
Son of Motorola

(or, the $20 CPU Chip)
Would you believe - another microprocessor? You bet. The

calculator firm, MOS Technology of Norristown , Pennsylvania,
has just recently announced a new microprocessor which
combines plug in compatibility with th e Motorola 6800 and a
new instruction set to come out with yet another option for
microprocessor users - but at a price of $20 in single
quantities. Here comes the under $200 processor kit? Not
quite yet, but maybe within a year or two. (It :f already to the
point where the sheet metal and transformer iron of a home
computer often cost more than all the silicon products which
make it work . .. this new low 011 CPU prices just compounds
the problem.) It may be three to six months before you see
one of these new MCS6501 processors design ed into a kit, so
Dan Fylstra in his article cOllers quite a few details of the
Motorola 6800 by way of comparison with "Son of
Motorola . "

We thought that the "age
of the affordable computer"
had arrived when you could
buy a microprocessor chip for
$15 0. But the potent
combination of new
technology and free
enterprise has brought about
developments beyond our
wildest expectations.

So now you can buy your
microprocessor brand new, in
single quantities, for $ 20. The
new offering is from MOS
Technology, Inc., and is
pin - com p a t'i b Ie, but
software-incompatible with
the Motorola 6800
microprocessor. Although it
will be a while before the new
chip finds its way into
ready-to-build kits for the
hobbyist (after all, the first
Motorola 6800 kits have just
been announced), the news
should be of interest to
nearly every home brew
computer experimenter. So
here's a comparison of the

56

Motorola 6800 and the MOS
Technology 6500 series,
based on the information
presently available. If you
aren't already familiar with
the Motorola microprocessor,
don't worry - we'll cover its
major features in the course
of the comparison.

Hardware Comparison
Both the Motorola 6800

and the MOS Technology
chi pare TTL-compatible
devices, operating from a
single five volt power supply.
Like earlier microcomputers,
such as the Intel 8008, 8080
and National PACE, these
processors make use of a
bidirectional data bus, to
which both memory and
input/output devices may be
connected. However there are
no special input/output
instructions in the instruction
repertoire of either the
Motorola or MOS Technology
microprocessors. Outpu t of a

character, for example, is
accomplished by storing a
value into a certain memory
location, which is in reality a
special register inside an
external I/O interface chip,
connected to the data bus
just like any other RAM or
ROM chip.

Motorola supplies a
Peripheral I nterface Adapter
(PIA) chip which connects to
the data bus for 8-bit parallel
I/O, and an Asynchronous
Communications Interface
Adapter (ACIA) for bit-serial
input/output. (The ACIA is
simply a type of UART, as
discussed in Don Lancaster's.
September article on serial
interfaces. I t may be used to
connect a teletype or CRT
terminal to the micro
computer system.) MOS
Technology plans to supply a
similar set of chips.

Most of the time, data is
being transmitted between
the microprocessor and the

by
Daniel Fylstra
Associate Editor, BYTE
25 Hancock St.
Somerville MA 02144

memory chips over the data
bus. But the processor can
also disconnect itself from
the bu s, e nab ling, for
example, a data transfer to
take place directly between
an I/O device and memory .
Both the Motorola 6800 and
the MOS Technology chip
have three-state buffers for
the eight data lines, enabling
them to disconnect from the
bus in this fashion. But the
Motorola also has three-state
buffers on its 16 address
lines, whereas the MOS
Technology chips do not.

This would be used, for
example, in a floppy disk
controller which is capable of
transferring a whole block of
many bytes of data in
response to a single command
from the CPU. The controller
would present a series of
add resses on the 16 address
lines, and data bytes on the
data lines, causing the bytes
to be stored in a series of
locations in some RAM chip
on the bus; all this would
take place in th e intervals
when the CPU itself was
disconnected from the bus.

As a practic al matter,
however, small systems do
not require this kind of direct
memory access (DMA)
capability, and larger systems
with more devices on the bus
will require buffers on the

Ready or not, here I come:
6800 to 6501.

address lines to supply the
necessary power - and these
buffers may as well have
three-state outputs.

The other major hardware
difference between the
Motorola 6800 and the MOS
Technology 6500 series is
that the MOS Technology
chip has an 8080-style Ready
line, whereas the Motorola
6800 does not. The Ready
line is used to make the
microprocessor wait for a
variable length of time before
goin g on with the execution
of an instruction. This feature
makes it easy to use the less
expensive memory chips,
especially for Programmable
or Erasable Read-Only
Memory (PROM or EROM)
which are not as fast as the
CPU itself. It is possible to
use such devices with the
Motorola 6800, of course, by
stretch ing out one of the
clock phases to as long as five
microseconds. But the
availability of the Ready line
on the MOS Technology chip
is certainly a convenience,
and allows you to use
extremely slow memories if
you wish.

The MCS6501, first in the
MOS Technology 6500 series,
requires the same type of
externa l clock as the
Motorola 6800. But for $25
you can have the MCS6502,
which includes an on-the-chip
clock, driven by an external
single phase clock or an RC
or crystal time base input. As
the manufacturer suggests, it
is probably cheaper in an
original design to use the
MCS6502 than to provide the
external logic to generate the
two-phase clock.

To sum up, both the
Motorola 6800 and the MOS
Technology have comparable
features with some
differences. In terms of
hardware differences, the

MOS Technology Ready line
is probably more valuable
than the three-state address
line buffers available on the
Motorola 6800.

A final hardware
advantage possessed by the
MOS Technology chip is
speed. The Motorola 6800
cycle ti me is one microsecond
(1 MHz clock rate), and a
typical instruction takes
about three clock cycles.
Wh ile the cycle ti me of the
MOS Technology chip is
nominally the same, the
company has hinted broadly
that the chip can be run at
clock rates of 2 or even 3
MHz. Of course, one would
have to use faster and more
p.xpensive memory chips to
take advantage of this
increased speed.

In addition, certain critical
instructions take fewer cycles
on the MOS Technology chip.
An ST A (store accumulator)
instruction referencing an

Table I. Functionally equivalent
instructions for both the
Motorola 6800 and MOS
Technology MCS6501
microprocessors. The mnemonics
are Motorola's. Of course, these
instructions operate on the A
accumulator only in the
MCS6501, bu t can address either
accumulator in the Motorola
6800. The BIT instruction (*) has
a different effect on the V and N
processor flags in the MCS6501 .

ADC DEX
AND EOR
ASL INC
ASR IN X
BCC JMP
BCS JSR
BEQ LDA
BIT* LDX
BMI LSR
BNE NOP
BPL ORA
BVC PSH
BVS PUL
CLC ROL
CLI RTI
CLV RTS
CMP SBC
CPX SEC
DEC SEI

STA
STX
TSX
TXS

arbitrary location takes 4
cycles, versus 5 for the
Motorola, and a JSR (jump to
subroutine) instruction
requires 6 cycles, as opposed
to 9 on the 6800. Conditional
branches take 4 cycles on the
Motorola microprocessor,
while they take 2 cycles if the
condition is fa lse and 3 if it is
true on the MOS Technology
chip . Because these
instructions are so frequently
executed in most programs,
the 6500 series shou Id enjoy
a performance edge over the
Motorola 6800 even at the
same clock rate.

Software Comparison
We can treat the

instruction set arch itectu re of
the two processors in two
stages, first considering the
facilities for manipulating
data and then dealing with
the facilities for manipulating
addresses. Both features are
i mportan t to the overall
effectiveness of the processor
design.

Data Manipulation
The ins t r u c t ion s for

manipulating data are quite
similar on the two processors.
There are two major
differ e nces: First, the
Motorola 6800 has two 8-bit
accumulators, A and B, while
the MOS Technology chip has
only one accumulator, A.
Second, in addition to
conditional branches for
unsigned comparisons, the
Motorola 6800 has special
branch instructions for signed
comparisons, but the MOS
Technology ch ip does not.
(The signed comparisons treat
the two values as positive or
negative numbers in two's
complement notation, in the
range - 128 to +127 . For
example, - 1 is represented as
28 - 1 = 1 1 111111. An
unsigned comparison would
treat this quantity as the
largest possible (8-bit) value,
whereas a si gned comparison
would treat it as smaller than,
say, zero.)

Table li sts the
instructions which are the

We thought that the "age
of the affordable computer"
had arrived when you could
buy a microprocessor chip
for $150. But the potent
combination of new
technology and free
enterprise has brought
about developments
beyond our wildest
expectations.

same for both processors,
while Table II lists
instructions on the Motorola
6800 which must be replaced
by more than one instruction
on the 6500 series
microprocessors.

Some of the instructions
om i tted on the MOS
Technology chip are merely
incidental; others are more
serious. The lack of signed
com parisons represen ts a real
inconvenience in many
app lications. The lack of a
simple ADD instruction
means that an operation such
as A = B + C on one-byte
operands must be coded with
a "Clear Carry" (CLC) as in
this example:

CLC
LOA B
AOC C
STA A

on the MOS Technology chip.

On the other hand, a
computation such as A = B +
C - 0 could be coded as

CLC
LOA B
AOC C
SBC 0
STA A

assuming that the inclusion of
"carry" in both operations is
indeed desired.

Less serious but sti ll
irritati ng are the absence of
the ROR (rotate right), NEG
(negate) and COM

57

Table II. Motorola 6800 instructions which have no direct equivalent in
the MCS6501. Th e information in this table is taken from MOS
Technology documentation on the 6500 series.

Motorola 6800 Instruction Equivalent 6500 Series Sequence

No B accu mulator ABA
AOO
BGE loc
BGT loc

BHlioc
BLE loc

BLS loc
BL T loc
BRA
BSR
CBA
CLR [locI
COM [locI
OAA
OES
INS
LOS loc
NEG [locI
ROR [locI

SBA
SEV
STS loe
SUB
SWI

TAB
TAP
TBA
TPA
TST
WAI
op disp , X

CLC, AOC
BMI *+6, BVC loc, BVS *+4, BVS loc
BMI *+6, BVC *+6, BVS *+6, BVC *+4,
BNE loc
BCS *+4, BNE loc
BEQ loc , BMI *+6, BVS loc, BVC *+4,
BVC loc
BCS loc, BEQ loc
BMI *+6, BVS loc , BVC *+4 , BVC loc
JMP
JSR
No B accumulator

LOA #0, [STA locI
[LOA locI , EOR #$ FF, [STA loel
Repl aced by SEO
Use PHA
Use PLA
LOX loc, TXS
EOR #$FF, AOC # 1 [or LOA # 0, SBC locI
[LOA locI , PHP, LSR , PLP, BCC * +4,
ORA #$80, [STA locI
No B accumulator
LOA #1, LSR
TSX, STX loc
CLC, SBC
BR K saves state without transferring
control
No B accumulator
PHA, PLP
No B accumulator
PHP, PLA
BIT #0
JMP *
LOY #disp, op @Ioe, Y

[indexed addressing model [indirect indexed addressing model

(complement) instructions, as
well as single-byte
instructions to incre ment and
decrement the accumu lator.
Probably the least significant
difference is the omission of
the B accu mu la tor on the
MOS Technology chip. This is
more than made up for by
the availability of an extra
index register (see beloW).

All in all, the Motorola
6800 comes out ahead when
considering facilities for
manipulating data, the most
important point in its favor
being the availability of the
signed comparisons.
Generally speaking, however,
the basic instructions
available on the two
processors are quite similar.

58

Address Manipulation

The greatest architectural
differences between the two
processors lie in their
facilities for manipulating
addresses, or their
"addressing modes" - and
here the MOS Technology
chip has much more to offer.

The two microprocessors
are the same in one respect:
both have special "short
forms" of most instructions
for referencing the first 256
bytes of memory. This is
called "direct addressing" on
the Motorola 6800, and "zero
page addressing" on the MOS
Technology chip. As an
example, the most general
LDA (load accumulator)

instruction is three bytes
long; the second and third
bytes form the effective
address (0-65535), which can
referenc e any byte in
memory. The short form of
the LDA instruction,
however, is two bytes long;
the second byte forms the
effective address (0-255) of a
byte in the first "page" of
memory. The "short form"
instructions generally take
one fewer clock cycle to'
execute, . since only two
rather than three instruction
bytes must be fetched from
memory.

The major differences
between the two processors
lie in the important area of
index e dad dressing. The

Motorola 6800 h as a single
16-bit index regis ter, called
X. Essentially all instructio ns
have an indexed addressing
form, in which a one-byte
displacement (0-255) is added
to the address in the index
register to form the effective
address. The MOS
Technology chip, on the
other hand, has two 8-bit
index registers, called X and
Y. All of the computational
instructions have indexed
addressing forms in which
either a one- or two-byte base
address is added to the
contents of either the X or
the Y register to form the
effective address.

Which approach is the
better one? For the purpose

of accessing elements of
arrays, or tables of many
identical elements, the MOS
Technology chip comes out
way ahead. This is partly due
to the lack of certain critical
instructions on the Motorola
6800, such as an instruction
to add the contents of an
accumulator to the index
register, or even to transfer
the value in the accumulators
to the index register.

Suppose that we wish to
add the Ith element of an
array, SI, to another variable,
T. I n general, the array may
be located anywhere in
memory, and the subscript I
may be the result of some
calculation done in the
accumulators. Letting S
denote the address of the
zeroth element (the base
add ress) of the array, and
assuming that the value of the
subscript I is already in the A
accumulator, consider the
ins tru ctions necessary to
accomplish this operation on
the two processors.

The biggest difference is in
the area of addressing
modes, an area where the
6500 series devices far
outshine the Motorola 6800.

On the Motorola 6800,
our first try yields the
following:

SHI EQU 5/256*256
CLR B
ADD A #5-SHI
ADC B #5/256
STA A TEMP+1
STA B TEMP
LDX TEMP
LDA A 0, X
ADD AT
STA AT

T his instruction sequence
requires 19 bytes, counting
the two-byte temporary
TEMP and assuming that
TEMP and T are located in
the fi rst 256 bytes of
memory. Since the array 5
could be anywhere in
memory, we were unable to
use the displacement field of
an instruction with indexed
addressing for the array base
address, and instead we had
to add the array base to the
index (in double precision),
store the result in memory,
load it into the index register,
and finally reference the
array element 51'

We can improve on this
with the aid of a little lateral
thinking. Noticing that the
6800 is actually capable of
add ing a one-byte quantity to
a two-byte address, but only
in a storage reference with
indexed addressing, we will
split up the base address into
two parts to arrive at a better
solution:

SHI EQU 5/256*256
STA A TEMP+1
LDX TEMP
LDA A S-SHI, X
ADD AT
STA AT

TEMP FDB SHI

This instruction sequence
requires only 12 bytes, under
the same assumptions.

Even so, we can't match
the simplicity of the solution

Calculate the
indexed ad dress

]
Perform desired

computation

to the same problem on the
MOS Technology chip:

TAX
LDA 5, X
ADD T
STA T

This instruction sequence
requires only seven bytes.
Only four bytes were needed
to reference the element 51,
versus eight for the Motorola
6800.

How important is this
improvement? It is certainly
significant, since arrays and
tables are used so frequently
in programs of any size. On
the other hand, in many
app lic ations it is on ly
necessary to reference each
element of an array in turn; it
is not necessary to access
elements randomly based on
a computed subscript. In this
case, we can obtain better
code on the Motorola 6800
by first loading the array base
address into the index
register, and then referencing
each element directly (i.e.,
with a zero indexed address
displacement), incrementing
the address in the index
register using the INX
instruction to proceed from
element to element. We are
therefore using the 6800's
index register to hold a
pointer or indirect address
rather than an index .

An even more important
difference between the two
microprocessors in that the
MOS Technology chip
possesses two (8-bit) index

registers, X and Y, whereas
the Motorola 6800 has only
one (16-bit) index register X.
As we shall see, two index
registers are far more valuable
than two accumulators . This
is because programs
frequently manipulate two
(or more) tables, or other
indirectly addressed variables,
at the same time. As an
examp le, we will consider
perhaps the simplest
operation of this type, the
problem of moving a string of
bytes from one area of
storage to another. Assume
that 20 bytes, starting at the
location denoted by the
symbol FROM, are to be
moved to the area starting at
the location denoted by the
symbol TO.

On the Motorola 6800, we
can write the following
routine:

LOOP LDX FRPTR] Fetch
LDA A 0, X FROM

LDX TOPTR] Move
STA A 0, X TO

INC FRPTR] I C lange
INC TOPTR pointers
DEC COUNT
BNE LOOP Test

Two index registers are
far more valuable than
two accumulators.

This routine requires 17
bytes, and executes in 404
clock cycles. The
improvement in speed clearly
depends on the number of
bytes to be moved; each pass
through the loop in the
Motorola 6800 routine takes
41 clock cycles, wh ile each
pass through the loop in the
MOS Technology routine
takes 20 cycles. (The MOS
Technology routine is also
limited to moving at most
256 bytes.)

Once again the degree of
improvement is substantial,
and the improvement is

Vss 40

Halt

<1> 1
continuation

2

3

4

5

6

IRQ

· 39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

FRPTR FDB FROM
TOPTR FDB TO
COUNT FCB 20

This routine requires 24
bytes, including the working
storage locations, and
executes in 820 clock cycles.
This routine can move up to
256 bytes.

On the MOS Technology
chip we have the following
solution:

LDX #0
LDY #0

LOOP LDA FROM, X
STA TO, Y
INX
INY
DEC COUNT
BNE LOOP

COUNT FCB 20

7

8

9

10

11

12

13

14

15

16

17

18

19

20

NMI

8A

Vee
AO 01

06

A12

Vss

Fig. 1. The pin assignments of the
Mo torola 6800 (and by
inlplication, the MOS Technology
MCS6501). VSS is ground (0
volts) and VCC is +5 volts. The A
lines are address outpu ts, and the
D lines are bidirectional tristate
data bus lines. For details see the
Motorola and MOS Technology
documentation of these parts.

59

15

o

'--______ -'1 Accumulator A

o

'--______ -'1 Accumulator B

o

L..I ____ --------------'I Program Counter
15 0

which is too large to place in
the first page of memory, one
can trade space for time by
placing the array base address
in the first page of memory,
and then referencing e lements
of the array usi ng indirect
indexed addressing. Each
element reference takes less
space (two bytes instead of
three) but more time (five
cycles instead of four) than
wou ld be required for
ordinary indexed addressing.

L..I ______________ I Stac k Pointer

Condition Codes

L....JL....J -r ,.........,... Reg i s te r

Carry (From Bit 7)

Overflow

Zero

'---- Negative

Interrupt

'------ Half Carry (From Bit 3)

Fig. 2. The programmer's view of the 6800 CPU. This diagram,
excerpted from the Motorola 6800 documentation, shows the various
registers of the CPU including the processor's condition code register.
Note the similarity to the MCS6S01 in Fig. 3. the second byte specifies the

address of a two-byte
constant in the first page of
memory. Th is two-byte
constant then becomes the
"array base address," and the
contents of the Y register are
added to this constant to
form the effective address.
This addressing mode is very
useful: In a program with
many references to a
particular array or table

There are two other
addressing modes on the MOS
Technology chip which are
somewhat less useful. The
first is called " indexed
indirect" addressing: Here the
contents of the X register are
added to a one-by te base
address to obtain the address
of a two-byte constant in the
first page of memory. The
contents of this two-byte
constant then becomes the
effective ad dress .
Unfortunately this addressing
mode is not available for the
J MP instruction, where it
would be most usefu l: It
cou ld be used to implement a
"jump table," or a
"computed GO TO" or
"CASE statement" in some
high-level languages.

significant because this type
of problem arises so
frequently in large programs.

The MaS Technology
chip has some additional
addressing modes not
possessed by the Motorola
6800. First, there is a "short
form" for instructions with
simple indexed addressing if
the array base address is in
the first "page" (256
locations) of memory. This
fea tu re is of somewhat

60

One unfortunate feature
of the MOS Technology
chip's many addressing
modes is that they do
not apply consistently
to all instructions.

limited use except in very
small programs, since only a
few small arrays can actually
be placed in the first 256
locations. Of greater interest
is the so-called "indirect
indexed" addressing mode.
Instructions with this type of
addressing are two bytes long;

15

15

1/ 0 REGISTERS

ACCUMULATOR

Finally, two other
addressing modes are used
with branch instructions:

~~~ ~~~~~ ~~~ ~ LI __ ~Y __ --, INDEX REGISTER Y 

15 

15 

PCH PCl 

INlvllBlolllzlcl 
\1 I 

INDEX REGISTER X 

PROGRAM COUNTER 

STACK POINTER 

P AOCESSOR STATUS REGISTER , " P" 

CARRY IB IT 7) 
ZERO 
INTERRUPT DISAB LE 
DEC IMAL MODE 
BREAK COMMAND 
FORTHCOMING FEATURE 
OVERFLOW 
NEGATIVE 

Solid lioe indicates currenlly avai lable fealUres 
Dash t.>d line indicates lonhcoming members 01 family 

Fig. 3. The programmer's view of the MCS6S0 1 CPU. This diagram, 
excerpted from the MOS Technology 6500 series preliminary documen· 
tation, shows the various registers of the CPU. Note the similarity to 
the Motorola 6800 diagram in Fig. 2. 



Table III. Instructions, addressing modes and execution times for the 
Motorola 6800 processor. Execu tion times are in "machine cycles" 
which for a 1.0 MHz clock take 1.0 microsecond apiece. This table is 
excerpted from Motorola documentation on their processor. 

] I ~ · ; -g 
'C · -g 

0 x 'i; -g · 'C > 0 
X 'i; 

~ j 
'C 

-; E u x 
,. 

-; E u 
,. 

U · ~ · 0. · u · 0. 
e u ! 'C 

! .. e u ! c x ! ~ c c a: ~ w 

ABA · · · · · 2 · INC 2 · · 6 7 · ADC x · 2 3 4 5 · · INS · · · · · 4 
ADD x · 2 3 4 5 · · INX · · · · · 4 
AND x · 2 3 4 5 · · JMP · · · 3 4 · ASL 2 · · 6 7 · · JSR · · · 9 8 · ASR 2 · · 6 7 · · LOA x · 2 3 4 5 · BCC · · · · · · 4 LOS · 3 4 5 6 · BCS · · · · · · 4 LOX · 3 4 5 6 · BEA · · · · · · 4 LSR 2 · · 6 7 · BGE · · · · · · 4 NEG 2 · · 6 7 · BGT · · · · · · 4 NOP · · · · · 2 
BHI · · · · · · 4 ORA x · 2 3 4 5 · BIT x · 2 3 4 5 · · PSH · · · · · 4 
BLE · · · · · · 4 PUL · · · · · 4 
BLS · · · · · · 4 ROL 2 · · 6 7 · BLT · · · · · · 4 ROR 2 · · 6 7 · BMI · · · · · · 4 RTI · · · · · 10 
BNE · · · · · · 4 RTS · · '. · · 5 
BPL · · · · · · 4 SBA · · · · · 2 
BRA · · · · · · 4 SBC x · 2 3 4 5 · BSR · · · · · · 8 SEC · · · · · 2 
BVC · · · · · · 4 SEI · · · · · 2 
BVS · · · · · · 4 SEV · · · · · 2 
CBA · · · · · 2 · STA x · · 4 5 6 · CLC · · · · · 2 · STS · · 5 6 7 · CLI · · · · · 2 · STX · · 5 6 7 · CLR 2 · · 6 7 · · SUB x · 2 3 4 5 · CLV · · · · · 2 · SWI · · · · · 12 
CMP x · 2 3 4 5 · · TAB · · · · · 2 
COM 2 · · 6 7 · · TAP · · · · · 2 
CPX · 3 4 5 6 · · TBA · · · · · 2 
OM · · · · · 2 · TPA · · · · · 2 
DEC 2 · · 6 7 · · TST 2 · · 6 7 · DES · · · · · 4 · TSX · · · · · 4 
DEX · · · · · 4 · TSX · · · · · 4 
EOR x · 2 3 4 5 · · WAI · · · · · 9 

NOTE , I n terrupt t ime is 12 cyc les from the end of 
the instructio n being executed . excep. l fo l low ing 
a WA I instr uc tion . Then it is 4 cyc les. 

II Rei ative" addressing, 
available on both the 
Motorola and the MOS 
T e c hn ology processors, is 
used with the conditional 
branch instructions, which 
are two bytes long. The 
second byte of such an 
instruction specifies a positive 
or negative displacement in 
two's complement notation 
(- 128 to +127). The 
destination address of the 
branch is taken to be the 
algebraic sum of the address 
of the byte immediately 
following the branch 
instruction and this 
displacement. Of course, this 
means that it is possible to 
branch directly to a location 
within only a certain limited 
distance from the branch 
itself; but, more often than 
not, the range of -128 to 
+ 127 bytes is adequate, and a 

space savings is realized in 
comparison to processors 
such as the Intel 8080 which 
have on ly three-byte branch 
instructions. If necessary, a 
conditional branch can 
always transfer to a 
three-byte unconditional J M P 
instruction, wh ich can jump 
to any location in memory. 
On the MOS Technology 
chip, a J MP instruction can 
also specify "absolute 
indirect" addressing: In this 
case, the second and th ird 
bytes of the instruction 
specify the address of a 
two-byte constant anywhere 
in memory, and the contents 
of this two-byte constant 
becomes the destination 
address for the jump. 

One unfortunate feature 
of the MOS Technology 
chip's many addressing modes 
is that they do not apply 

Which processor comes out ahead overall? To a great 
extent it depends on your point of view: Systems 
programs are better on the MOS Technology machines; 
applications programs would tend to come out ahead 
on the Motorola 6800. 

consistently to all 
instructions. For example, 
the binary arithmetic 
instructions are available with 
essentially a ll addressing 
modes, but the unary 
arithmetic instructions are 
missing the V-register and 
indirect modes, and the BIT 
instruction is missing several 
others as well. This not only 
makes programming more 
difficult, since one must 
constantly check to see which 
instruction forms are legal, 
and program around the 
exceptions; it also makes the 
design of an assembler or 
compiler more complicated. 
A compiler, in particular, 
would require complex logic 
to determine when it could 
and could not take advantage 
of the addressing modes. 

In summary, the MOS 
Technology chip comes out 
ahead when considering 
facilities to manipulate 
addresses, and in many cases 
the advantage realized due to 
the availability of the extra 
addressing modes is 
substantial. The greatest 
failing of the 6500 series 
design is the inconsistent 
availability of the addressing 
modes from instruction to 
instruction. 

Which processor comes 
out ahead overall? Th is is 
very difficult to judge. It 
depends partly on whether 
the programs being executed 
on the microcomputer are 
"system" programs, such as 
compilers, interpreters and 
I/O controllers, which tend to 
make heavy use of address 

Table IV. Instructions, addressing modes and execution times for the 
MOS Technology MCS6501 processor. Execution times are in "machine 
cycles" which for a I,D MHz clock take 1.0 microsecond apiece. This 
table is excerpted from MOS Technology documentation on their 
processor. 

ADC 4' 4' . 5 ' , JSA 6 
AND 4' 4' . 5 ' lOA 3 4 4 4' 4' . 6 5' 
AS l 7 lOX 3 4 4 4' , 
BCC 2" , lOY 3 4 4 • 
BCS 2" , l SA 5 6 7 
BEQ 2" , N0P 
BIT (JAA 2 3 4 4 4 ' 4 ' . 6 5 ' , 
BMI 2" , PHA 
BNE 2" , PHP 
BPl 2" , PlA 
BAK PlP 
BVC 2" . A0l 5 6 6 7 
BVS 2" , ATI 
elC 2 RTS 
ClD 2 SBC 2 3 4 4 4' 4 ' 6 5' 
ell 2 SEC 
elV 2 SED 
CMP 3 4 4 4' 4 ' 6 5' SE' 
epx 3 4 STA 3 4 4 5 5 6 6 
CPY 3 4 STX 3 4 4 
DE C 5 6 6 7 STY 3 4 4 
DE X TA X 
DEY 

(; ;; TAY 
E0A 2 3 4' 4 ' . TSX 
INC 5 7 TXA 
IN X TXS 
INY TYA 
JMP 

• Add one eve le it indexi ng across page boundar'( 
• • Add OrlC cvc le if branch is laken , Add one add i tional d branching opera tion cr osses page boun dary 

61 



In favor of the 6500 series 
are price and speed; in 
favor of the 6800 are 
availability and very good 
Motorola documentation. 

manipulation facilities; or 
application programs, which 
make greater use of data 
manipulation facilities. One 
would expect better results in 
the former case with the MOS 
Technology chip, and in the 
latter case with the Motorola 
6800. One would also expect 
the MOS Technology chip to 
enjoy an advantage on large 
programs, since larger 
programs inevitably tend to 
make use of tables, 
subroutines with parameters, 
and other forms of address 
manipulation. 

All in all, the Motorola 
6800 comes out ahead 
when considering facilities 
for manipulating data ... 
but nevertheless the two 
processors are quite similar. 

Against these factors one 
must weigh the availability of 
an excellent applications 
manual, proven software, and 
kits for the hobbyist for the 
Motorola 6800 
microprocessor. At the same 
time, the MOS Technology 
chip's price can't be beat, and 
its speed advantage may be 
important for some purposes. 

At the time that this 
article is being written (late 
August), the MOS 
Technology chip is just a 
promise: The chip should be 
available for purchase at the 
Western Electronics 
Conference (Wescon) in San 
Francisco, September 16·19. 
By the time you read this, the 
chip itself should be in the 
hands of at least a few 
hobbyists. Let's have some 
letters to BYTE describing 
initial experiences with the 
new microprocessor! Send 
your comments to the author 
or to the editor of BYTE. In 
the meantime, we'll be 
waiting to see what new 
surprises the semiconductor 
houses an d kit manufacturers 
have in store for us. And 
BYTE will try to keep you up 
to date on the latest 
developments in the world's 
hottest, fastest-moving hobby 
- home computers! 

Table V. MCS6501 microprocessor instructions, listed in alphabetical 
order by mnemonics. The instructions with asterisks are similar to the 
same mnemonics in the Motorola 6800 processor. 

• ADC Add with Carry to Accumu lator 

• AND "AND" to Accumula tor 

* ASl Shift l eI! One Bit (Memory o r Accumula tor) 

-BCC Branch on C<lfry Clear 

• BCS Branch o n Carry Set 

-SEQ Branch on Zero Result 

*BIT TI.!Sl Bits in Memory with Accumulator 

-8MI Branch on Result Minus 
*BNE Branch on Result not Zero 

-8PL Branch on Result Plus 

• BRK Force an Interrupt Of Break 
-BVe Branch on Overf low Clear 
*BVS Branch on Over/low Set 

·CLC Clear Carry Ft.,g 

ClD Clear Decimal Mode 

·ell Clear Interrupt Disable Bit 
·CLV Crear Overflow Flag 

·eMP Compare Memory and Accumulator 
*CPX Compare Memory and Inde x X 
CPY Compare Memory and Index Y 

*DEC Decrement Memory by One 
*DEX Decrement Index X by One 

DEY Decrement Index Y by One 
-E0R Exc lusive·or Memory with Accumlrlator 
-INC Incremen! Memory by One 
*,NX Increment X by One 
INY Increment Y by One 

*JMP Jum~ 10 New Loclllion 

62 

- JSR Jump to New Location Saving Return Address 
-LOA Transfer Memory to Accumulator 
-LOX Transfer Memory to Index X 

LOY Transfer Memory 10 Index Y 

-LSR Shift One Bit Right !Memory or Accumulator) 

N0P Do Nothing · No Operation 
-0RA "OR" Memory wilh Accumulator 
-PHA Push Accumulator on Stack 

PHP Push Processor Status on Stack 
-PLA Pull Accumulator from Stack 

PLP Pull Processor Status from Stack 
• AC)L Rotate One Bit Left (Memory or Accumulator) 

-RTI Return From Interrupt 
-RTS Return From Subroutine 
·SSC Subtract Memory and Carry fr OIll Accumulator 
-SEC Set Carry Fl ag 

SED Set Decimal Mode 
·SEI Set Interrupt Disable Status 
*STA Store Accumu lator in Memory 
·STX Store Index X in Memory 
STY Store Index Y in Memory 
TAX Transfer Accumulator to Index X 
TA Y Transfer Accumulator to Index Y 

*TSX Transfer Stack Register to Index X 
TXA Transfer Index X to Accumulator 

·TXS Transfer Index X to Stack Register 
TYA Transfer Index Y 10 Accumu lator 

More information on the 
6500 series microprocessors is 
available from: 

MOS Technology, Inc. 
Valley Forge Corporate 
Center 
950 Rittenhouse Rd. 
Norristown PA 19401 
1-215-666-7950 

I nformation on the 
Motorola 6800 micro
processor is available from 
many local distributors, and 
from: 

Motorola Semiconductor 
Products Inc. 
Box 20912 
Phoenix AZ 85036 

GLOSSARY 
BYTE's Board of Resident inexperts (BR!) has ruled the following 

terms to be worthy of further explanation. This list is probably not 
complete - readers who would like further explanation of terminology 
are invited to write a Ie tter to the editor identifying terms which need 
such treatment. 

8-Bit Bidirectional Bus - a "data 
bus" which simultaneously 
transmits eight separate signals 
corresponding to one byte's 
worth of information. The bi
directional aspect means that 
either tristate, open collector or 
similar form of output stage is 
used, so that multiple drivers can 
be tied in common with only one 
such driver active a t any time. A 
given board, CPU, output 
terminal or other logic circuit can 
then in terface to the bus (with 

. so me addressing and master 
timing control intelligence) for 
both sending and receiving data. 

Effective Address - whenever the 
compu ter's CPU addresses 
memory, it must send out 16 bits 
(for Motorola 6800, MCS 6501 or 
other similar chips). The way in 
which these 16 bits are derived 
can often be a fairly elaborate 
procedure, as well as a simple 
absolu te expression. Whatever the 
method of derivation, however, 
the result is a 16-bit value which 
is used to address memory, called 
the effective address because it is 
what actually does go out to 
memory regardless of the details 
of the internal codes of the 
program. 

Instruction Repertoire the . 
repertoire of a musician is the set 
of all pieces he or she can play 
we II inc 0 ncert. Well, the 
repertoire of a computer - its 
instructions - is the list of all the 
instructions it can perform and 
their definitions. 

Subscript - in typical high order 
languages, a means is provided to 
specify elements of arrays of data. 

This is done by subscripts to 
indicate the "nth" element for 
subscript "n". Use of such 
notation presents the problem of 
calcula ling the effec tive address 
of the ac tu a I da ta being 
referenced. In the context of 
evaluating a CPU, attention spent 
on the problem of calculating 
effective addresses from 
subscripts is very fundamental. 

Time Base whenever it is 
necessary to examine the relative 
timing of different signals, it is 
necessary to have a reference 
point and a scale for making the 
measurement. ll1is is the "time 
base" of the reference. 

TTL compatible - one of the 
largest families of integrated 
circuits is the line of 
"transistor-transistor logic" 
devices , TTL· for short. A TTL 
compatible line of some non-TTL 
device can "drive" one or more 
TTL loads if it is an output, or 
can receive a TTL device's output 
if it is an inpu t. There are variolls 
c a u tions to be observed 
probably worthy of a BYTE 
article - when different types of 
logic are interfaced, bu t the 
phrase "TTL compatible" lIsually 
means that the compatible device 
can be wired directly to TTL 
interconnection pins safely in at 
least one configuration. 

Unary - this term is derived from 
the Latin roots of "oneness." A 
unary operation is an operation 
which has bu t one operand, for 
example the complement opera
tion of a Motorola 6800 CPU. 


	Cover
	TOC
	From the Publisher
	The State of the Art
	Book Review
	What to do after hitting RETURN
	Microcomputer Design

	Ins and Outs of Volatile Memories 
	Computers are Ridiculously Simple
	Hexpawn
	Computers and Amateur Radio
	The Digital Feeback Loop
	Notes on Parallel Output in memory address space
	Sone of Motorola: the $20 CPU Chip 6502
	Monitor 8 1/2
	A Versatile Read Only Memory Programmer
	Byters Digest
	Clubs and Newsletters
	What are we Getting Into
	Letters
	Benchmarks, Standards, etc



