set up the
driver so that it can be found. With other computers, the driver writer may need to
provide the port scanner.

Native Port Drivers 12

Open Transport provides the expert for drivers written for PCI-based Power Macintosh
computers with the native driver architecture. For your driver to be automatically
located and installed by the Open Transport expert, you must first define and export a

DriverDescription

 structure as part of your driver so that your driver is added to
the Name Registry. This structure is described in “Driver Description Structure”
beginning on page 88.

For Open Transport, the fields of the

DriverDescription

 structure must be set
as follows:

driverDescSignature

Must contain the value

kTheDescriptionSignature

.

driverDescVersion

Must contain the value

kInitialDriverDescriptor

.

driverType.nameInfoStr

Fill in with the name of the driver. It must be exactly the same name
as the module name pointed to by the

streamtab

 structure of the
driver (in the

qi_minfo

->

mi_idname

 field). The driver name may
not end in a digit.

driverType.version

Fill in with the version number of the driver (not the
version number of the device, which is stored in the

driverDescVersion.revisionID

 field).

DriverOSRuntimeInfo.driverRuntime

This field must have the bit

kdriverIsUnderExpertControl

 set.

DriverOSRuntimeInfo.driverName

This field must contain one of the device names found in

OpenTptLinks.h

. These include

kEnetName

,

kTokenRingName

,

kFDDIName

, and so on. Remember that this field is a Pascal string,
and the equates are for C strings, so you must use code such as

"\p"
kEnetName

 to get the desired effect.

DriverOSRuntimeInfo.driverDescReserved[8]

These are reserved fields and should be initialized to 0.

C H A P T E R 1 2

Network Drivers

364

Installing the Driver

DriverOSService.service[x].serviceCategory

At least one of your service categories must be filled in with the
category

kServiceCategoryopentransport

.

DriverOSService.service[x].serviceType

The service type field is a bit field that tells Open Transport about
your device. It has this form:

xxxxdddd dddddddd cccccccc xxxxxxTD

where the

d

 bits indicate the device type for Open Transport, the

c

bits indicate Ethernet framing options (the driver’s capability bits), the
lower 2 bits (

TD

) state whether the driver is TPI or DLPI, and all other
bits are 0 (shown by

x

). The macro

OTPCIServiceType

(

devType

,

capabilityBits,

isTPI

,

isDLPI

)
should be used to create this field. The list of device types available is
found in the header file

OpenTptLinks.h

.

DriverOSService.service[x].serviceVersion

This field specifies the version of the Open Transport programming
interface that your driver supports. It is in the standard

NumVersion

format (the format of a 4-byte

'vers'

 resource). Currently, this field
should be set to the constant

kOTDriverAPIVersion

.

Installing the Driver 12

Once your driver is registered with Open Transport, it is ready for Open Transport to
install in a stream. This section describes the installation and loading processes.

Driver Initialization 12

 Any necessary driver initialization should be done by the port scanner before registering
the driver. This insures that a device that is not usable does not get registered. For
systems using the native driver architecture, Open Transport's port scanner will call

ValidateHardware

 before registering your port.

OTResult ValidateHardware (RegEntryIDPtr)

The parameter passed to the

ValidateHardware

 function depends on the port scanner
being used. If the driver is able to change the power level of the device, it must use the

ValidateHardware

 function, setting the device to either low power or no power.

Open Transport requires that

ValidateHardware

 be exported. When this function is
called, it should validate that the hardware is correct for the driver and is in good
working order. If the function returns

kENOENTErr

, then the hardware is probably not
the hardware for the driver and Open Transport will continue scanning for another
driver. This is especially important for cards that do not have Open Firmware ROMs,
because multiple vendors’ drivers may end up with the same name and appear to be
usable with each other’s hardware.

C H A P T E R 1 2

Network Drivers

Installing the Driver

365

For information about Mac OS services available to support

ValidateHardware

, see
“Driver Initialization and Resource Verification” beginning on page 145.

ValidateHardware

 should return one of the following values:

If the

ValidateHardware

 function is not exported, Open Transport will proceed as if
the function returned

kOTNoError.

Driver Loading 12
When a service requires the use of your driver, Open Transport will automatically load it
and install it into the STREAMS module tables. In order to do this, your module must
export a function named either GetOTInstallInfo or GetOTxxxxxInstallInfo
(where xxxxx is the name of the module or driver).

install_info* GetOTInstallInfo(void);

This function returns the installation information that Open Transport needs to install
the driver into the STREAMS tables, using the following data structure:

structure install_info

{

structure streamtab*install_str;

UInt32 install_flags;

UInt32 install_sqlvl;

char* install_buddy;

void* ref_load;

UInt32 ref_count;

};

kOTNoError The hardware is OK. The device will be registered, and the driver
may be unloaded from memory.

kOTPCINoErrorStayLoaded

The hardware is OK, the device will be registered, and the driver
will not be unloaded from memory.

kENXIOErr The hardware is correct for the driver but is not OK. The
port will not be registered, and the driver will be unloaded
from memory.

kENOENTErr The hardware is probably not correct for the driver. The port will
not be registered, and the driver will be unloaded. Open
Transport will continue scanning for other drivers that might
work with the hardware.

number < 0 Any appropriate error code (such as kENOMEMErr). The port will
not be registered, and the driver will be unloaded.

C H A P T E R 1 2

Network Drivers

366 Installing the Driver

Field descriptions

install_str This is a pointer to the driver’s streamtab structure.
install_flags This contains flags to inform Open Transport of your driver’s

STREAMS module type. The install_flags should be set
to kOTModIsDriver | kOTModIsPortDriver for STREAMS
port drivers.

install_sqlvl This flag is set to the type of reentrancy your driver can handle.
Possible values are the following:

install_buddy This field is currently not support by Open Transport. It should be
set to NULL.

ref_load This field keeps a load reference to the driver. It should be
initialized to 0 and then never touched.

ref_count This field monitors when a driver is first loaded and last unloaded.
It should be initialized to 0 and then never touched.

Whenever Open Transport loads your module or driver, and the ref_count field of the
install_info structure is 0, Open Transport will call an optional initialization function
exported by the module. This function must be named either InitStreamModule or
InitxxxxxStreamModule (where xxxxx is the name of the module or driver).

Boolean InitStreamModule (void* systemDependent);

If InitStreamModule returns false to Open Transport, then the loading of the
module will be aborted and an ENXIO error will be returned to the client. Otherwise, the
module will be loaded and installed into a stream.

The systemDependent parameter is a pointer to the cookie value used when
registering the port. For drivers loaded using the System registry, its value is
RegEntryIDPtr.

If the PCI device supports changing power levels, the InitStreamModule function
should set the power level for normal operation.

Whenever Open Transport removes the last instance of a module or driver from the
system, it calls an optional termination function exported by the module. This function
must be named either TerminateStreamModule or TerminatexxxxxStreamModule
(where xxxxx is the name of the module or driver).

void TerminateStreamModule (void);

SQLVL_QUEUE The driver can be entered once from the
upper queue and once from the lower
queue at the same time.

SQLVL_QUEUEPAIR The driver can be entered from either the
upper queue or the lower queue, but not at
the same time.

SQLVL_MODULE The driver can be entered only once per
port, regardless of which instance of the
module is entered.

SQLVL_GLOBAL Among all modules that use
SQLVL_GLOBAL only one will be entered
at a time.

C H A P T E R 1 2

Network Drivers

Driver Operation 367

If the PCI device supports changing power levels, the TerminateStreamModule
function should set the power level to low power or no power, as appropriate.

Of course, modules and drivers may also use the initialization and termination features
of their DLL technology. Both CFM and ASLM allow initialization and termination
routines. However, only a call to InitStreamModule implies that the module is about
to be loaded into a stream. Open Transport often loads a module just to call the
GetOTInstallInfo information.

All memory allocations that do not use the Open Transport allocation routines
(OTAllocMem and OTFreeMem) or any interrupt-safe allocators supplied by the
interrupt subsystem must be performed from within the initialization and termination
routines—that is, PoolAllocateResident and PoolDeallocate may be called only
from them.

Once your port driver has been loaded, all communication with it will be through
STREAMS messages and the entry points in the streamtab.

Note
Native drivers usually require a DoDriverIO export. Drivers that only
support Open Transport do not need this export, and all references to it
in the driver documentation may be safely ignored. ◆

Driver Operation 12

Once your driver is installed in a stream and opened, it is ready for action. From that
point on, the driver will respond to messages according to the interface specifications
(TPI or DLPI) that it supports.

Drivers have one additional requirement they must observe. If they are running as
a result of a primary interrupt, they must call the OTEnterInterrupt function
before making any Open Transport calls. They must call OTLeaveInterrupt before
exiting their current interrupt level, after they have made their final call to any Open
Transport routines.

It is strongly suggested that the appropriate Open Transport functions be used for
timing services and secondary interrupt services, so they will be most compatible with
future versions of Mac OS. Open Transport is also compatible with current non-PCI
Macintosh platforms.

 The Open Transport secondary interrupt services do not have the same restrictions as
some other services, because any memory allocations needed are handled early. This
prevents these functions from failing at inconvenient times.

C H A P T E R 1 2

Network Drivers

368 Driver Operation

Interrupt-Safe Functions 12
Open Transport provides many STREAMS services for module and driver writers, but
not all of these services may be used at interrupt time.

The following STREAMS functions may be safely called at interrupt time:

allocb adjmsg copyb copymsg dupb

dupmsg esballoc freeb freemsg linkb

msgdsize msgpullup pullupmsg rmbv testb

unlinkb datamsg OTHERQ RD WR

bzero bcopy bcmp putq

IMPORTANT

The putq function may be used only to put a packet onto its lower
(read) queue. No other put operation is allows at interrupt time.
In particular, the canput function and its variants, as well as the
queue enabling and put functions, cannot be called at primary
interrupt time. ▲

The following Open Transport functions may be safely called at interrupt time:

OTCreateDeferredTask OTDestroyDeferredTask

OTScheduleDeferredTask OTGetClockTimeInSecs

OTGetTimeStamp OTSubtractTimeStamps

OTTimeStampInMilliseconds OTTimeStampInMicroseconds

OTElapsedMilliseconds OTElapsedMicroseconds

cmn_err OTAllocMsg OTAllocMem

OTFreeMem mi_timer_alloc mi_timer_free

mi_timer mi_timer_cancel

In addition, all functions described in “Atomic Services” beginning on page 370 may be
called at interrupt time.

Secondary Interrupt Services 12
The functions described in this section are associated with Open Transport’s secondary
interrupt services.

typedef void (*OTProcessProcPtr)(void* contextInfo);

This typedef defines the deferred task callback function.

C H A P T E R 1 2

Network Drivers

Driver Operation 369

long OTCreateDeferredTask (OTProcessProcPtr proc,

 void *contextInfo);

This function creates a cookie (the returned long value) that can be used at a later time
to schedule the function proc. At the time that proc is invoked, it will be passed the
same contextInfo parameter that was passed to the OTCreateDeferredTask
procedure.

void OTScheduleDeferredTask(long dtCookie);

This function is used to schedule the deferred procedure corresponding to the dtCookie
value. It may be called multiple times before the deferred procedure actually being
executed, but the deferred procedure will only be run once. Once the deferred procedure
has run, subsequent calls to OTScheduleDeferredTask will cause it to be scheduled
to run again.

void OTDestroyDeferredTask(long dtCookie);

This function is used to destroy any resources associated with the deferred procedure; it
should be called when the procedure is no longer needed.

Timer Services 12
Open Transport supplies robust timer services that are synchronized with the STREAMS
environment and are supported by using special STREAMS messages. The function
mi_timer_alloc creates one of these special STREAMS messages:

mblk_t* mi_timer_alloc(queue_t* targetQueue, size_t size);

Calling this function creates a STREAMS timer message of the requested size that is
targeted to the specified STREAMS queue. Upper queues must be used as the targets of
timer messages because timer messages enter target queues as M_PCSIG messages,
which can never legitimately arrive from an upper queue but might legitimately arrive
from a lower queue.

void mi_timer(mblk_t* timerMsg, unsigned long milliSeconds);

This function schedules the timerMsg (created using mi_timer_alloc) to be placed
on the target STREAMS queue at a specified future time.

Note
To reset a timer, you need only call mi_timer with the new time.
There is no need to call mi_timer_cancel. ◆

C H A P T E R 1 2

Network Drivers

370 Driver Operation

void mi_timer_cancel(mbk_t* timerMsg);

This function cancels an outstanding timer message. The timerMsg message is not
destroyed but will no longer be delivered to the target queue. It may be rescheduled
by using mi_timer at a later time.

void mi_timer_free (mblk_t* timerMsg);

This function cancels and frees the specified timer message (mi_timer_cancel does
not free the message). Never call freeb or freemsg for a timer message.

Boolean mi_timer_valid (mblk_t* timerMsg);

Timer messages enter the target queue as M_PCSIG messages. Whenever a queue that
can receive a timer message receives an M_PCSIG message, it should call
mi_timer_valid, passing the M_PCSIG message as a parameter. If the function returns
true, then the timer message is valid and should be processed. If the function returns
false, then the timer message was either deleted or canceled. In this case, ignore the
message and don’t free it.

▲ W A R N I N G

The mi_timer_valid function may not be called at interrupt time. ▲

mblk_t* mi_timer_qswitch

(mblk_t* timerMsg, queue_t* q, mblk_t* newTimerMsg);

This function is called to change the target queue of a timer message. The caller must be
in a context that blocks delivery of the timer message to the target queue’s put or service
routine during the call. For example, the caller must already be in a put or service
routine and won’t be processing a timer message reentrantly.

The timerMsg parameter is the timer message that is to be moved to the new queue.
The q parameter is the new target queue for the timer message. The newTimerMsg
parameter is a copy of the timer message that is pointed to by timerMsg. The routine
returns a pointer to the timer message that lives on—either timerMsg or newTimerMsg.
The other message is freed. If no new message is provided (newTimerMsg is null), but
a message is required to do the switch successfully, a null pointer is returned. Both
timerMsg and newTimerMsg are copies of the same message. On return, these pointers
must be treated as invalid pointers and only the function return pointer can be
considered valid.

Atomic Services 12
Open Transport supplies atomic services that help reduce the need for drivers to disable
and enable interrupts.

Note
Don’t confuse these services with the DSL
atomic services described in Chapter 9. ◆

C H A P T E R 1 2

Network Drivers

Driver Operation 371

IMPORTANT

Many atomic services have strict alignment requirements. Be sure to
heed the following warnings. The OTAllocMem and all STREAMS
message blocks are guaranteed to be aligned to 32-bit boundaries. On
STREAMS message blocks, this applies to the actual start of the
message, not the b_rptr field itself, which may not be aligned at all. In
16-bit operations, if the 16 bits cross a 32-bit boundary the atomic
function will not work properly. In 32-bit functions, it is important that
the variable being operated on be aligned on a 32-bit boundary. ▲

The first set of services atomically sets, clears, or tests a single bit in a byte. The first
parameter is a pointer to a single byte, and the second is a bit number from 0 to 7. The
functions return the previous value of the bit. Bit 0 corresponds to a mask of 0x01, and
bit 7 corresponds to a mask of 0x80.

Boolean OTAtomicSetBit (UInt8* theByte, size_t theBitNo);

Boolean OTAtomicClearBit(UInt8* theByte, size_t theBitNo);

Boolean OTAtomicTestBit (UInt8* theByte, size_t theBitNo);

Boolean OTAcquireLock (UInt8* theByte);

void OTClearLock (UInt8* theByte);

OTAcquireLock is a faster equivalent of OTAtomicSetBit(theByte, 0). It returns
true if the lock could be acquired (that is, if the bit was flipped from off to on).
OTClearLock is a macro that just zeroes the byte.

The second set of services atomically add to a 32-, 16-, or 8-bit variable. By using a
negative number, they can subtract. The return value is the new value of the variable
as it is when the operation is completed.

SInt32 OTAtomicAdd32 (SInt32, SInt32* varToBeAddedTo);

SInt16 OTAtomicAdd16 (SInt16, SInt16* varToBeAddedTo);

SInt8 OTAtomicAdd8 (SInt8, SInt8* varToBeAddedTo);

The third service is a general compare and swap. It determines if the value at where still
contains the value oVal; if so, it substitutes the value nVal. If the compare and swap
succeeds, the function returns true, otherwise false.

Boolean OTCompareAndSwap32

(UInt32 oVal, UInt32* nVal, UInt32** where);

Boolean OTCompareAndSwap16

(UInt16 oVal, UInt16* nVal, UInt16** where);

Boolean OTCompareAndSwap8

(UInt8 oVal, UInt8* nVal, UInt8** where);

The fourth set of services is an atomic last in, first out (LIFO) list. OTLIFOEnqueue and
OTLIFODequeue are self-explanatory. OTLIFOStealList lets you remove all of the
elements from the LIFO list atomically, so that the elements in the list can be iterated at
your leisure by traditional means. OTLIFOReverseList is for those who find that LIFO
lists are next to useless in networking. Once the OTLIFOStealList function has been

C H A P T E R 1 2

Network Drivers

372 Driver Operation

executed, the result can be passed to OTLIFOReverseList, which can be used to flip
the list into a first in, first out (FIFO) configuration. The OTLink and the OTLIFO
parameters must both be aligned on 32-bit boundaries. Note that OTLIFOReverseList
is not atomic.

struct OTLink

{

void* fNext;

};

struct OTLIFO

{

void* fLink;

};

void OTLIFOEnqueue (OTLIFO* list, OTLink* toAdd);

OTLink* OTLIFODequeue (OTLIFO* list);

OTLink* OTLIFOStealList(OTLIFO* list);

OTLink* OTReverseList (OTLink* firstInList);

The last set of services performs enqueueing and dequeueing from a LIFO list. It is used
internally in the STREAMS implementation; it is exported so you can use it if it proves
useful. If you look at the Open Transport LIFO implementation, it assumes that the
structures being linked have their links pointing at the next link, and so on. Unfortunately,
STREAMS messages (msgb structures) are not linked this way internally (the b_cont
field does not point to the b_cont field of the next message block but instead points to
the actual message block itself). These two functions let you create a LIFO list where the
head pointer of the list points to the actual object, but the next pointer in the object is at
some arbitrary offset. It is important that the links and the list itself be aligned on 32-bit
boundaries for these functions to work properly.

void* OTEnqueue

(void** list, void* newListHead, size_t offsetOfNextPtr);

void* OTDequeue

(void** theList, size_t offsetOfNextPtr);

Power Services 12
For those devices that can change their power usage, the STREAMS module must export
the entry point OTSetPowerLevel. This lets the system set the device’s power level
before its driver is installed into a stream.

void OTSetPowerLevel(UInt32 powerSelector);

C H A P T E R 1 2

Network Drivers

CSMA/CD Driver 373

In addition, devices that can change their power usage should support the
I_OTSetPowerLevel IOCTL call. However, I_OTSetPowerLevel is used only
if the driver is already installed into a stream.

Following are the four-byte selectors that can be passed to I_OTSetPowerLevel, with
their return values:

CSMA/CD Driver 12

The Open Transport CSMA/CD driver is a STREAMS driver that presents a DLPI to its
clients. It is based on Revision 2.0.0 of the DLPI Specification, and is a Style 1 provider,
supporting the connectionless mode primitives. Developers who wish to write CSMA/
CD drivers that will interoperate with the Open Transport AppleTalk and TCP/IP
implementations should use the information given in this section to guide their
implementation.

Supported DLPI Primitives 12
The following DLPI primitives are supported by the Open Transport CSMA/CD driver.
The ones marked with a † are not required by either the Appletalk or TCP/IP stacks:

DL_BIND_ACK
DL_BIND_REQ
DL_DISABLEMULTI_REQ
DL_ENABLEMULTI_REQ
DL_ERROR_ACK
DL_INFO_ACK
DL_INFO_REQ

'pmn3' Returns the card’s maximum power consumption in microwatts from the
3.3 V supply while in low power mode.

'pmn5' Returns the card’s maximum power consumption in microwatts from the
5 V supply while in low power mode.

'pmx3' Returns the card’s maximum power consumption in microwatts from the
3.3 V supply while in high power mode.

'pmx5' Returns the card’s maximum power consumption in microwatts from the
5 V supply while in high power mode.

'psta' Returns a value of 1 if the card is in high power mode.

'psup' Returns a value of 1 if the card supports power control, 0 if it does not.

'ptog' Returns a value of 1 if the card supports switch between high and low
power after initialization, 0 if it does not.

'sphi' Sets the card to high power mode. Returns a value of 0 if completed
successfully, OSErr if not.

'splo' Sets the card to low power mode. Returns a value of 0 if completed
successfully, OSErr if not.

C H A P T E R 1 2

Network Drivers

374 CSMA/CD Driver

DL_OK_ACK
DL_PHYS_ADDR_ACK
DL_PHYS_ADDR_REQ
DL_SUBS_BIND_ACK
DL_SUBS_BIND_REQ
DL_TEST_CON †
DL_TEST_IND †
DL_TEST_REQ †
DL_TEST_RES †
DL_UNBIND_REQ
DL_UNITDATA_IND
DL_UNITDATA_REQ
DL_XID_CON †
DL_XID_IND †
DL_XID_REQ †
DL_XID_RES †

Future versions of the driver will also support these additional primitives:
DL_GET_STATISTICS_ACK †
DL_GET_STATISTICS_REQ †
DL_PROMISCOFF_REQ†
DL_PROMISCON_REQ†

Extensions to the DLPI 12
In addition to supporting the DLPI primitives listed above, the Open Transport CSMA/
CD driver includes extensions to support Fast Path mode (described in “Fast Path
Mode” on page 380). This includes the handling of M_IOCTL messages with a type of
DL_IOC_HDR_INFO and special handling of M_DATA messages. It also defines several
special M_IOCTL messages that enable the reception of raw packets and inform the
CSMA/CD driver what kind of framing the client expects.

Packet Formats 12

The Open Transport CSMA/CD driver recognizes three packet formats. They are
Ethernet, 802.2, and Novell “Raw 802.3,” a version of IPX. The details of the packet
format are largely hidden from the client by the driver.

The type of packets the driver will handle is specified at bind time.

In all three packet formats, the first 6 bytes are the destination hardware address, and the
next 6 bytes are the source hardware address. The first 6 bytes are followed by a protocol-
dependent section, followed by the packet data.

The packet formats that the DSMA/CD driver can handle are diagrammed in Figure 12-1.

C H A P T E R 1 2

Network Drivers

CSMA/CD Driver 375

Figure 12-1 Packet formats recognized by the CSMA/CD driver

Note
The 802.2 standard is described in Logical Link
Control, ANSI/IEEE Standard 802.2-1985. ◆

Ethernet Packets 12

In Ethernet packets, the protocol-dependent section consists of a 2-byte protocol type
field. This field has a value in the range 1501 to 65535 (0x5DD to 0xFFFF).

Destination
hardware
address

Source
hardware
address

Destination
hardware
address

Source
hardware
address

Destination
hardware
address

Ethernet 802.2 IPX

Source
hardware
address

Protocol
type

Packet
length

DSAP

SSAP

Data

Control

SNAP

(optional)

Packet
length

Data
Data

C H A P T E R 1 2

Network Drivers

376 Address Formats

802.2 Packets 12

In 802.2 packets, the protocol-dependent section consists of a 2-byte length word, a
1-byte destination service access point (DSAP), a 1-byte source service access point
(SSAP), a control byte, and an optional 5-byte subnet access protocol (SNAP) field.
Thus this section of the packet can be either 5 or 10 bytes long.

Note
The 802.3 specification guarantees that the value of the 2-byte length
word will always be less than 1501; therefore it is always possible to
differentiate between Ethernet and 802.2 packets by examining the
value of this field. ◆

IPX Packets 12

IPX payloads may be carried in any one of three frames. In addition to Ethernet and
802.2, an IPX packet may be framed in what Novell calls a “Raw 802.3” packet. In
this case, the protocol-dependent section consists only of a 2-byte length word. To
distinguish these packets from 802.2 packets, Novell specifies that the first 2 bytes of the
data section are always set to 0xFF.

Address Formats 12

Addresses used by the Open Transport CSMA/CD driver consist of two parts—a
hardware address and a protocol-dependent field. The hardware address is a 6-byte
Ethernet address. A hardware address of all 1s is the broadcast address. If a hardware
address is not all 1s but the low bit of the first (leftmost) byte is set, then the address is a
multicast address. The protocol address consists of a 2-byte value called a data link
service access point (DLSAP), which corresponds to the DLSAP defined in the DLPI
specification. It is optionally followed by a 5- byte SNAP. The protocol address, when
present, is appended to the hardware address.

Ethernet 12
In Ethernet, the DLSAP corresponds to the protocol type field.

802.2 12
In 802.2 packets, the DLSAP corresponds to either

■ The SSAP (in a DL_BIND_REQ, DL_BIND_ACK, or in the source address field of a
DL_UNITDATA_IND primitive) or

■ The DSAP (in a DL_UNITDATA_REQ or in the destination address field of a
DL_UNITDATA_IND primitive)

If the DLSAP is 0xAA, then it must be followed by a 5-byte SNAP.

C H A P T E R 1 2

Network Drivers

Binding 377

IPX 12
In IPX packets, the DLSAP is always 0x00FF.

Binding 12

The information passed in a bind request is a function of the type of packets to be
handled by this stream—Ethernet, 802.2, or IPX. In all three cases, the dl_max_conind
field should be set to 0 and the dl_service_mode field must be set to the constant
DL_CLDLS.

Note
The DLPI specification leaves open the possibility that several streams
on the same hardware port could be bound to a single DLSAP. This
feature is explicitly supported by the Open Transport CSMA/CD driver.
If a packet arrives addressed to two or more streams simultaneously,
each stream receives a copy of the packet. ◆

Ethernet 12
To bind to an Ethernet protocol, the client sends a DL_BIND_REQ with the dl_sap field
set to the protocol type. This is a value in the range 1501 to –65535 (0x5DD to 0xFFFF).
The dl_xidtst_flg field is ignored.

802.2 12
To bind to an 802.2 address, the client sends a DL_BIND_REQ with the dl_sap field set
to the SSAP. This is an even value in the range 0 to 254 (0x0 to 0xFE). The dl_xidtst_flg
field may optionally have either or both of the DL_AUTO_XID or DL_AUTO_TEST bits set.

If the SSAP is 0xAA, then the client should follow the acknowledgment of the bind with
a DL_SUBS_BIND_REQ with a 5-byte SNAP. The dl_subs_bind_class field should
be set to DL_HIERARCHICAL_BIND. The message for enabling a SNAP is shown in
Figure 12-2.

Figure 12-2 Message for enabling a SNAP

DL_SUBS_BIND_REQ

4

dl_primitive

dl_subs_bind_offset

2 dl_subs_bind_length

DL_HIERARCHICAL_BIND

SNAP

dl_subs_bind_class

C H A P T E R 1 2

Network Drivers

378 Binding

Note
Attempting to perform a hierarchical subs_bind operation to any
service access point (SAP) value other than 0xAA will cause an error. ◆

After successfully binding to an 802.2 SAP, the client may enable a group SAP by
sending a DL_SUBS_BIND_REQ with a 2-byte DLSAP containing the group SAP. Valid
group SAPs are odd numbers in the range 1 to 253 (0x1 to 0xFD). In this case, the
dl_subs_bind_class field should be set to DL_PEER_BIND. Note that SAP 255 (0xFF)
is the global (broadcast) SAP and is always enabled. The message for enabling a group
SAP is shown in Figure 12-3.

Figure 12-3 Message for enabling a group SAP

Note
For a description of group and global SAPs,
see ANSI/IEEE Standard 802.2-1985. ◆

As a special case, a client may request that it receive all 802.2 packets that come in.
It does so by sending a DL_SUBS_BIND_REQ with a 2-byte DLSAP set to 0. The
dl_subs_bind_class field should be set to DL_PEER_BIND.

Note
When sending packets to DLSAP 0xFF, it is ambiguous whether the
packet is destined for an 802.2 global SAP or an IPX SAP. The ambiguity
is resolved by declaring that only an IPX endpoint can send to another
IPX endpoint and an IPX endpoint cannot send to a global SAP. ◆

IPX 12
To bind to an IPX protocol, the client sends a DL_BIND_REQ with the dl_sap field set to
255 (0xFF). The dl_xidtst_flg field is ignored.

DL_SUBS_BIND_REQ

4

dl_primitive

dl_subs_bind_offset

2 dl_subs_bind_length

DL_PEER_BIND

DLSAP

dl_subs_bind_class

C H A P T E R 1 2

Network Drivers

Multicasts 379

Multicasts 12

A multicast address may be enabled on a driver with the DL_ENABMULTI_REQ message.
The value must be a valid multicast address as defined in “Address Formats” beginning
on page 376.

Similarly, a multicast address may be disabled on a driver with the DL_DISABMULTI_REQ
message. The value must be a valid multicast address that was enabled on that particular
stream with a prior DL_ENABMULTI_REQ.

Sending Packets 12

Packets are sent with the DL_UNITDATA_REQ message. If the destination has the same
protocol address as the sender, it is only necessary to supply the hardware address of the
destination; otherwise the full address must be used. Note that only a stream bound to
the IPX SAP can send to another IPX stream.

To support Fast Path mode, the Open Transport CSMA/CD driver treats M_DATA
messages as fully formed (“Raw”) packets, including all addresses and headers. The
only modification made before sending the packet to the hardware is to check for a 0 in
the 802.2 length field. If 0 is found, the length field is set to the appropriate value.
Support of this feature is optional; see “Fast Path Mode” on page 380 for further
information.

Receiving Packets 12

Incoming packets are passed to the client in DL_UNITDATA_IND messages. The
dl_group_address field is set to 0 if the packet was addressed to a standard Ethernet
address. It is set to keaMulticast if the packet was addressed to a multicast address
and to keaBroadcast if the packet was addressed to a broadcast address, where
kaeMulticast and kaeBroadcast are constants (currently 1 and 2, respectively).

The data portion of the message consists of everything following the protocol-
dependent section.

C H A P T E R 1 2

Network Drivers

380 Raw Packets

Raw Packets 12

Occasionally, a client may wish to send or receive “Raw” packets—packets with the link
and protocol headers attached. To send raw packets, the client merely sends them as
M_DATA messages, as described in “Fast Path Mode” on page 380.

A client that wishes to receive raw packets may send an M_IOCTL message with the
ioc_cmd field set to kOTSetRawMode and its chained data block containing a UInt32
value. The value can be either kOTRawRcvOn or kOTRawRcvOff, to turn on or off the
reception of raw packets. If the driver supports the delivery of raw packets, it responds
with an M_IOCACK message; otherwise, with an M_IOCNAK message.

Raw packets received will have the kaeRawPacketBit set in the dl_group_address
field of the corresponding dl_unitdata_ind_t.

Test and XID Packets 12

The driver includes support for 802.2 test and XID packets.

If the client requested automatic handling of test or XID packets by setting the
DL_AUTO_TEST or DL_AUTO_XID bits in the dl_xidtest_flag field of the bind
request when binding to an 802.2 DLSAP, then the driver will respond to incoming test
or XID packets without notifying the client. If automatic handling has been requested,
the client may not send test or XID packets.

If the client did not request automatic handling of test or XID packets, then incoming
test or XID packets will be passed up to the client as DL_TEST_IND or DL_XID_IND
messages. The client should respond to them with DL_TEST_RES or DL_XID_RES
messages.

If automatic handling has not been requested, the client may send test or XID packets
with a DL_TEST_REQ or DL_XID_REQ message. Any responses are passed back to the
client as DL_TEST_CON or DL_XID_CON messages.

Attempts by non-802.2 streams to send DL_TEST_REQ, DL_XID_REQ, DL_TEST_RES, or
DL_XID_RES messages are ignored.

Fast Path Mode 12

Fast Path is an optional optimization wherein the driver supplies the client with a
precomputed packet header for a given destination. The client caches the header and
copies it directly into packets addressed to that destination before passing them to the
driver. The client first requests a header by sending the driver an M_IOCTL message with
its ioc_cmd field set to DL_IOC_HDR_INFO and its chained data block containing the

C H A P T E R 1 2

Network Drivers

Framing and DL_INFO_REQ 381

dl_unitdata_req_t structure that the client would normally use to send packets to
that particular destination. If the driver does not support fast path, it simply responds
with an N_IOCNAK message. STREAMS drivers respond with NAK to any IOCTL they
can’t handle.

If the driver supports fast path, it responds with an M_IOCACK message with the chained
data block containing the precomputed header. In the case of 802.2 packets, the length
field of the precomputed header is set to 0. The client prepends the header to outgoing
packets and passes them to the driver as M_DATA messages. The driver then sends the
packet as is, filling in the 802.2 length field if necessary.

Note
The data block returned in the M_IOCACK should not be modified by the
client, and it should always be copied with copyb rather than dupb,
since the driver may modify it before sending the packet. ◆

Framing and DL_INFO_REQ 12

To support the TCP/IP stack available with Open Transport, CSMA/CD drivers must
support both Ethernet and 802.2 framing (including full SAP/SNAP binding). Because
the DLPI specification does not let a driver support multiple kinds of framing, it is
ambiguous in specifying how to fill out the dl_mac_type field of a dl_info_ack_t.
Open Transport has specified that the default value of this field should be
DL_ETHER. Clients may send an M_IOCTL message with the ioc_cmd field set to
kOTSetFramingType and its chained data block containing a UInt32 value with
a single bit set. If this value is the constant kOTFraming8022, then subsequent
DL_INFO_REQ requests should set the dl_mac_type field to DL_CSMACD. If the value is
not that constant, then subsequent DL_INFO_REQ requests should set the dl_mac_type
field to DL_ETHER.

IMPORTANT

The only thing the foregoing M_IOCTL message affects is the contents of
the DL_INFO_ACK. The framing that is actually used by the driver is
specified in the bind. ▲

TokenRing and FDDI Drivers 12

Open Transport TokenRing and Fiber Distributed Data Interface (FDDI) drivers are
identical to the CSMA/CD driver with only 802.2 packets and addressing supported. A
hardware multicast in TokenRing is a hardware address with the 2 high-order bits of the
leftmost byte set to 1.

C H A P T E R 1 3

SCSI Drivers 13Figure 13-0
Listing 13-0
Table 13-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1 3

SCSI Drivers

384

The SCSI Expert

This chapter discusses the requirements for writing native driver code to support SCSI
devices on PCI cards in the second generation of Power Macintosh computers.

Macintosh SCSI devices are now supported by SCSI Manager 4.3, an enhanced version of
the original Macintosh SCSI Manager. The new capabilities of SCSI Manager 4.3 include

■

support for asynchronous SCSI I/O

■

support for optional SCSI features such as disconnect and reconnect

■

a hardware-independent programming interface that minimizes the SCSI-specific
tasks a device driver must perform

The hardware-indendence features of SCSI Manager 4.3 mean that the equivalent of SCSI
driver code is now a software entity called a

SCSI Interface Module (SIM).

 This chapter
discusses some of the requirements for writing and loading SIMs in PCI-based Power
Macintosh computers.

Inside Macintosh: Devices,

 described in “Apple Publications” on page xxi, contains a full
discussion of SCSI Manager 4.3. You should read the material in

Inside Macintosh

 first.
This chapter covers only the changes from that information for SCSI devices based on
PCI cards.

The SCSI Expert 13

The SCSI expert is supplied by Apple in the firmware of the second generation of Power
Macintosh computers. For a discussion of experts, see “Terminology” beginning on
page 61.

The SCSI expert is simpler than some other experts and places fewer demands on Open
Firmware and the native driver model. A PCI

 card that wants to register a SIM with the
SCSI Manager must place information in the device tree that includes its

name

 and

reg

properties. To be recognized by SCSI Manager 4.3 as a SCSI device, the device must have
a

device_type

 property of

'scsi'

. This is important because it is the primary
identifier that causes the SCSI expert to load the SIM. The

device_type

 property is
generated by the Mac OS startup code and is based on the PCI configuration space
parameter

class-code

, which must have a value of

"mass storage"

 (01). With the

DriverOSService.service[x].serviceCategory

 value of

"blok"

, the

device_type

 property completely identifies the SIM code to the SCSI expert.

SIMs for Current Versions of Mac OS 13

With current versions of Mac OS, you can write a native SIM by using the Mixed Mode
Manager and passing universal procedure pointers to the transport (XPT) layer when
registering the SIM. Native SIMs should also use

CallUniversalProc

 when calling
XPT routines.

C H A P T E R 1 3

SCSI Drivers

SIMs for Current Versions of Mac OS

385

PCI native SIMs are implemented similarly to other native drivers. The SIM installs
a driver in the device tree with a

driver,AAPL,MacOS,PowerPC

 property. Like other
native drivers, SIMs export a driver description structure. The SCSI expert identifies a
SIM by examining the service categories supported in the driver descriptor. SIMs have
a

serviceCategory

 of type

kServiceCategoryScsiSIM

. A driver supporting this
service category should export a function named

LoadSIM

 with the following interface:

OSErr LoadSIM (RegEntryIDPtr entry);

The SCSI

expert will prepare the code fragment and call this function after the SCSI
transport layer is initialized. In response, the SIM should initialize itself the same way
a NuBus SIM would by calling

SCSIRegisterBus

, as described in

Inside Macintosh:
Devices.

 Any nonzero result returned from

LoadSIM

 will cause the code fragment
to be unloaded. Note that this is a

ProcPtr

-based interface, so you must pass

UniversalProcPtr

 structures for all entrypoints. Those passed back by the XPT will
also be

UniversalProcPtr

 structures so native code should use

CallUniversalProc

when calling XPT layer procedures from the

SIMInitRecord

.

An typical PCI-based SIM descriptor is shown in Listing 13-1.

Listing 13-1

SIM descriptor

DriverDescription TheDriverDescription =

{

// signature information

kTheDescriptionSignature,

kInitialDriverDescriptor,

// type info

"\pFor Rent ",

1,0,0,0, // major, minor, stage, rev

// OS runtime info

kDriverIsUnderExpertControl,

"\p.MySCSISIM ",

0,0,0,0,0,0,0,0, // reserve 8 longs

// OS service info

1, // number of service categories

kServiceCategoryScsiSIM,

0,

1,0,0,0 // major, minor, stage, rev

};

For the Startup Disk control panel to be able to select a boot device from a SIM correctly,
the

SCSIBusInquiry

 fields

scsiHBAslotNumber

 and

scsiSIMsRsrcID

 must
uniquely identify the SIM from other SIMs and PCI cards. Each SIM should identify
itself when registering with the system by placing a

RegEntryID

 value in the

SIMInitInfo

 parameter block. The XPT layer will calculate unique values for the

C H A P T E R 1 3

SCSI Drivers

386

Future Compatibility

SCSIBusInquiry

 fields and supply them to the

SIMInit

 routine. From then on
the SIM must return these values from

SCSIBusInquiry

. Three new fields—

simSlotNumber

,

simSRsrcID

, and

simRegEntry

—have been defined in the

SIMInitInfo

 parameter block to hold these values.

The new parameter block is
defined as follows:

UInt8 *SIMstaticPtr;

long staticSize;

SIMInitUPP SIMInit;

SIMActionUPP SIMAction;

SCSIInterruptUPP SIM_ISR;

SCSIInterruptUPP SIMInterruptPoll;

SIMActionUPP NewOldCall;

UInt16 ioPBSize;

Boolean oldCallCapable;

UInt8 simInfoUnused1;

long simInternalUse;

SCSIUPP XPT_ISR;

SCSIUPP EnteringSIM;

SCSIUPP ExitingSIM;

SCSIMakeCallbackUPP MakeCallback;

UInt16 busID;

UInt8 simSlotNumber; // output

UInt8 simSRsrcID; // output

RegEntryIDPtr simRegEntry; // input

Future Compatibility 13

The current SCSI Manager 4.3 interface is not guaranteed to be compatible with future
Mac OS releases. At this time the SIM architecture is not fully defined and may be subject
to change. However, it is possible to write a fully native SIM by passing universal
procedure pointers to the XPT layer for the SIM’s entry points and by using

CallUniversalProc

 in native code to call the XPT’s entry points. This approach is
outlined in “SIMs for Current Versions of Mac OS” beginning on page 384. Universal
procedure pointers are described in

Inside Macintosh: PowerPC System Software,

 listed
in “Apple Publications” on page xxi.

It is also possible to reduce the effort required to become compatible with future releases
of Mac OS by following the rules set forth for other drivers in Chapter 7, “Writing Native
Drivers.” Primarily, you should limit communication with Mac OS to the calls
documented in Chapter 9, “Driver Services Library.”

C H A P T E R 1 3

SCSI Drivers

SCSI Device Power Management

387

SCSI Device Power Management 13

Supporting power management in a SCSI driver unavoidably violates some of the
guidelines set forth in “Card Power Controls” beginning on page 311. This section
discusses some of the issues and potential solutions.

At a minimum, SCSI storage device drivers should support driver gestalt as defined in
“Driver Gestalt” beginning on page 106. They should respond positively to the

'lpwr'

gestalt selector. Supporting driver gestalt mandates that the driver support

csCode=70

for getting and setting the low power state (for spindle motor control, in most cases). The
currently defined power modes are Active, Standby, Idle, and Sleep.

If a driver does not have to support multiple platforms (such as both Power Macintosh
and PowerBook computers) and chooses to rely on the Power Manager’s internal
timing semaphores, it should implement the following processes:

■

Install code in the Power Manager’s HD Spindown, Sleep, and State
Notification queues.

■

Make an

UpdateSystemActivity

 call to notify the Power Manager of activity
on the driver’s associated device.

When these processes are implemented, drivers registered with the Power Manager will
not be ordered to enter a low power mode until all devices have been idle for a period of
time set by the user. However, no individual device control will be available and more
work will be required to make the driver compatible with future releases of Mac OS.

To be compatible with both Power Macintosh and PowerBook computers, or to simply
provide a more elegant solution to the user, the driver should maintain an internal timer
specifically for the device it administers. If multiple devices are managed by a single
driver, multiple timers should be managed as well. To provide this level of support, the
following must be implemented:

■

Make an

UpdateSystemActivity

 call to notify the Power Manager of activity on
the driver’s associated device. This is required by the Power Manager to track idle
time for system sleep correctly.

■

Install code in the Power Manager State Notification queue requesting notification of
spindown enable and disable changes, changes to the user-defined timeout period,
and changes to the hard disk power state.

■

Keep an internal timer in the driver and provide some method to update the timer
and invoke low power modes when appropriate. A VBL or Time Manager task may
be used.

Drivers should not install code into the HD Spindown queue in this implementation.
However, if the driver supports the main internal storage device on a PowerBook
computer and requires device preparation before power is removed, Sleep and Wake
and HD Spindown queue elements should be implemented.

C H A P T E R 1 3

SCSI Drivers

388

SCSI Device Power Management

With either Power Macintosh or PowerBook platforms, any access to a driver’s device or
any driver request that requires the device to be at full power should cause the driver to
wake the device before servicing that request. A control call to resume full power must
be supported, but such a call is not required to wake the device.

Note

Gestalt checks for the presence of the Power Manager should be made to
decide whether to implement a low power solution upon a driver open
or acknowledge request and to determine what kind of support is
appropriate.

◆

The current Power Manager implementation supports a mixed environment where some
clients are dependent on the Power Manager’s internal timing semaphore and others are
self-sufficient. Drives supported by driver-based timers will spin down on a drive-by-
drive basis. The internal timer will still trigger a spindown of those drives that rely on
the Power Manager’s timing facilities. It would be wise in either implementation to
respond intelligently to requests to enter a power mode that is already present.

389

Appendixes

The following appendixes contain information that supplements the information in the
previous chapters:

■

Appendix A, “Development Tools,” describes the developer’s kit that Apple supplies
for designing PCI cards and related software compatible with Power Macintosh
computers.

■

Appendix B, “Big-Endian and Little-Endian Addressing,” discusses the theory and
problems of handling mixed-endian formats.

■

Appendix C, “Graphic Memory Formats,” describes the ways that graphic
information and video frames are stored in PCI-based Power Macintosh computers.

■

Appendix D, “PCI Header Files,” describes the PCI header files and lists all the
routines and data structures documented in this book.

■

Appendix E, “Abbreviations,” lists the abbreviations and acronyms used in this book.

Thi d t t d ith F M k 4 0 4

A P P E N D I X A

Contents of the Device Driver Kit

391

Development Tools A

This appendix describes the developer’s kit that Apple provides for designers of PCI
expansion cards and drivers compatible with the second generation of Power Macintosh
computers.

The PCI Card Device Driver Kit contains documentation, tools, and sample code that can
help you with these tasks:

■

designing PCI expansion cards and hardware components for use with Power
Macintosh computers

■

writing the Open Firmware code for Macintosh-compatible PCI cards

■

writing device drivers, system extensions, and application software to be used with
Macintosh-compatible PCI cards

For details and availability of the kit, contact AppleLink address DEVSUPPORT.

Contents of the Device Driver Kit A

The Device Driver Kit contains documentation, tools, and sample code. Parts of the kit
are specific to the Macintosh implementation of the PCI and Open Firmware standards;
Apple supplies these materials with the kit. Other parts are available from Apple or
third parties.

Parts Supplied With the Kit A

The PCI Card Device Driver Kit contains

Designing PCI Cards and Drivers for Power
Macintosh Computers

 and a Macintosh-compatible CD-ROM disk. The disk contains
software development tools and text files of sample code designed to run on a Power
Macintosh computer. The contents of the disk can be used with the Macintosh
Programmer’s Workshop (MPW) or with Metrowerks Code Warrior. The sample code
files can also be read by TeachText and other Macintosh word processors.

Tools A

The software tools supplied with the Device Driver Kit include

■

the CForth93 Forth compiler

■

a tool (implemented as a CForth93 dictionary) that tokenizes Forth code and builds a
PCI card configuration ROM image

■

the Power Macintosh Debugger 2.0

■

miscellaneous utilities

Figure A-0
Listing A-0
Table A-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X A

Development Tools

392

Contents of the Device Driver Kit

Code Files A

The code files on the disk contain the C header files and libraries required to develop
native drivers for the second generation of Power Macintosh computers. Some of the
contents of these files are listed in Appendix D, “PCI Header Files.”

The developer kit code files also contain the C and Forth sources for a number of sample
drivers for Macintosh PCI devices, plus other useful code examples.

Parts Not Included in the Kit A

The tools and code samples that Apple supplies with the PCI Card Device Driver Kit can
be used with the Macintosh Programmer’s Workshop (MPW). Since most Macintosh
developers already have MPW, it is not included in the kit. You can obtain MPW from
APDA at the address listed on page xxii.

Similarly, the Apple books

Designing Cards and Drivers for the Macintosh Family,

 third
edition, and

Inside Macintosh: Devices

 explain the general software requirements for
drivers compatible with Macintosh computers. These books are useful to any programmer
writing a driver for a Macintosh-compatible PCI device.

Essential parts of the PCI Card Device Driver Kit for Power Macintosh Computers not
supplied by Apple include the following documents:

■

PCI Local Bus Specification,

 Revision 2.0, by the PCI Special Interest Group

■

PCI Bus Binding to IEEE 1275-1994,

 available by contactingthe IEEE at the Internet
address given in the note on page xxiv.

■

1275-1994 Standard for Boot (Initialization, Configuration) Firmware

 by the IEEE

■

ANSI/IEEE X3.215-199x Programming Languages—Forth,

 by ANSI

■

Writing FCode Programs for PCI,

 by FirmWorks

These documents are an integral part of the kit; it is difficult to design Macintosh-
compatible PCI cards without their help. For information about obtaining them, see
“Supplementary Documents” beginning on page xxi.

A P P E N D I X B

Endian Theory

393

Big-Endian and Little-Endian

Addressing B

PCI-based Power Macintosh computers are

mixed-endian

 because they support both
big-endian and little-endian data formats. This appendix presents solutions to some of
the problems that the computers encounter because they support both formats.

Although the natural addressing mode of the PowerPC microprocessor is big-endian,
PCI-based Power Macintosh computers support little-endian addressing for
several reasons:

■

because the PCI bus is little-endian

■

so that they are compatible with expansion cards that store data in little-endian format

■

so that they can run operating systems (such as Windows NT) that require the
underlying hardware to operate as if it were little-endian

This appendix first discusses the theory of big-endian and little-endian addressing and
then examines how PCI-based Power Macintosh computers deal with the resulting
problems and issues.

Note

The terms

big-endian

 and

little-endian

 come from Jonathan Swift’s
eighteenth-century satire

Gulliver’s Travels.

 The subjects of the empire of
Blefuscu were divided into two factions: those who ate eggs starting
from the big end and those who ate eggs starting from the little end.

◆

Endian Theory B

To give a concrete example around which to discuss endian format issues, consider
writing code for a system that contains a DBDMA-like controller. The DMA code
includes a descriptor format whose C definition might be

struct {

byte C; // "command" byte

byte F; // "flags"

half L; // "length" (count)

word A; // "address"

dword X; // "field64"

} DMA_Descriptor;

where the

byte

,

half

,

word

, and

dword

 data types are 8-bit, 16-bit, 32-bit, and 64-bit
scalar types, respectively.

Figure B-0
Listing B-0
Table B-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X B

Big-Endian and Little-Endian Addressing

394

Endian Theory

A compiler would assign offsets to the fields of the descriptor as follows:

C 0

F 1

L 2

A 4

X 8

Consider the diagram in Figure B-1, which presents the layout of the descriptor in a
format that is neither big-endian nor little-endian. In Figure B-1, the numbers represent
byte offsets to the descriptor’s fields.

Figure B-1

Neutral descriptor layout

In Figure B-1 the byte offsets are associated with the “beginning” of each field. As
discussed in the next sections, the primary difference between big-endian and little-
endian addressing has to do with what is defined as the “beginning” of a field.

Big-Endian Addressing B

Figure B-2 shows what happens when the diagram in Figure B-1 is rotated
counterclockwise.

C

F

0

1

L
2

A

4

X

8

A P P E N D I X B

Big-Endian and Little-Endian Addressing

Endian Theory

395

Note

In Figure B-2 and Figure B-3, the organization of memory is shown with
the more significant bytes to the left and the less significant bytes to the
right. This is consistent with standard numerical notation and most
computer system documentation. Likewise, all bit-field and byte-field
designations reference the most significant bit or byte number of the
field first.

◆

Figure B-2

Big-endian descriptor layout

The diagram in Figure B-2 shows how a big-endian processor or memory system would
organize the sample descriptor. In a big-endian system, physical memory is organized
with the address of each byte increasing from most significant to least significant.

Endian order makes no difference for single-byte values. However, with multibyte
values, the endian order determines the order in which bytes are addressed. As noted
above, multibyte fields are interpreted with more significant bytes to the left and less
significant bytes to the right. This means that the address of the most significant byte of
the address field A is 4, while byte 7 corresponds to the least significant byte of A.

Bit ordering in a strictly big-endian architecture should naturally follow the ordering of
bytes; that is, the most significant bit should be bit 0. This is true of PowerPC addressing.
All bit numbering in this appendix follows the byte order, so the first bit designated in
big-endian addressing (the most significant bit) has the lowest bit number.

Little-Endian Addressing B

Figure B-3 shows what happens when the diagram in Figure B-1 on page 394 is rotated
clockwise.

Figure B-3

Little-endian descriptor layout

This diagram in Figure B-3 shows how a little-endian system would organize the
descriptor. Notice which bytes constitute the “beginning” of each field. Instead of
referring to the most significant byte of a field, the offsets refer to the least significant
byte of each field. Hence, in this example, byte 4 refers to the least significant byte of
the A field, while byte 7 refers to the most significant byte.

C F

0 1 2 4 8

L A X

CF

01248

LAX

A P P E N D I X B

Big-Endian and Little-Endian Addressing

396

Field value initializer

Bit numbering in a little-endian architecture naturally follows that of byte ordering; that
is, bit 0 represents the least significant bit of a field. Thus, in little-endian bit field
designations, the first bit shown (the most significant) has the highest bit number.

Scalar Accesses B

If all accesses to a data structure were done with read and write actions that transferred
a whole field at a time, a program could not determine whether it was executing on
a big-endian or little-endian system. For example, a word-sized access to field A in
Figure B-1 on page 394 would always get the correct value.

Suppose that the code shown in Listing B-1 is used to initialize the descriptor shown in
Figure B-1. The field values chosen in Listing B-1 are encoded: the first nybble gives the
size of the field, and the other nybbles represent the byte offsets of each byte, assuming
big-endian ordering.

Listing B-1

Field value initializer

DMA_Descriptor aDescr;

aDescr.C = 0x10;

aDescr.F = 0x11;

aDescr.L = 0x2223;

aDescr.A = 0x44454647;

aDescr.X = 0x88898A8B8C8D8E8F;

In Figure B-1, all accesses to field

aDescr.L

 would yield identical results on either a
big-endian or little-endian system, so it would normally be impossible to tell whether the
system was big-endian or little-endian. However, certain code can detect the order of
byte significance relative to the address of the fields initialized by the code shown in
Listing B-1 and can thus tell whether the system addresses data in big-endian or
little-endian mode. An example is shown in Listing B-2.

Listing B-2

Endian mode determination code

union {

half H;

byte B[2];

} halfTrick;

halfTrick ht;

ht.H = aDescr.L;

if(ht.B[0] == 0x22)

printf("I'm on a big-endian system");

else

printf("I'm on a little-endian system");

A P P E N D I X B

Big-Endian and Little-Endian Addressing

Mixed-Endian Systems

397

Address Invariance and Byte Swapping B

Address invariance

 (also called

byte address consistency

) guarantees that individual bytes
are mapped across a data bridge according to their address (or byte lane number); the
address of a byte is kept the same on both sides of the bridge.

For example, the little-endian NuBus maintains address invariance when passing data
between the big-endian Macintosh II computer and an expansion card. To keep track of
data movement, bytes are channeled into

byte lanes.

 Thus, byte lane 0 of the Macintosh
processor bus is mapped to byte lane 0 of NuBus, and so on. But when a 32-bit word
passes to NuBus, the bytes are changed in significance by a process called

byte swapping.

The expansion card undoes the byte swap on its side of NuBus, so that data in memory
on a card is organized exactly the same way it is on the Macintosh side. The diagram in
Figure B-4 shows how data is mapped from the Macintosh II system across NuBus onto
an expansion card.

Figure B-4

Byte swapping in NuBus

Note

Byte-swapping is like parity. An even number of byte
swaps produces the original ordering.

◆

Mixed-Endian Systems B

To use the PCI bus and achieve compatibility with a wide range of expansion card
designs, PCI-based Power Macintosh computers are forced to be mixed-endian. This
section discusses some of the issues that result from mixed-endian system design.

0x40414243

3 2 1 0

0 1 2 3

0x43424140

0 1 2 3 0x40414243

A P P E N D I X B

Big-Endian and Little-Endian Addressing

398

Mixed-Endian Systems

Transmitting Addresses B

In PCI-based Power Macintosh computers, addresses never require byte swapping. They
are written and read as whole quantities and are passed directly across PCI bridges
without byte swapping. However, some transformations may be required when
transporting addresses across a bridge—for example, to encode byte lanes and transfer
sizes. Addresses may also be altered by logical operations, as described in “Address
Swizzling” beginning on page 399.

Byte-Swapping Issues B

Byte swapping of data is a natural consequence of address invariance. It occurs when
data in one endian format is read by a system that uses the other endian format. For
example, suppose the DMA descriptor values initialized by the code shown in Listing
B-1 on page 396 are generated by a little-endian system and saved to disk. The data is
then read from the disk by a big-endian system.

Assume that the data is written to disk in byte-address order, and that the disk memory
is formatted in an 8-byte wide configuration. The little-endian disk memory image
would look like Figure B-5.

Figure B-5

Little-endian memory image

When read by a big-endian system in byte-address order, the data would be stored in
memory as shown in Figure B-6.

Figure B-6

Big-endian memory image

Notice that the byte offsets of each field are still correct. However, the data within each
field has been swapped. If field

aDescr.A

 was read with a little-endian word loading
process, the data in memory would be 0x47464544, even though the original data was
written as 0x44454647.

101144 45 4746 2322

0

8

124

8F8E88 89 8B8A 8D8C

444510 11 2223 4647

0

8

1 2 4

88898F 8E 8C8D 8A8B

A P P E N D I X B

Big-Endian and Little-Endian Addressing

Mixed-Endian Systems

399

Byte Swapping and Frame Buffers B

Another example of byte swapping is what happens to multibyte pixels in a frame
buffer. Macintosh software is compatible with several multibyte pixel formats, of which
16-bit pixels provide a good example of the effects of byte swapping. The Macintosh
16-bit RGB format interprets a half word as consisting of a 1-bit alpha value followed by
three 5-bit red, green, and blue color components. The diagram in Figure B-7 shows how
these pixels are packed into a word in big-endian memory.

Figure B-7

Big-endian RGB 16-bit pixel format

When this data is moved across the little-endian PCI bus, data swapping makes the data
appear as shown in Figure B-8.

Figure B-8

Little-endian RGB 16-bit pixel format

Notice two effects of the byte swapping process:

■

The relative location of the pixels is correct for the little-endian PCI; this is a direct
consequence of maintaining address invariance.

■

The data within the pixels has been partly rearranged. For example, the green
component has been split into two pieces because it spans a byte boundary.

Address Swizzling B

It is possible to make it appear that memory is organized in little-endian format, even
though it is maintained by a microprocessor that is inherently big-endian, such as the
PowerPC processor. This effect is desirable, for example, when Windows NT runs on
a PCI-based Power Macintosh computer, because Windows NT requires memory to
appear to be little-endian. It can be achieved by changing addresses without altering the
layout of data in memory, a technique called

address swizzling.

a R

0 1 2 3

G B a R G

Pn Pn+1

B

3 2 1 0

Pn+1 Pn

a GRG GGB a RB

A P P E N D I X B

Big-Endian and Little-Endian Addressing

400

PowerPC Little-Endian Support

For example, refer to the DMA descriptor values initialized by the code shown in
Listing B-1 on page 396. Little-endian software expects the descriptor to be arranged
in memory as shown in Figure B-9.

Figure B-9

Little-endian descriptor in memory

A big-endian processor can maintain the memory image shown in Figure B-9 by
addressing it with big-endian byte lane assignments, as shown in Figure B-10. If a
little-endian processor were maintaining the same image, it would assign byte lanes as
shown in Figure B-5 on page 398.

Figure B-10

Little-endian descriptor with big-endian addresses

Within fields, the byte ordering of the data image shown in Figure B-10 is correct, but the
data addresses have been swizzled. For example, the field

aDescr.C

 that is stored in
byte lane 0 in the little-endian format shown in Figure B-5 on page 398 is now stored in
byte lane 7 in Figure B-10.

Address swizzling is one technique by which the PowerPC processor provides little-
endian addressing support. It is described more fully in “Little-Endian Processing
Mode” beginning on page 401.

PowerPC Little-Endian Support B

PowerPC microprocessors, which normally address data in big-endian format, provide
two separate mechanisms to support little-endian and mixed-endian systems:

■

byte-reversed load and store instructions

■

little-endian processing mode

These mechanisms are discussed in this section.

101144 45 4746 2322

8F8E88 89 8B8A 8D8C

101144 45 4746 2322

8F8E88 89 8B8A 8D8C

0

8

764

A P P E N D I X B

Big-Endian and Little-Endian Addressing

PowerPC Little-Endian Support

401

Byte-Reversed Load and Store Instructions B

The PowerPC instruction set includes a class of load and store instructions that perform
byte swapping based on the size of the data transferred. For example, the load word byte
reversed indexed (

lwbrx

) instruction swaps a 4-byte value. The primary purpose of
instructions such as

lwbrx

 is to allow efficient access to data in little-endian format,
without additional byte-swapping.

For an example, refer to the big-endian DMA descriptor value shown in Figure B-6. If a
program uses a PowerPC

lwbrx

 instruction to access field

aDescr.A

, it reads the value
0x44454647, which is the correct data in little-endian format.

Byte-reversed load and store instructions require more code than other load and store
instructions, because they exist only in indexed form without update forms. Either
addresses of fields within data structures must be explicitly calculated, or field offsets
must be loaded into a register. Also, there is currently no C compiler mechanism
available to generate these instructions.

Little-Endian Processing Mode B

The PowerPC microprocessor supports a little-endian processing mode, in which
addresses are swizzled when they are used to access memory. The swizzle applies an
XOR operation to the low-order 3 bits of an address with a constant that depends upon
the size of the data being loaded or stored. Word load and store actions use a value of
0b100, halves use 0b110, and bytes use 0b111. The resulting addresses are used to make
memory references to a big-endian memory system.

Note

The PowerPC’s effective address is not modified, only the interpretation
used to access memory. For example, the update forms of load and store
instructions alter the base register with the same value, regardless of the
current endian mode. Thus, the address swizzle is completely
transparent to software.

◆

Notice that the address swizzle in little-endian processing mode changes only the lower
3 bits. The number of address bits swizzled depends upon the maximum scalar data type
that can be accessed by the system; it does not depend upon the width of the processor’s
data path. In the case of PowerPC processor, the longest scalar is a double word—hence,
swizzling 3 bits suffices to transform any address.

By swizzling the offsets in the big-endian DMA descriptor value shown in Figure B-10
on page 400, little-endian processing mode produces a new set of offsets. For example,
the processor applies the calculation 0b000

XOR

 0b100 to the 0 offset for the word field

aDescr.A, producing the offset 0b100, or 4. Software can read the correct value of
0x44454647 at that offset. The result is that the whole descriptor appears to have the
structure shown in Figure B-11.

A P P E N D I X B

Big-Endian and Little-Endian Addressing

402 PowerPC Little-Endian Support

Figure B-11 Descriptor swizzled by little-endian processing mode

Note
PowerPC little-endian mode does not support misaligned data accesses.
Access to misaligned data must be done by code sequences or
subroutines. As is the case with byte-reversed load and store
instructions, there is currently no compiler support for handling
misaligned data. ◆

101144 45 4746 2322

8F8E88 89 8B8A 8D8C

4

8

012

A P P E N D I X C

RGB Pixel Formats

403

Graphic Memory Formats C

This appendix describes the various formats in which pixel information is stored in
frame buffers in PCI-based Power Macintosh computers. It also includes information
about transforming pixel information to convert it from big-endian to little-endian
format and vice versa. For information about data formats, see Appendix B, “Big-Endian
and Little-Endian Addressing.”

The drawings in this appendix that illustrate pixel formats are presented in three parts:

■

The top diagram (denoted by BIG) shows the pixel’s big-endian format, with the byte
lanes numbered in big-endian order.

■

The middle diagram (denoted by GIB) shows the pixel value as it appears on the PCI
bus, byte swapped to fulfill the PCI bridge’s address invariance. This diagram shows
the little-endian PCI byte lane numbering.

■

The bottom diagram (denoted by LITTLE) shows the little-endian format, with the
byte lanes numbered in little-endian order.

Note

All pixel formats shown in this appendix conform to the

PCI Multimedia
Design Guide,

 listed in “Other Publications” beginning on page xxiii.

◆

RGB Pixel Formats C

The following sections describe the red-green-blue (RGB) pixel formats that are directly
supported by QuickDraw in Mac OS. Where the formats are affected by endian
formatting, the BIG, GIB and LITTLE formats are shown.

1, 2, 4, and 8 Bits Per Pixel C

With pixel formats 1 byte long or less, no pixel transformation is required, because the
bridge’s address-invariant byte swapping does not affect data below the byte level.
However, it is important to recognize that PCI-based Power Macintosh computers
assume that pixels are packed into bytes in left-to-right order. For example, in 1-bit mode
the most significant bit of a byte is the leftmost visible pixel on the screen. This is
consistent with existing VGA pixel formats.

Figure C-0
Listing C-0
Table C-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X C

Graphic Memory Formats

404

RGB Pixel Formats

Figure C-1 shows 1-bit-per-pixel mode. The 2-bit, 4-bit, and 8-bit cases are similar.

Figure C-1

1-bit-per-pixel formats

16 Bits Per Pixel C

16-bit pixel encoding includes a 1-bit alpha value and three 5-bit red, green, and blue
color components, as shown in Figure C-2.

Figure C-2

16-bits-per-pixel formats

0 1 2 3

P0

BIG

P7 P24 P31

3 2 1 0

P24

GIB

P31 P0

P0

P7

3 2 1 0

P24

LITTLE

P31 P7

BIG

GIB

LITTLE

0 1 2 3

P1 P0

a GRG GGB a RB

3 2 1 0

a R

3 2 1 0

G B a R G

P1 P0

B

a R G B a R G

P0 P1

B

A P P E N D I X C

Graphic Memory Formats

YUV Pixel Formats

405

24 and 32 Bits Per Pixel C

The format of 24- and 32-bit pixels is shown in Figure C-3. In 24-bit mode, the data value
of the alpha byte is undefined; however, space is always reserved for it. The 24-bit and
32-bit pixels are always contained within 32-bit words.

Figure C-3

24- and 32-bits-per-pixel formats

YUV Pixel Formats C

YUV pixel formats are typically generated by video input hardware from video camer
as, videocassette recorders, and so on; they are not normally generated by software.
Although there are various YUV formats possible, determined by the ratio and size of
luminance samples (Y) and chroma (U and V) values, PCI-based Power Macintosh
computers support only the 4-2-2 format. This format includes two 8-bit Y samples for
each pair of 8-bit U and V samples. While 2 pixels (even-odd pairs) are packed into a
32-bit word, each pixel can be thought of as being composed of a luminance component
(Y) and a chroma component (U or V) packed into 16-bit values.

The transformations of YUV pixels across a PCI bridge from BIG to GIB format are
similar to those of 16-bit pixels. Figure C-4 shows the YUV 4-2-2 pixel formats. As is
the case with 16-bit pixels, the pixels in YUV GIB format are in the correct positions
but the bytes within each pixel have been swapped.

BIG

GIB

LITTLE

0 1 2 3

3 2 1 0

3 2 1 0

A R G B

P0

B G R A

P0

A R G B

P0

A P P E N D I X C

Graphic Memory Formats

406

Definitions of Pixel Formats in C

Figure C-4

YUV pixel formats

Definitions of Pixel Formats in C C

Another way to describe the pixel formats in PCI-based Power Macintosh computers is
by C struct definitions. The bit packing and bit ordering of packed bit struct fields in C
match the endian formats of the target architecture.

Big-endian C compilers pack bits from left to right, while little-endian C compilers pack
the bits from right to left. Hence different structs must be used to describe a given pixel
format, depending upon whether the target code is big-endian or little-endian.

Listing C-1 shows how the pixel formats described in this appendix can be defined in C
for big-endian and little-endian bit ordering.

Listing C-1

C structs for pixel formats

typedef struct { /* big-endian pixel formats */

u_int alpha:1;

u_int red:5;

u_int green:5;

u_int blue:5;

} RGB_15_alpha;

BIG

GIB

LITTLE

0 1 2 3

3 2 1 0

3 2 1 0

Ye Ue Yo Ve

P0 P1

P1 P0

P1 P0

Ve Yo Ue Ye

Yo Ve Ye Ue

A P P E N D I X C

Graphic Memory Formats

C structs for pixel formats

407

typedef struct {

u_int alpha:8;

u_int red:8;

u_int green:8;

u_int blue:8;

} RGB_24_alpha;

typedef struct { /* little-endian pixel formats */

u_int blue:5;

u_int green:5;

u_int red:5;

u_int alpha:1;

} RGB_15_alpha;

typedef struct {

u_int blue:8;

u_int green:8;

u_int red:8;

u_int alpha:8;

} RGB_24_alpha;

A P P E N D I X D

409

PCI Header Files D

Apple supplies a large number of C-language header files of interest to Macintosh
developers. They include interfaces to both Mac OS system software and ROM-based
Macintosh startup firmware.

Among these header files are those you need to compile drivers and other PCI-related
software for the second generation of Power Macintosh computers. Table D-1 lists them
and gives references to the sections of this book where each file’s content is discussed.

Table D-2 lists the functions and data structures that the header files listed in Table D-1
support. For each one it gives the name of the supporting file and the page number in
this book where the function or data structure is documented.

Table D-1

Header files for Macintosh PCI development

File name Book reference

Devices.h

Chapter 7, “Writing Native Drivers”

DriverServices.h

Chapter 9, “Driver Services Library”

DriverGestalt.h

“Driver Gestalt” beginning on page 106

Interrupts.h

“Interrupt Management” beginning on page 240

Kernel.h

Chapter 9, “Driver Services Library”

NameRegistry.h

Chapter 8, “Macintosh Name Registry”

PCI.h

Chapter 10, “Expansion Bus Manager”

Video.h

Chapter 11, “Graphics Drivers”

Table D-2

PCI-related functions and data structures

Function or data structure Header file Page

AbsoluteDeltaToDuration DriverServices.h

272

AbsoluteDeltaToNanoseconds DriverServices.h

272

AbsoluteTime DriverServices.h

270

AbsoluteToDuration DriverServices.h

271

AbsoluteToNanoseconds DriverServices.h

271

AddAbsoluteToAbsolute DriverServices.h

271

continued

Figure D-0
Listing D-0
Table D-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X D

PCI Header Files

410

AddAtomic DriverServices.h

276

AddDurationToAbsolute DriverServices.h

272

AddNanosecondsToAbsolute DriverServices.h

271

BitAndAtomic DriverServices.h

276

BitOrAtomic DriverServices.h

276

BitXorAtomic DriverServices.h

276

BlockCopy DriverServices.h

238

CallSecondaryInterruptHandler2 Kernel.h

265

CancelTimer Kernel.h

275

CDDeviceCharacteristics DriverGestalt.h

116

ChangeInterruptSetOptions Interrupts.h

257

CheckpointIO Kernel.h

228

CompareAndSwap DriverServices.h

276

CreateInterruptSet Interrupts.h

255

CreateSoftwareInterrupt Kernel.h

261

CStrCat DriverServices.h

280

CStrCmp DriverServices.h

280

CStrCopy DriverServices.h

279

CStrLen DriverServices.h

281

CStrNCat DriverServices.h

280

CStrNCmp DriverServices.h

281

CStrNCopy DriverServices.h

279

CStrToPStr DriverServices.h

281

CurrentExecutionLevel Kernel.h

215

CurrentTaskID Kernel.h

260

DecrementAtomic DriverServices.h

276

DelayFor Kernel.h

274

DelayForHardware Kernel.h

274

DeleteSoftwareInterrupt Kernel.h

262

DeviceProbe DriverServices.h

148

DriverDescription Devices.h

88

continued

Table D-2

PCI-related functions and data structures (continued)

Function or data structure Header file Page

A P P E N D I X D

PCI Header Files

411

DriverFinalInfo Devices.h

95

DriverGestaltBootResponse DriverGestalt.h

112

DriverGestaltDevTResponse DriverGestalt.h

112

DriverGestaltIntfResponse DriverGestalt.h

112

DriverGestaltIsOn Devices.h

107

DriverGestaltOff Devices.h

107

DriverGestaltOn Devices.h

107

DriverGestaltParam DriverGestalt.h

110

DriverGestaltSyncResponse DriverGestalt.h

111

DriverGestaltWideResponse DriverGestalt.h

113

DriverInitInfo Devices.h

94

DriverOSRuntime Devices.h

90

DriverOSService Devices.h

91

DriverServiceInfo Devices.h

92

DriverType Devices.h

90

DurationToAbsolute DriverServices.h

271

DurationToNanoseconds DriverServices.h 271

ExpMgrConfigReadByte PCI.h 305

ExpMgrConfigReadLong PCI.h 306

ExpMgrConfigReadWord PCI.h 305

ExpMgrConfigWriteByte PCI.h 307

ExpMgrConfigWriteLong PCI.h 308

ExpMgrConfigWriteWord PCI.h 307

ExpMgrInterruptAcknowledgeReadByte PCI.h 309

ExpMgrInterruptAcknowledgeReadLong PCI.h 310

ExpMgrInterruptAcknowledgeReadWord PCI.h 309

ExpMgrIOReadByte PCI.h 301

ExpMgrIOReadLong PCI.h 302

ExpMgrIOReadWord PCI.h 301

ExpMgrIOWriteByte PCI.h 303

ExpMgrIOWriteLong PCI.h 304

continued

Table D-2 PCI-related functions and data structures (continued)

Function or data structure Header file Page

A P P E N D I X D

PCI Header Files

412

ExpMgrIOWriteWord PCI.h 303

ExpMgrSpecialCycleBroadcastLong PCI.h 310

ExpMgrSpecialCycleWriteLong PCI.h 311

FindDriverCandidates Devices.h 122

FindDriversForDevice Devices.h 125

FlushProcessorCache DriverServices.h 234

GetDataCacheLineSize DriverServices.h 230

GetDriverDiskFragment Devices.h 121

GetDriverForDevice Devices.h 126

GetDriverInformation Devices.h 136

GetDriverMemoryFragment Devices.h 120

GetInterruptFunctions Interrupts.h 259

GetInterruptSetOptions Interrupts.h 256

GetIOCommandInfo DriverServices.h 97

GetLogicalPageSize DriverServices.h 230

GetPageInformation Kernel.h 231

GetTimeBaseInfo DriverServices.h 268

HigherDriverVersion Devices.h 135

HighestUnitNumber Devices.h 138

IncrementAtomic DriverServices.h 276

InstallDriverForDevice Devices.h 134

InstallDriverFromDisk Devices.h 130

InstallDriverFromFile Devices.h 132

InstallDriverFromFragment Devices.h 129

InstallDriverFromMemory Devices.h 133

InstallInterruptFunctions Interrupts.h 258

InterruptDisabler Interrupts.h 254

InterruptEnabler Interrupts.h 254

InterruptHandler Interrupts.h 252

InterruptSetMember Interrupts.h 251

IOCommandIsComplete DriverServices.h 84

continued

Table D-2 PCI-related functions and data structures (continued)

Function or data structure Header file Page

A P P E N D I X D

PCI Header Files

413

IOPreparationTable Kernel.h 220

LookupDrivers Devices.h 138

MemAllocatePhysicallyContiguous DriverServices.h 236

MemDeallocatePhysicallyContiguous DriverServices.h 238

NanosecondsToAbsolute DriverServices.h 271

NanosecondsToDuration DriverServices.h 271

OpenInstalledDriver Devices.h 131

PageInformation Kernel.h 231

PBDequeue DriverServices.h 278

PBDequeueFirst DriverServices.h 278

PBDequeueLast DriverServices.h 278

PBEnqueue DriverServices.h 278

PBEnqueueLast DriverServices.h 278

PBQueueCreate DriverServices.h 278

PBQueueDelete DriverServices.h 278

PBQueueInit DriverServices.h 278

PoolAllocateResident DriverServices.h 236

PoolDeallocate DriverServices.h 237

PrepareMemoryForIO Kernel.h 224

PStrCat DriverServices.h 280

PStrCmp DriverServices.h 280

PStrCopy DriverServices.h 279

PStrLen DriverServices.h 281

PStrNCat DriverServices.h 280

PStrNCmp DriverServices.h 281

PStrNCopy DriverServices.h 279

PStrToCStr DriverServices.h 281

QueueSecondaryInterruptHandler Kernel.h 264

RegEntryID NameRegistry.h 170

RegEntryIter NameRegistry.h 174

RegistryCStrEntryCreate NameRegistry.h 173

continued

Table D-2 PCI-related functions and data structures (continued)

Function or data structure Header file Page

A P P E N D I X D

PCI Header Files

414

RegistryCStrEntryLookup NameRegistry.h 180

RegistryCStrEntryToName NameRegistry.h 183

RegistryCStrEntryToPath NameRegistry.h 182

RegistryEntryDelete NameRegistry.h 174

RegistryEntryGetMod NameRegistry.h 199

RegistryEntryIDCompare NameRegistry.h 171

RegistryEntryIDCopy NameRegistry.h 172

RegistryEntryIDDispose NameRegistry.h 172

RegistryEntryIDInit NameRegistry.h 170

RegistryEntryIterate NameRegistry.h 176

RegistryEntryIterateCreate NameRegistry.h 175

RegistryEntryIterateDispose NameRegistry.h 180

RegistryEntryIterateSet NameRegistry.h 175

RegistryEntryMod NameRegistry.h 197

RegistryEntryPropertyMod NameRegistry.h 198

RegistryEntrySearch NameRegistry.h 178

RegistryEntrySetMod NameRegistry.h 200

RegistryEntryToPathSize NameRegistry.h 182

RegistryPropertyCreate NameRegistry.h 185

RegistryPropertyDelete NameRegistry.h 186

RegistryPropertyGet NameRegistry.h 191

RegistryPropertyGetMod NameRegistry.h 201

RegistryPropertyGetSize NameRegistry.h 190

RegistryPropertyIterate NameRegistry.h 188

RegistryPropertyIterateCreate NameRegistry.h 187

RegistryPropertyIterateDispose NameRegistry.h 189

RegistryPropertySet NameRegistry.h 192

RegistryPropertySetMod NameRegistry.h 201

RegPropertyIter NameRegistry.h 187

RemoveDriver Devices.h 136

RenameDriver Devices.h 152

continued

Table D-2 PCI-related functions and data structures (continued)

Function or data structure Header file Page

A P P E N D I X D

PCI Header Files

415

ReplaceDriverWithFragment Devices.h 151

ScanDriverCandidates Devices.h 124

SendSoftwareInterrupt Kernel.h 261

SetDriverClosureMemory Devices.h 126

SetInterruptTimer Kernel.h 273

SetProcessorCacheMode Kernel.h 233

SubAbsoluteFromAbsolute DriverServices.h 271

SubDurationFromAbsolute DriverServices.h 272

SubNanosecondsFromAbsolute DriverServices.h 272

SynchronizeIO DriverServices.h 234

SysDebug Kernel.h 282

SysDebugStr Kernel.h 282

TestAndClear DriverServices.h 277

TestAndSet DriverServices.h 277

UpTime DriverServices.h 271

VDDisplayConnectInfoRec Video.h 339

VDSyncInfoRec Video.h 331

VerifyFragmentAsDriver Devices.h 128

VSLDisposeInterruptService Video.h 346

VSLDoInterruptService Video.h 345

VSLNewInterruptService Video.h 345

VSLPrepareCursorForHardwareCursor Video.h 346

Table D-2 PCI-related functions and data structures (continued)

Function or data structure Header file Page

A P P E N D I X E

417

Abbreviations E

Abbreviations for units of measure used in this book include

Other abbreviations used in this book include

A amperes MHz megahertz

cm centimeters mm millimeters

dB decibels ms milliseconds

GB gigabytes mV millivolts

Hz Hertz ns nanoseconds

KB kilobytes pF picofarads

Kbit kilobits sec. seconds

kHz kilohertz V volts

k

Ω

kilohms W watts

mA milliamperes

µ

F microfarads

MB megabytes

µ

s microseconds

Mbit megabits

Ω

ohms

ADC analog-to-digital converter

ANSI American National Standards Institute

AOCE Apple Open Collaborative Environment

API application programming interface

ASCII American Standard Code for Information Interchange

ASIC application-specific integrated circuit

ASLM Apple Shared Library Manager

AV audio/video

BIOS basic I/O system

CD-ROM compact disc ROM

CFM Code Fragment Manager

CLUT color lookup table

CPU central processing unit

DAC digital-to-analog converter

DAV digital audio/video

DCE device control entry

DDC Display Data Channel

DEVSEL device select

continued

Figure E-0
Listing E-0
Table E-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X E

Abbreviations

418

DLL Driver Loader Library

DLPI Data Link Provider Interface

DLSAP data link service access point

DMA direct memory access

DPMS Device Power Management Standard

DSAP destination service access point

DSL Driver Services Library

FDDI Fiber Distributed Data Interface

FIFO first in, first out

FPI family programming interface

FTP file transfer protocol

HFS hierarchical file system

IC integrated circuit

ID identifier

IDE Integrated Drive Electronics

IDR interrupt disabler routine

IEEE Institute of Electrical and Electronics Engineers

IER interrupt enabler routine

IIC inter-IC control (also called

I

2

C

)

I/O input/output

IOPB I/O parameter block

IPX Internet Packet Exchange

ISA Instrument Society of America

ISR interrupt service routine

IST interrupt source tree

LIFO last in, first out

LSB least significant byte

LUN logical unit number

MPEG Motion Picture Expert Group

MPW Macintosh Programmer’s Workshop

MSB most significant byte

n.a. not applicable

NC no connection

NTSC National Television System Committee

NVRAM nonvolatile RAM

PAL Phased Alternate Lines

PCI Peripheral Component Interconnect

continued

A P P E N D I X E

Abbreviations

419

PCMCIA Personal Computer Memory Card International Association

PEF Preferred Execution Format

PLL phase-locked loop

PRAM parameter RAM

RAM random-access memory

RGB red-green-blue

RISC reduced instruction set computing

ROM read-only memory

SAP service access point

SCSI Small Computer System Interface

SECAM Système Electronique Couleur avec Mémoire

SGR Select Graphic Rendition

SIG special interest group

SIM SCSI Interface Module

SNAP subnet access protocol

SNR signal-to-noise ratio

SPI system programming interface

SSAP source service access point

TCP/IP Transmission Control Protocol/Internet Protocol

TPI Transport Provider Interface

VBL vertical blanking

VCR videocassette recorder

VESA Video Electronics Standards Association

VGA video graphics adapter

VIA versatile interface adapter

VRAM video RAM

VSL Video Services Library

XID exchange identifier

XPT transport

421

address invariance

A feature of a data bridge
(such as a

PCI bridge

) by which the address of
any byte transferred across the bridge remains
the same on both sides of the bridge.

address-invariant byte swapping

A technique
for changing data between

big-endian

 and

little-endian

 formats that preserves

address
invariance.

address space

The domain of addresses in
memory that can be directly referenced by the
processor at any given moment.

address swizzling

A technique for producing

address invariance

in

mixed-endian

 systems
by making small changes in the addresses of
multibyte fields without altering the field
formats—that is, without

byte swapping.

APDA

Apple’s worldwide direct distribution
channel for Apple and third-party development
tools and documentation products.

aperture

A logical view of the data in a frame
buffer, organized in a specific way and mapped
to a separate area of memory. For example, a
frame buffer may have a

big-endian

 aperture
and a

little-endian

 aperture, providing instant
access to the buffer in either addressing mode.

Apple AV technologies

A set of advanced I/O
features for Macintosh computers that includes
versatile telecommunications, video I/O, and
16-bit stereo sound I/O.

Apple GeoPort interface

A serial I/O interface
through which Macintosh computers can
communicate with a variety of ISDN and other
telephone transmission facilities by using
external pods.

application programming interface (API)

A set
of services in Mac OS that supports application
software. See

system programming interface.

autoconfiguration

A method of integrating
peripheral devices into a computer system that
includes mechanisms for configuring devices
during system startup and requires that vendors
include

expansion ROMs

 on plug-in cards.

AV technologies

See

Apple AV technologies.

big-endian

Used to describe data formatting in
which each field is addressed by referring to its
most significant byte. See also

little-endian.

boot driver

A device driver that is used during
the

Open Firmware startup process.

 It must be
written in FCode and is usually loaded from the

expansion ROM

 on a PCI card.

bridge

See

PCI bridge.

byte lane

An 8-bit channel of a data bridge that
passes individual bytes of data.

byte swapping

A technique of changing the
order of

byte lanes

 as they pass through a data
bridge (such as a

PCI bridge

) that produces

address invariance

 in a

mixed-endian

 system.

CFM

See

Code Fragment Manager.

Code Fragment Manager (CFM)

A part of

Mac OS

that loads pieces of code into RAM
and prepares them for execution.

coherency

See

memory coherency.

color depth

The number of bits required to
encode the color of each pixel in a display.

completion routine

A routine provided by a
Device Manager client that lets the Device
Manager notify the client that an I/O process
has finished.

concurrent drivers

Drivers that can process
more than one request at a time.

configuration

The process of modifying the
software of a computer so it can communicate
with various hardware components.

Glossary

Thi d t t d ith F M k 4 0 4

G L O S S A R Y

422

cookie

A parameter in programming that is
used only to transfer a value from one routine
to another.

Data Link Provider Interface (DLPI)

The
standard interface Apple uses for

Open
Transport

 drivers.

device environment

A software environment
with which a device operates, such as the

Open
Firmware startup process

 or an operating system.

Device Manager

Part of

Mac OS

 that installs
device drivers and communicates with them.

device node

In a

device tree,

 a node that serves
one hardware device.

device tree

A software structure, generated
during the

Open Firmware startup process,

 that
assigns nodes to all PCI devices available to the
system.

Mac OS

 extracts information from the
device tree to construct the device parts of the
Macintosh

 Name Registry.

direct memory access (DMA)

A means of
transferring data rapidly into or out of RAM
without passing it through the microprocessor.

disk-based driver

A driver located in the
Macintosh file system in the Extensions folder.

digital audio/video (DAV) interface

A
connector in certain Power Macintosh models
that lets expansion cards communicate directly
with the system’s audio and video signal streams.

Display Manager

A part of

Mac OS

 that
provides a uniform

family programming
interface

 for display devices.

DLPI

See

Data Link Provider Interface.

driver

The code that controls a physical device
such as a PCI card device.

driver closure

A driver and all its associated
libraries, for which memory may be held
or released.

driver gestalt call

A status call to a device
driver that returns information such as the
driver’s revision level or the device’s power
consumption.

Driver Loader Library (DLL)

A CFM shared
library extension to the

Device Manager,

 which
installs and removes drivers.

Driver Services Library (DSL)

A CFM shared
library that supplies all the system programming
interfaces required by

native drivers.

dynamic random-access memory (DRAM)

Random-access memory in which each storage
address must be periodically accessed
(“refreshed”) to maintain its value.

Expansion Bus Manager

The part of the
Macintosh startup firmware that provides access
to I/O memory and manages the storage of
certain information in

nonvolatile RAM.

expansion ROM

A ROM on a PCI accessory
card that supplies the computer with information
about the card and any associated peripheral
devices during the configuration process. Also
called a

declaration ROM

 or a

configuration ROM.

expert

The code that connects a family of
devices to the

native I/O framework.

family

A collection of devices that provide the
same kind of functionality, such as the set of

Open Transport

 devices.

family administrator

Code that sends
configuration information to a family of devices.

family expert

An expert that uses the

Name
Registry

 to find device entries of its family
service type.

family library

A set of routines that a

family
expert

 uses to support PCI devices of its family
service type.

family programming interface (FPI)

A set of
system services that mediate between

family
experts

 and the devices within a family.

Fast Path

An optional optimization of

Open
Transport

 wherein the driver supplies the client
with a precomputed packet header for a given
destination.

FCode

A tokenized version of the Forth program-
ming language, used in PCI card

expansion
ROMs.

 The elements of FCode are all 1 or
2 bytes long.

FCode tokenizer

A utility program that
translates lines of Forth source code into

FCode.

G L O S S A R Y

423

frame buffer

Memory that stores one or more
frames of video information until they are
displayed on a screen.

gestalt node

A node at the root of the

device
tree

 that contains information about the
Macintosh system.

GeoPort

See

Apple GeoPort interface.

hard decoding

The practice by which an
expansion card defines PCI

address spaces,

instead of letting the Macintosh system assign
relocatable base addresses.

hardware interrupt

A physical device’s method
for requesting attention from a computer.

hardware interrupt level

The execution context
provided to a device driver’s primary

interrupt
handler.

IEEE

Institute of Electrical and Electronics
Engineers.

input/output (I/O)

Parts of a computer system
that transfer data to or from peripheral devices.

installation

Of an interrupt, the process of
associating an

interrupt source

 with an

 interrupt
handler.

interrupt dispatching

The process of invoking
an

interrupt handler

 in response to an interrupt.

interrupt handler

Code that performs tasks
required by a

hardware interrupt.

interrupt registration

The process of attaching
an interrupt handler to the

interrupt source tree.

interrupt set

One level in an interrupt tree.

interrupt source

A physical device that is able
to interrupt the process flow of the computer.

interrupt source tree (IST)

A data structure
associated with a hardware

interrupt source

 that
contains the interrupt handling routines that the
Macintosh system may execute.

little-endian

Used to describe data formatting
in which each field is addressed by referring to
its least significant byte. See also

big-endian.

low-level expert

An expert that places informa-
tion about low-level code into the

Name Registry.

Macintosh Programmer’s Workshop (MPW)

A
complete software development environment
that runs on Macintosh computers.

Mac OS

Apple’s operating system software for
Macintosh and Macintosh-compatible computers.
Previously called

Macintosh system software.

memory coherency

The property of a range
or kind of memory by which all parts of the
computing system access the same values.
Memory coherency ensures that data being
moved into or out of memory does not appear
to have different values when accessed by the
processor and

PCI bridges.

mixed-endian

The ability of a computer
system, such as Power Macintosh, to support
both

big-endian

 and

little-endian

 data formats.

modifier

Information associated with a name or

property that is hardware or implementation
specific, such as whether or not the name or
property is saved to nonvolatile RAM.

name entry An element of the Name Registry.
Name entries are connected hierarchically to
other name entries and have properties.

Name Registry A high-level Mac OS system
service that stores the names of software objects
and the relations among the names. The Name
Registry extracts device information from the
device tree and makes it available to Macintosh
run-time drivers.

native driver A driver that is written in
PowerPC code and that uses the native I/O
framework in the second generation of Power
Macintosh computers.

native driver package A CFM code fragment
that contains the driver software for a family
of devices.

native I/O framework The set of services
and SPIs in Mac OS that support native run-
time drivers.

noninterrupt level See task level.

nonvolatile RAM (NVRAM) Memory, in either
flash ROM or battery-powered RAM, that retains
data between system startups.

G L O S S A R Y

424

Open Firmware driver A driver for a PCI
device that is used during the Open Firmware
startup process, before an operating system has
taken control of the computer.

Open Firmware startup process The startup
process by which PCI-compatible Macintosh
computers with PowerPC processors recognize
and configure peripheral devices connected to
the PCI local bus. It conforms to an IEEE
standard.

Open Transport A device family that handles
Apple network devices such as LocalTalk and
Ethernet.

pass-through memory cycle A PCI data
transfer cycle in which the PCI bridge passes the
original PowerPC word address to the PCI bus.

PCI Abbreviation for Peripheral Component
Interconnect.

PCI bridge An ASIC chip that communicates
between the computer’s microprocessor and a
PCI local bus.

PCI local bus A bus architecture for connecting
ASICs and plug-in expansion cards to a
computer’s main processor and memory. It is
defined by the PCI specification.

PCI specification PCI Local Bus Specification,
Revision 2.0, a document issued and maintained
by the PCI Special Interest Group.

physical device A piece of computer hardware
that performs an I/O function and is controlled
by a driver.

pixel A single dot on a screen display.

port driver A driver for Open Transport.

PowerPC A family of RISC microprocessors.
PowerPC 601, 603, and 604 microprocessors are
currently used in Macintosh PCI-based
computers.

primary interrupt handler The part of an
interrupt handler that responds directly to a
hardware interrupt. It usually satisfies the source
of the interrupt and queues a secondary
interrupt handler to perform the bulk of the
interrupt servicing.

primary interrupt level The execution context
in which a device’s primary interrupt handler
runs. In this context hardware interrupts of the
same or lower priority are disabled.

property A piece of descriptive information
associated with a node in the device tree or with
a name entry in the Name Registry.

property list The collection of properties
associated with a device.

reduced instruction set computing (RISC) A
technology of microprocessor design in which all
machine instructions are uniformly formatted
and are processed through the same steps.

RISC See reduced instruction set computing.

ROM-based driver A driver located in the
expansion ROM of a PCI card.

run-time driver A device driver that is used by
an operating system after the Open Firmware
startup process has finished. It may be supplied
by the operating system or contained in the
expansion ROM on a PCI card. In the second
generation of Power Macintosh, all run-time
drivers are native drivers.

scanning The process of matching a device
with its corresponding driver.

scatter-gather buffer A buffer that stores data
in several discontiguous ranges of memory.

scatter-gather list The set of physical address
ranges corresponding to a logical address range.

SCSI Interface Module (SIM) The equivalent
of a driver for devices compatible with SCSI
Manager 4.3.

secondary interrupt handler An interrupt
handler that is queued for execution after the
primary interrupt handler has responded to the
interrupt. Secondary interrupt handlers can be
interrupted and execute serially when the system
is not otherwise busy.

secondary interrupt level The execution
context provided to a device driver’s secondary
interrupt handler. In this context hardware
interrupts are enabled and additional interrupts
may occur.

G L O S S A R Y

425

SIM See SCSI Interface Module.

SPI See system programming interface.

startup firmware Code in the Macintosh ROM
that implements the Open Firmware startup
process.

system programming interface (SPI) A set of
services in the Macintosh system software that
supports hardware-related code such as drivers.
See application programming interface.

task level The execution environment for
applications and other programs that do not
service interrupts. Also called noninterrupt level.

time base The model-dependent rate on which
real-time timing operations are based in Power
Macintosh computers.

vertical blanking task A task that the
Macintosh system executes during a display
device’s vertical retrace intervals.

virtual device I/O code that provides a
capability that is not hardware specific—for
example, a RAM disk.

YUV A data format for each pixel of a color
display in which color is encoded by values
calculated from the pixel’s native red, green, and
blue components.

427

Index

A

abbreviations 417
absolute time 270
addressing modes 17

conversion of 19
determination of 20

address space 9
below 1 MB 7, 13
for nonvolatile RAM 291
reserved 48

American National Standards Institute xxiii
APDA xxii–xxiii
apertures 22
Apple AV Technologies 14
Apple Desktop Bus 82
Apple GeoPort interface 14
Application Programming Interface 61

assigned-addresses

 property 146
asynchronous device driver 104
asynchronous driver calls 74
asynchronous I/O requests 105
atomic operations 276
autoconfiguration 30

B

base registers (PCI) 39
big-endian addressing 17–19, 24
BIOS code type 30
BIST register 39, 44

BlockCopy

 function 238

BlockCopy

 routine 240

BlockMoveData

 routine 239

BlockMoveDataUncached

 routine 239

BlockMove

 extensions 238–239

BlockMove

 routine 239

BlockMoveUncached

 routine 239

BlockZero

 routine 239

BlockZeroUncached

 routine 239
boot drivers 31–34

requirements for 48–49
boot firmware 30
Bridge Control register 46
burst transactions 11
byte swapping 18, 24

C

Cache Line Size register 39, 43

CallSecondaryInterruptHandler2

 function 265
'CDEV' resources 162, 60

CheckpointIO

 function 228
Class Code register 39, 43
class codes in expansion ROM 290
client interface to boot drivers 48
Code Fragment Manager 64, 78, 81
Color Lookup Table 52
color table (in terminal emulator) 51
Command register 38, 43

compatible

 property 143
completion routine 104
concurrent drivers 70, 82–85
configuration cycles on PCI buses 10
configuration of PCI buses 36
control routine 102
copying data 73

CreateInterruptSet

 function 255

D

data fields 18
Data Link Provider Interface 362, 374
data transfer cycles 24–26
DAV interface xxii, 14

dcbz

 instruction 239, 240

dCtlStorage

 field 101
debugging 282
Deferred Task Manager 156

depth

 display device property 52
desk accessories 82
device configuration 156
device control entry 81
device driver 32, 48

asynchronous routines 104
control routine 102
converting 68K to native 72
definition of 60
differences between 68K and native 80
initialization of 145, 149
installing 105

KillIO

 requests 103
prime routine 101
private memory for 64

Thi d t t d ith F M k 4 0 4

I N D E X

428

device driver

(continued)

replacement of 150
sample of 55
status routine 103
writing 87

device environments 31
device family 61, 66
Device ID register 37, 42
Device Manager 70, 80, 152
device nodes 164

DeviceProbe

 function 148
device tree 31–35, 164
DEVSEL timing 8
digital audio/video interface 14
disk-based drivers 61, 67
display devices 12, 36

automatic sensing of xxii
display driver 316
Display Manager xxii, 66, 150

DoDriverIO

 function 79, 88, 93

DriverConfigure

 selectors 113

DriverDescription

 data structure 70, 88, 363

DriverDescription

 data symbol 79

driverGestalt

 function 106
Driver Loader Library 118

DriverOSRuntime

 data structure 90

DriverOSService

 data structure 91

driver-ref

 property 194
driver routines

close 101
control 102
open 101
prime 101
status 102

DriverServiceInfo

 data structure 92
Driver Services Library 71, 214, 240

DriverType

 data structure 90

E

802.2 network standard 375
error returns from system calls 72
Ethernet driver 373
Exception Manager 153
execution context of drivers 67, 85–86
Expansion Bus Manager 290
expansion cards 4, 12

installation of 32
mechanical specifications for 12

expansion ROM 7, 30, 48
base register 40, 46
contents of 32, 290

experts 61, 162
family 61
low-level 62

ExpMgrConfigReadByte

 function 305

ExpMgrConfigReadLongWord

 function 306

ExpMgrConfigReadWord

 function 305

ExpMgrConfigWriteByte

 function 307

ExpMgrConfigWriteLongWord

 function 308

ExpMgrConfigWriteWord

 function 307

ExpMgrIOReadByte

 function 301

ExpMgrIOReadLongWord

 function 302

ExpMgrIOReadWord

 function 301

ExpMgrIOWriteByte

 function 303

ExpMgrIOWriteLongWord

 function 304

ExpMgrIOWriteWord

 function 303

F

family administrator 61
Family Programming Interface 62, 69
Fast Path network mode 380
fax communication 14
FCode 31, 35

loader for 31
tokenizer for 31

FindDriverCandidates

 function 122

FindDriversForDevice

 function 125
FirmWorks xxiii
Forth language 31
frame buffers 12, 25

apertures for 22
and pixel format 20

G

generic driver framework 70
GeoPort interface 14
gestalt 106
Gestalt Manager 153

GetADrive

 control call 114

GetDriverDiskFragment

 function 121

GetDriverForDevice

 function 126

GetDriverInformation

 function 136

GetDriverMemoryFragment

 function 120

GetInterruptFunctions

 function 259

GetIOCommandInfo

 function 97

GetOTInstallInfo

 function 365

GetPartitionInfo

 status call 115

GetPartitionStatus

 status call 114

I N D E X

429

H

hard decoding 13
hardware cursor 346
hardware interface to boot drivers 48
hardware interrupt level execution 67, 214, 241
hardware interrupts 240
header for driver 81
header type in expansion ROM 290
Header Type register 39, 44

height

 display device property 52

HigherDriverVersion

 function 135

HighestUnitNumber

 function 138
human interface guidelines xxii

I, J

IEEE Standard 1275 xxiv, 30
'INIT' resources 60
initialization procedures 35

InitializeHardware

 function 364

InitStreamModule

 function 366

Inside Macintosh

xxi

InstallDriverFromDevice

 function 134

InstallDriverFromDisk

 function 130

InstallDriverFromFile

 function 132

InstallDriverFromFragment

 function 129

InstallDriverFromMemory

 function 133
Institute of Electrical and Electronic Engineers xxiv
Intel processors 19, 30
interrupt acknowledge cycles on PCI buses 10
interrupt dispatching 240, 244

InterruptEnabler

 function 254
interrupt handler 104, 156, 240, 257
Interrupt Line register 41, 46

InterruptMemberNumber function 252
Interrupt Pin register 41, 46
interrupts 34, 240–268
interrupt set 242
InterruptSourceState function 254
Interrupt Source Tree 241, 249
I/O Base register 44
IOCommandComplete function 83–84
I/O cycles on PCI buses 9, 301
IODone function 81
I/O framework 60
I/O Limit register 44
ioTrap parameter field 81
ISA bus 8
ISO standard 6429-1983 49

K

keyboards 36
KillIO requests 81, 103

L

Latency Timer register 39, 43
linebytes display device property 52
little-endian? global variable 20
little-endian addressing 17–19, 24
LOCK# PCI bus signal 7
LookupDrivers function 138

M

Macintosh Operating System 291
Mac OS 7.5 33

Macintosh startup firmware 30
Macintosh Toolbox 72
mass storage devices 36
Max_Lat register 41
memory allocations 16
Memory Base register 45
Memory Limit register 45
memory management 155
Min_Gnt register 41
Mixed Mode Manager 153
modifiers 163, 196–201
monitors xxii
multicast networking 379

N

name properties 161
Name Registry 62, 154, 160–163

examples of using 204–211
role of 64–66

native device drivers 78
native driver package 71, 87
'ndrv' driver type 69, 88
nodes 164
noninterrupt level execution 214
nonvolatile RAM (NVRAM) 13, 20, 290
Notification Manager 153
NuBus xix, 5

I N D E X

430

O

OpenBoot firmware architecture 30
Open Firmware startup process 26, 30

user interface for 36, 53
OpenInstalledDriver function 131
Open Transport 66, 362
operating systems 291
OSStatus data type 72
'OTAN' service category 66
OTCreateDeferredTask function 369
OTDestroyDeferredTask function 369
OTScheduleDeferredTask function 369

P

parameter block queue manipulation 278
parameter RAM 291
PCI bridge 4, 8
PCI local bus xix

benefits of 4
compared to NuBus 5
configuring 36
cycles on 10, 17
features of 4
Macintosh implementation of 5–10
performance of 11
response to system errors 11

PCI Special Interest Group xxiv
PCI specification 4
PCI-to-PCI bridge 8, 16, 41
pixel format 21–22
PoolAllocateResident function 236
PoolDeallocate function 237
port drivers 362
power consumption of PCI cards 7, 311
power levels 115, 311
Power Macintosh computers xix, xxii

documentation for xxii
memory allocations 16
and PCI cards 4
system architecture of 6

Power Manager 153
PowerPC microprocessor 19, 153
Prefetchable Memory Base register 45
Prefetchable Memory Limit register 45
Primary Bus Number register 44
primary interrupt handler 240
prime routine 101
ProhibitMounting control call 114
properties of PCI devices 49, 62, 141

creating 184
retrieving 190
standard 193

property list 31
property nodes 164
protocol modules 60

Q

QueueSecondaryInterruptHandler function 264

R

RegisterPartition control call 114
registers, PCI configuration 37
RegistryCStrEntryCreate function 173
RegistryCStrEntryLookup function 180
RegistryCStrEntryToName function 183
RegistryCStrEntryToPath function 182
RegistryEntryDelete function 174
RegistryEntryGetMod function 199
RegistryEntryIDCompare function 171
RegistryEntryIDCopy function 172
RegistryEntryIDDispose function 172
RegistryEntryIDInit function 170
RegistryEntryIterateCreate function 175
RegistryEntryIterateDispose function 180
RegistryEntryIterate function 176
RegistryEntryIterateSet function 175
RegistryEntryMod function 197
RegistryEntryPropertyMod function 198
RegistryEntrySearch function 178
RegistryEntrySetMod function 200
RegistryEntryToPathSize function 182
RegistryPropertyCreate function 185
RegistryPropertyDelete function 186
RegistryPropertyGet function 191
RegistryPropertyGetMod function 201
RegistryPropertyGetSize function 190
RegistryPropertyIterateCreate function 187
RegistryPropertyIterateDispose function 189
RegistryPropertyIterate function 188
RegistryPropertySet function 192
RegistryPropertySetMod function 201
RemoveDriver function 136
RenameDriver function 152
ReplaceDriverWithFragment function 151
Resource Manager 153, 157
Revision ID register 38, 43
ROM-based drivers 62, 67
run-time drivers 35

I N D E X

431

S

ScanDriverCandidates function 124
scanning code 62
SCSI device driver 384
SCSI Manager 4.3 150
Secondary Bus Number register 44
secondary interrupt handler 240, 263
SecondaryInterruptHandlerProc2 function 263
secondary interrupt level 67, 214, 242
Secondary Latency Timer register 44
Secondary Status register 45
Segment Loader 154
Select Graphic Rendition escape sequences 49–51
semaphores 8
SetDriverClosureMemory function 126
shared data 74
Shutdown Manager 154
68000 processors 19, 61
Slot Manager 154
sound I/O 14
special cycles on PCI buses 10
speech recognition and synthesis 14
Startup Disk control panel 113
startup firmware 30
startup sequence 34–36, 141–142
Status register 43
Status register (PCI) 38, 43
status routine 103
STREAMS environment 362
string manipulation 279
Subordinate Bus Number register 44
Subsystem ID register 40
Subsystem Vendor ID register 40
Sun Microsystems 30
SunSoft Press xxiv
support packages for drivers 34
synchronous driver calls 74
System Programming Interface 62–63, 75

T

task level execution 67
terminal emulation in graphics cards 49
TerminateStreamModule function 366
Time Manager 155
timing services 268, 369

U

unit table 127
reserved entries 105

user interface for Open Firmware 53

V

vendor ID 290
Vendor ID register 37, 42
VerifyFragmentAsDriver function 128
Vertical Retrace Manager 154
video cards 22, 25
video I/O 14, 316
virtual devices 62, 165

W

width display device property 52

X

XID network packets 380

Y, Z

YUV video signal form 14

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Final pages were created on an Apple
LaserWriter Pro 630 printer. Line art was
created using Adobe Illustrator.
PostScript

, the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino

 and display type is
Helvetica

. Bullets are ITC Zapf
Dingbats

. Some elements, such as
program listings, are set in Apple Courier.

WRITER

George Towner

DEVELOPMENTAL EDITORS

Jeanne Woodward, Beverly Zegarski

ILLUSTRATOR

Sandee Karr

PRODUCTION

Rex Wolf

Special thanks to Jano Banks,
Clinton Bauder, Mark Baumwell,
Öner Biçakçi, Bill Bruffey, Mike Cappella,
Derrick Carty, John Fitzgerald,
Kit Fitzpatrick, Ian Hendry,
Ron Hochsprung, Fred Janon,
Holly Knight, Al Kossow, Tom Mason,
Martin Minow, John Mitchell,
Matthew Nelson, Jon Norenberg,
Steve Polzin, Mark Pontarelli,
Mike Puckett, Mike Quinn,
Tom Saulpaugh, Erik Staats, Carl Sutton,
Larry Thompson, Fernando Urbina,
Allen Watson, and Tony Wingo.

Thi d t t d ith F M k 4 0 4

	Designing PCI Cards and Drivers for Power Macintosh Computers
	Contents
	About This Book
	Contents of This Book
	PCI Bus Overview
	System Startup by Open Firmware
	Native PowerPC Drivers
	Appendixes

	Supplementary Documents
	Apple Publications
	Other Publications

	Conventions and Abbreviations
	Typographical Conventions
	Notes
	Abbreviations

	The PCI Bus
	Overview
	Benefits of PCI
	PCI and NuBus
	The Macintosh Implementation of PCI
	Power Macintosh PCI System Architecture
	PCI Bus Characteristics
	PCI Topology
	PCI Host Bridge Operation
	I/ O Space
	Configuration Space
	Interrupt Acknowledge Cycles
	Special Cycles

	Maximizing Bus Performance
	PCI Transaction Error Responses
	Expansion Card Characteristics
	Hard Decoding
	Nonvolatile RAM
	Access to Apple AV Technologies

	Data Formats and Memory Usage
	Address Allocations
	PCI Bus Cycles
	Addressing Modes
	Addressing Mode Conversion
	Addressing Mode Determination

	Frame Buffers
	Pixel Storage
	Frame Buffer Apertures

	Data Transfers
	Data Flow
	Data Transfer Cycles
	The PCI Bus and Open Firmware

	The Open Firmware Process
	Startup and System Configuration
	The Open Firmware Startup Process
	Startup Firmware
	Device Drivers
	PowerPC Addressing and Alignment

	Device Configuration
	Open Firmware FCode Options
	Full Open Firmware Support
	Support for Mac OS 7.5 and Open Firmware
	Minimum Open Firmware Support
	No Open Firmware Support

	Open Firmware Driver Support

	Startup Sequence
	Initializing the Hardware
	Running Open Firmware
	Starting the Operating System

	PCI Bus Configuration
	Configuration Tasks
	Configuration Registers
	Register Actions

	PCI- To- PCI Bridges
	Configuration Header
	Register Settings

	PCI Open Firmware Drivers
	General Requirements
	Driver Interfaces
	Open Firmware Driver Properties
	Terminal Emulation in Graphics Drivers
	Color Table Initialization
	Display Device Standard Properties
	Display Device Standard Methods

	Open Firmware User Interface
	Invoking the User Interface
	User Interface Commands

	Sample Driver

	Native PCI Card Drivers
	Native Driver Overview
	Macintosh System Evolution
	Terminology
	Concepts
	Separation of Application and System Services
	Common Packaging of Loadable Software
	The Name Registry
	Families of Devices
	ROM- Based and Disk- Based Drivers
	Noninterrupt and Interrupt- Level Execution
	Symmetric Multiprocessing
	Generic and Family Drivers
	Driver Descriptions

	Generic Driver Framework
	Device Manager
	Driver Package
	Driver Services Library

	Converting Previous Macintosh Drivers
	Restricted Access to Services
	Error Returns

	Ensuring Future Compatibility
	Copying Data
	Synchronous and Asynchronous Driver Operation
	Sharing Data With Applications
	Power Management

	Summary
	Use the System Programming Interfaces
	Use the Name Registry

	Writing Native Drivers
	Native Driver Framework
	Native Container Format
	Native Driver Data Exports
	Native Driver Code Exports
	Native Driver Imports
	Drivers for Multiple Cards
	The Device Manager and Generic Drivers
	Native Driver Differences
	Native Driver Limitations

	Concurrent Generic Drivers
	Completing an I/ O Request
	Concurrent I/ O Request Flow

	Driver Execution Contexts
	Code Execution in General
	Driver Execution

	Writing a Generic Device Driver
	Native Driver Package
	Driver Description Structure
	Driver Type Structure
	Driver Run- Time Structure
	Driver Services Structure
	Driver Services Information Structure

	DoDriverIO Entry Point
	DoDriverIO Parameter Data Structures
	Sample Handler Framework

	Getting Command Information
	Responding to Device Manager Requests
	Initialization and Finalization Routines
	Open and Close Routines
	Read and Write Routines
	Control and Status Routines
	KillIO Routine
	Replace and Superseded Routines

	Handling Asynchronous I/ O
	Installing a Device Driver

	Driver Gestalt
	Supporting and Testing Driver Gestalt
	Implementing Driver Gestalt
	DCE Flags
	Using DriverGestalt and DriverConfigure
	DriverGestalt Selectors
	Using the 'boot' Selector
	DriverConfigure Selectors

	Other Control and Status Calls
	SetStartupDrive Control Call
	Low Power Mode Support Calls
	Device- Specific Status Calls

	Driver Loader Library
	Loading and Unloading
	Installation
	Load and Install Option
	Match, Load, and Install
	Driver Removal
	Getting Driver Information
	Searching for Drivers

	Finding, Initializing, and Replacing Drivers
	Device Properties
	PCI Boot Sequence
	Matching Drivers With Devices
	Driver Initialization and Resource Verification
	Opening Devices
	Driver Replacement

	Driver Migration
	Driver Services That Have No Replacement
	Device Manager
	Exception Manager
	Gestalt Manager
	Mixed Mode Manager
	Notification Manager
	Power Manager
	Resource Manager
	Segment Loader
	Shutdown Manager
	Slot Manager
	Vertical Retrace Manager

	New Driver Services
	Registry Services
	Operating- System Services
	Timing Services
	Memory Management Services
	Primary Interrupt Mechanisms
	Secondary Interrupt Services
	Device Configuration

	Macintosh Name Registry
	Concepts
	The Name Graph
	Name Properties
	How the Registry Is Built

	Name Registry Overview
	Scope
	Limitations
	Terminology
	Registry Topology
	The Device Tree
	Real and Virtual Devices

	Using the Name Registry
	Determining If the Name Registry Exists
	PCI Bus Identification
	Name Entry Management
	Name Entry Identifiers
	Pathnames

	Finding Registry Components
	Using Iterate Routines
	Using Search Routines

	Coding Conventions
	Data Structures and Constants
	ID Management
	Name Creation and Deletion
	Name Iteration and Searching
	Name Lookup
	Pathname Parsing

	Property Management
	Creation and Deletion
	Property Iteration
	Property Retrieval and Assignment
	Standard Properties

	Modifier Management
	Data Structures and Constants
	Modifier- Based Searching
	Name Modifier Retrieval and Assignment
	Property Modifier Retrieval and Assignment

	Macintosh System Gestalt
	Code Samples
	Adding a Device Entry
	Finding a Device Entry
	Removing a Device Entry
	Listing Devices

	Driver Services Library
	Device Driver Execution Contexts
	Miscellaneous Types
	Memory Management Services
	Addressing
	I/ O Operations and Memory
	Memory Management Types
	Memory Services Used During I/ O Operations
	Preparing Memory for I/ O
	PrepareMemoryForIO Data Structures
	IOPreparationTable Options
	Using PrepareMemoryForIO
	Logical and Physical Memory Preparation
	Mapping Tables
	Scatter- Gather Client Buffers
	Multiple Transfers
	Reducing Memory Usage
	Reducing Execution Overhead
	DMA Alignment Requirements
	Partial Preparation

	Finishing I/ O Transactions
	Cache Operations
	Getting Cache Information
	Setting Cache Modes
	Synchronizing I/ O
	Flushing the Processor Cache

	Memory Allocation and Deallocation
	Memory Copying Routines

	Interrupt Management
	Definitions
	Interrupt Model
	Primary and Secondary Interrupt Levels
	Interrupt Source Tree Composition
	Interrupt Registration
	Interrupt Dispatching
	Using kIsrIsComplete
	Using kIsrIsNotComplete
	Interrupt Priority

	Interrupt Source Tree Construction
	Interrupts and the Name Registry
	Extending the Interrupt Source Tree
	Automatic IST Extension
	Automatic IST Extension Operation
	Explicit IST Extension

	Basic Data Types
	Control Routines
	Interrupt Set Creation and Options
	Control Routine Installation and Examination
	Software Interrupts
	Secondary Interrupt Handlers
	Queuing Secondary Interrupt Handlers
	Calling Secondary Interrupt Handlers

	Interrupt Code Example

	Timing Services
	Time Base
	Measuring Elapsed Time
	Basic Time Types
	Obtaining the Time
	Time Conversion Routines
	Interrupt Timers
	Canceling Interrupt Timers

	Atomic Memory Operations
	Byte Operations
	Bit Operations

	Queue Operations
	String Operations
	Debugging Support
	Service Limitations

	Expansion Bus Manager
	Expansion ROM Contents
	Nonvolatile RAM
	Typical NVRAM Structure
	Operating- System Partition
	Apple- Reserved Partitions
	Open Firmware Partition

	Using NVRAM to Store Name Registry Properties

	PCI Nonmemory Space Cycle Generation
	I/ O Space Cycle Generation
	Configuration Space Cycle Generation
	Interrupt Acknowledge Cycle Generation
	Special Cycle Generation
	Byte Swapping Routines

	Card Power Controls
	Guidelines
	Sample Code

	Graphics Drivers
	Graphics Driver Description
	Graphics Driver Routines
	Control Calls
	Gamma Table Implementation
	Correction Data
	Gamma Table Errors

	Status Calls
	Reporting the Frame Buffer Controller’s Capabilities
	Reporting the Current Sync Status

	Display Timing Modes
	Display Manager Requirements
	Responding to GetConnectionInfo
	New Field and Bit Definitions
	Reporting csConnectTaggedType and csConnectTaggedData

	Connection Information Flags
	Timing Information

	Reporting Display Resolution Values
	Implementing the GetNextResolution Call
	Implementing the GetModeConnection Call
	Implementing the GetModeTiming Call
	Programming the Hardware

	Supporting the Hardware Cursor
	Video Services Library
	Interrupt Services
	Hardware Cursor Utility

	Data Structures
	Replacing Graphics Drivers

	Network Drivers
	Dynamic Loading
	Finding the Driver
	Native Port Drivers

	Installing the Driver
	Driver Initialization
	Driver Loading

	Driver Operation
	Interrupt- Safe Functions
	Secondary Interrupt Services
	Timer Services
	Atomic Services
	Power Services

	CSMA/ CD Driver
	Supported DLPI Primitives
	Extensions to the DLPI
	Packet Formats
	Ethernet Packets
	802.2 Packets
	IPX Packets

	Address Formats
	Ethernet
	802.2
	IPX

	Binding
	Ethernet
	802.2
	IPX

	Multicasts
	Sending Packets
	Receiving Packets
	Raw Packets
	Test and XID Packets
	Fast Path Mode
	Framing and DL_ INFO_ REQ
	TokenRing and FDDI Drivers

	SCSI Drivers
	The SCSI Expert
	SIMs for Current Versions of Mac OS
	Future Compatibility
	SCSI Device Power Management

	Appendixes
	Development Tools
	Contents of the Device Driver Kit
	Parts Supplied With the Kit
	Tools
	Code Files

	Parts Not Included in the Kit

	Big- Endian and Little- Endian Addressing
	Endian Theory
	Big- Endian Addressing
	Little- Endian Addressing
	Scalar Accesses
	Address Invariance and Byte Swapping

	Mixed- Endian Systems
	Transmitting Addresses
	Byte- Swapping Issues
	Byte Swapping and Frame Buffers
	Address Swizzling

	PowerPC Little- Endian Support
	Byte- Reversed Load and Store Instructions
	Little- Endian Processing Mode

	Graphic Memory Formats
	RGB Pixel Formats
	1, 2, 4, and 8 Bits Per Pixel
	16 Bits Per Pixel
	24 and 32 Bits Per Pixel

	YUV Pixel Formats
	Definitions of Pixel Formats in C

	PCI Header Files
	Abbreviations

	Glossary
	Index

