
Photo 7: The Z80 microprocessor evaluation board.

Microprocessor Update:

Burt Hashizume
PO Box 172
Placentia CA 92670

One feature of the Z80
not found in other 8 bit
microprocessors is a built
in dynamic MOS memory
refresh algorithm which
employs unused memory
cycles to do hidden (from
software timing) refresh
operations.

Zilog, a fairly new company in Los Altos
CA, has been sampling an 8 bit micropro­
cessor, the Z80, since early this year. The
Z80 is a "third ge nerat ion," single chip,
NMOS microprocessor, which is completely
software compatible with Intel's 8080A. Its
158 instructions include the 8080A's 78
instructions as a subset. Because the 8080A
is probably the most widely used 8 bit
microprocessor on the market today and
because of the Z80's upward software com­
patibility, this article eva luates the Z80 in
comparison to the 8080A.

Physical and Electrical
Characterist ics

The Z80 processor is packaged in the
standard 40 pin dual in line package; how-

34

Zilog ZSO
ever, even though the Z80 is software
compatible with the 8080A, it is most
definitely not pin compatible . (See figure 1
and table 1 for pinout definitions.) There are
numerous differences between the two pro­
cessors as far as electrical characteristics are
concerned.

The 8080A requires three voltage levels,
+ 12, +5, and -5 V. A high voltage two phase
clock is also required. Maximum speed is a
480 ns clock period. Finally, some sort of
system controller is needed to separate the
system control signals from the data bus.
This all makes for a fairly complex system
design around the 8080A.

On the other hand, it is very easy to
design a system around the Z80. It requires
only a single +5 V power supply because the

technology used is of the same type used by
Motoro la in its 6800 microprocessor, which
also requires a single 5 V power supply. The
Z80 requires a single phase 5 V clock.
Max imum frequency is 2.5 MHz for a 400 ns
clock period. System control signals, such as
memory read and write, have separate pins
from the processor and are not time shared
with the data bus. An add itional feature not
found on any other microprocessor at the
time of this writing is the capability to
refresh dynamic memory .

Because the Z80 is upward software
compatible with the 8080A, the internal
architectures are simil ar. (See the register
configurat ion in figure 2.) Both have 16 bit
program counters and stack pointers as well
as a register array of six general purpose
registers, (B, C, 0, E, H and L), an accumu­
lator (A) , and a flag register (F).

The Z80 has numerous additional
characteristics. It has an additional duplicate
register array consisting of 8 registers (A' , F',
B', C', 0', E', H' and L'). These can be
switched with the primary register array for
fast interrupt processing. There are also two
16 bit index reg isters (IX and IY) for
increased add ress ing capability and easier
data man ipulation. An 8 bit interrupt vector
register (I) expands the capability and in­
creases the power and speed of interrupt
handling by t he processor. Finally, an 8 bit
memory refresh register (R) automatically
increments after every instruction fetc h and
refreshes memory while the processo r is not
using the bus. Thus the execution time of
the system is not increased due to refresh
overhead .

Software

Now that we have seen the hardware
aspects of the Z80 and how it compares to
t he 8080A, let 's take a look at its instruction
set. The fact that the Z80 has 158 instruc­
tions versus the 8080A's 78 gives only a
small indication of its technological super­
ior ity in this area. The instruction set can be
broken up into two aspects, address ing
modes and instruct ion groups.

Since the Z80 is software compatible
with 8080A, it necessarily has the same
addressing modes as the 8080A. The modes
in common are reg ister addressing, register
ind irect addressing, direct addressing, and
immed iate addressing.

Figure 7: Pin configuration of the Z80 processor. Of particular note to
custom hardware hackers is the "M 7 " line which gives users the possibility of
identifying instruction cycles.

Table 7: Signal list for the Z80 processor. This table lists each active pin of
the Z80 with a short explanation of its purpose.

AO-A15
(Address Bus)

00-0 7
(Data Bus)

M1
(Machine Cycle one)

MREO
(Memory Request)

lORa
(Input/Output Request)

35

Tri-state output, active high . AO-A15 constitute a 16 bit
address bus. The address bus provides the address for
memory (up to 64 K bytes) data exchanges and for 10
device data exchanges. 10 addressing uses the 8 lower
address bits to allow the user to directly select up to 256
input or 256 output ports. AO is the least Significant
address bit. During refresh time, the lower 7 bits contain a
valid refresh address.

Tri·state input and output, active high . DO-D7 constitute
an 8 bit bidirectional data bus. The data bus is used for
data exchanges with memory and 10 devices.

Output, active low. M1 indicates that the current machine
cycle is the OP code fetch cycle of an instruction
execution.

Tri-state output, active low. The memory request signal
indicates that the address bus holds a valid address for a
memory read or memory write operation.

Tri-state output, active low. The lORa Signal indicates
that the lower half of the address bus holds a valid 10
address for a 10 read or write operation . An lORa Signal

Table 7 (continued).

RD
(Memory Read)

WR
(Memory Write)

RFSH
(Refresh)

HALT
(Halt state)

WAIT
(Wait)

INT
(Interrupt Request)

NMI
(Non Maskable
Interrupt)

RESET

BUSRO
(Bus Request)

BUSAK
(Bus Acknowledge)

is also generated when an interrupt is being acknowledged
to indicate that an interrupt response vector can be placed
on the data bus. Interrupt Ack,lOwledge operations occur
during M1 time while 10 operations never occur during
M1 time.

Tri·state output, active low. RD indicates that the
processor wants to read data from memory or an 10
device. The addressed 10 device or memory should use
this signal to gate data onto the processor data bus .

Tri-state output. active low . WR indicates that the
processor data bus holds valid data to be stored in the
addressed memory or 10 device .

Output, active low. RFSH indicates that the lower 7 bits
of the address bus contain a refresh address for dynamic
memories and the current MREO signal should be used to
do a refresh read to all dynamic memories.

Output, active low. HALT indicates that the processor has
executed a HALT software instruction and is awaiting
either a non maskable or a maskable interrupt (with the
mask enabled) before operation can resume. While halted,
the processor executes NOPs to maintain memory refresh
activity.

Input. active low . WAIT indicates to the Z80 processor
that the addressed memory or 10 devices are not ready
for a data transfer . The processor Icontinues to enter wait
states for as long as this signal is active. This signal allows
memory or 10 devices of any speed to be synchronized to
the processor .
Input, active low. The Interrupt Request signal is
generated by 10 devices. A request will be honored at the
end of the current instruction if the internal software
controlled interrupt enable flip flop (IFF) is enabled and
if the BUSRO signal is not active. When the processor
accepts the interrupt, an acknowledge signal (tORO
during M1 time) is sent out at the beginning of the next
instruction cycle. The processor can respond to an
interrupt in three different modes that are described in
detail in the Zilog documentation.

Input, active low . The non maskable interrupt request line
has a higher priority than INT and is always recognized at
the end of the current instruction , independent of the
status of the interrupt enable flip flop. NMI automatically
forces the Z80 processor to restart to location 0066
hexadecimal. The program counter is automatically saved
in the external stack so that the user can return to the
program that was interrupted .

Input, active low. RESET forces the program counter to
zero and initializes the processor . The processor ini-
tialization includes : .

1) Disable the interrupt enable flip flop
2) Set Register 1 = 00
3) Set Register R = 00

During reset time, the address bus and data bus go to a
high impedance state and all control output signals go to
the inactive state.

I nput, active low. The bus request signal is used to request
the processor address bus, data bus and tri-state output
control signals to go to a high impedance state so that
other devices can control these buses. When BUSRO is
activated, the processor will set these buses to a high
impedance state as soon as the current processor machine
cycle is terminated .

Output, active low. Bus acknowledge is used to indicate
to the requesting device that the processor address bus,
data bus and tri-state control bus signals have been set to
their high impedance state and the external device can
now control these signals.

36

• Register addressing. The opcode itself
specifies a register or register pair in
which the data is contained. An
example would be to load the data in
register B into register D.

• Register indirect addressing. The
opcode specifies a register pair which
contains a 16 b it address. This address
points to the data in memory or is an
address to be loaded into the program
counter {PC}. An example would be to
load the accumulator with data in
memory pointed to by the HL register
pair.

• Direct addressing. The opcode is fol­
lowed by two bytes of operand. These
two bytes are either a 16 bit address
pointing to data in memory or a 16 bit
address to be loaded into the Pc. For
example, in a jump instruction, the
two bytes indicate an address to which
program control is transferred.

• Immediate addressing. The opcode is
followed by one or two bytes of
operand. This operand is the data itself
to be used. An example is load
accumulator immediate which moves
an 8 bit operand into the accumulator .

To these addressing modes, the Z80 has
added three more powerful modes. These are
indexed addressing, relative addressing, and
bit addressing. The first two are somewhat
similar to index and relative addressing in
the Motorola 6800 microprocessor.

• Indexed addressing. The opcode is
followed by an 8 bit displacement.
This displacement is a signed two's
complement number to be added to
the contents of one of the two index
registers. The result is a 16 bit effec­
tive address. The contents of the index
register are unchanged.

• Relative addressing. The opcode is
followed by an 8 bit signed two's
complement number. The number is
added to the contents of the program
counter and the result placed back in
the PC. This results in being able to
execute program jumps within a range
of +129 to -126 bytes using only a
two byte instruction. Since most pro­
grams have a lot of jumps to locations
relatiyely close to current locations,
using relative addressing will signi­
ficantly reduce program size. Another
advantage is the ability to write re­
locatable code using relative address­
ing.

• Bit addressing. Three bits in the
opcode itself specify one of eight bits
in a byte to be addressed. This byte

could be the contents of a register or
of a memory location. An example
would be to set bit 6 in memory
pointed to by index register, IX, dis­
placed by -20.

The Z80 instruction set's increase of 80
instructions over the 8080A's didn't come
from just increasing the number of address­
ing modes. There are instructions which
don't exist in any other microprocessor. The
instruction set will be broken up into groups
by their function.

Load and Exchange Instructions

This group includes all the instructions
that move data to and from registers, such as
load B from D, load C from memory, store
HL into memory, push IX into stack, and
exchange AF with A'F'. The 8080A has
most of the same instructions.

Block Transfer and Search
Instructions

This group has several useful and unique
instructions. The load and increment instruc­
tion moves one byte of data from memory
pointed to by HL to another memory
location pointed to by DE. Both register
pairs are automatically incremented and the
byte counter, BC, is decremented. This
instruction is extremely valuable in moving
blocks of data around.

Another instruction repeats the load and
increment instruction automatically until
the byte counter reaches zero. Thus, in one
instruction, a block of data, up to 64 K
bytes in length, can be moved anywhere in
memory. Each byte of data transferred
requires only 8.4 /lS.

I n the compare and increment instrw;;­
tion, the contents of the accumulator are
compared with that of memory pointed to
by H L. The appropriate flag b its are set, H L
is automatically incremented, and the byte
counter is decremented.

The instruction compare, increment, and
repeat repeats the above instruction until
either a match is found or the counter
reaches zero.

The 8080A has no analogy to these
instructions. It would have to execute three
to ten separate instructions to ach ieve the
same result. The number of bytes would be
several times larger and the execution time
would be several times longer.

Arithmetic and Logical Instructions

These instructions include all the adds
and subtracts, increments, compares, ex­
clusive-ors, etc. What the Z80 has added to

MAIN REG SET ALTERNATE REG SET
r------"\..-----~" ~ ________ A\.. ____ --.,

ACCUMULATOR FLAGS ACCUMULATOR
A F A'

B C B'

0 E 0 '

H L H'

I INTERRUPT MEMORY
VECTOR REFRESH
I R

IN DE X REGISTER IX

INDEX REGISTER IY

STACK POINTER SP

PROGRAM COUNTER PC

the 8080A instructions is the indexed ad­
dressing mode and double precision add with
carry and subtract with carry.

Rotate and Shift Instructions

Here the Z80 has taken the four 8080A
rotate accumulator instructions and in­
creased the pO,ssible addressing modes as well
as included logical shifts and arithmetic
shifts. On top of this there are a couple of
rotate digit instructions. With these a digit {4
bits} can be rotated with two digits in a
memory location, which is great for BCD
arithmetic .

Bit Manipulation Instructions

There are three basic operations, test bit,
set bit, and reset bit. With the various
addressing modes, a powerful group of in­
structions is generated, For instance, if
several memory locations are used for 10
devices, status bits can be individually tested
and control bits individually set or reset. The
8080A {nor any other 8 bit microprocessor}
has no such capability to manipulate bits.

Jump, Call, and Return

Both the 8080A and Z80 have numerous
conditional and unconditional jumps, calls,
and returns. In addition, the Z80 has several
jump relative instructions using relative ad­
dressing. One cif special interest decrements
the B register, and jumps relative if B is not
zero. This is especially useful in program
loop control; it would take the 8080A two
instructions to perform the same task.

Input/Output Instructions

The 8080A has two 10 instructions, input
and output to and from the accumulator.
The device address is in the second byte of
the instruction, which means that each

37

I'

FLAGS
F'

C'

E'

L'

SPECIAL
PURPOSE
REGISTERS

}:!:~~it

Figure 2: Programmable
registers of the Z80. Con­
siderable improvement
over the 8080 design is
found in the alternate
register set, and the addi­
tion of two index registers,
interrupt vector and mem­
ory refresh registers.

The Z80 should be a nat­
ural for string manipula­
tion software with its pair
of full 16 bit index
registers and powerful
multi-byte operations such
as block move, memory
search and block 10 in­
structions.

In addition to expanding
operations upward to the
level of blocks, the Z80
refi nes its addressing
downward to the bit level
with a group of bit mani­
pulation instructions
which are quite unique.

The Z80 simplifies the
hardware required to im­
plement a system as com­
pared to the original 8080
design. Aside from the in­
struction enhancements,
here is a way to get an
8080 instruction set with
the ease of interfacing un­
til now only available (in 8
bits) with processors like
the 6800 and 6502.

For more information on
the Z80 CPU and other Z80
parts contact Z il09 Inc, 170
State St, Ste 260A, Los Altos
CA 94022, (415) 941-5055.-

device must have its own 10 routine. One
standard routine can't be used in common
because each device has a different address
and therefore different instruction. The Z80
has resolved this by including 10 instructions
that use the C register to contain the 10
device address. Therefore one 10 routine can
be used with the device address placed in
register C before . entering the routine. Also
instead of being restricted in inputting or
outputting to and from the accumulator
only, any register can be used.

If this isn't enough, the Z80 has eight
block transfer 10 instruct ions which are
similar to the memory block transfer instruc­
tions. HL is the only memory pointer, C is
the device pointer, and B is the byte
counter. Therefore, an 10 block transfer can
handle up to 256 bytes. Essentially these
commands are a processor implementation
of direct memory access (DMA), invoked by
a software sequence.

Miscellaneous Features

These instructions include no-operation,
halt, enable and disable interrupts, decimal
adjust accumulator, set carry, and com­
plement carry. The Z80 can also select one
of three interrupt modes.

Interrupts on the Z80

The 8080A has one input for interrupts;
the Z80 has two. One is a nonmaskable
interrupt (similar to the Motorola 6800 or
MOS Technology 6502) which cannot be
disabled by the software. The other is a
maskable interrupt which can be selectively
enabled or disabled by the program. The
maskable interrupt is analogous to the single
8080A interrupt.

A nonmaskable interrupt will be accepted
at all times by the Z80 processor . When one
occurs, the processor will execute a restart
to hexadecimal location 0066. The non­
maskable interrupt is used for very impor­
tant functions that must be serviced imme­
diately, such as a power failure routine.

The Z80 has three programmable modes
for processor response to a maskable inter­
rupt. There are three instructions that will
select these three modes.

Mode 0 is identical to the 8080A single
interrupt response mode . The interrupting
device places an instruction on the data bus,
and the processor executes it. The inst ruc­
tion will often be a restart . This mode is also
the default mode for the Z80 upon a reset.

In mode 1, the processor will respond to
an interrupt by executing a restart to loca­
tion 0056. The response in this mode is
similar to the response to a nonmaskable
interrupt except for the restart location.

38

In mode 2, a table of 16 bit starting
addresses for every interrupt routine must be
maintained. This table can be anywhere in
memory. When an interrupt is accepted, a 16
bit address is formed fro m the contents of
the 8 bit I register and the 8 bits on the data
bus. The I register contains the upper 8 bits
of the address and the 8 b it data on the data
bus from the peripheral device constitutes
the lower 8 bits of the address. This 16 bit
address points to a location in the interrupt
vector table. The processor fetches the 16
bit address found at the selected table
location (in two bytes) and loads the pro­
gram counter with its value. This whole
process takes 19 clock periods, or just 7.6
IlS.

The peripheral devices in the Z80 micro­
computer family all have daisy chain inter­
rupt structures. They automatically supply a
programmed vector to the processor during
interrupt acknowledge. Only the highest
priority device interrupting the processor
sees the interrupt acknowledge because of
the da isy chain structure. With these devices,
10 interfacing becomes quite a simple task,
and is as powerful as the 10 techniques used
in many minicomputers.

Conclusion

What does the Z80 have going for it? It's
easy to interface; one chip does the job of
several 8080A family chips. It's as easy, if
not easier, to design an entire system around
than any other microprocessor on the mar­
ket today, and the Z80 is software com­
patible with the 8080A, the most widely
used and known 8 bit microprocessor. Its
instruction set is much more powerful than
the 8080A's or any other 8 bit micropro­
cessor's instruction set.

Is there anything negative about the Z80?
As of this writing (March), it is not yet in
production and therefore not readily avail­
able to the personal computing ex­
perimenter. The price tag for unit samples is
$200, but there are numerous price breaks
with larger quantities. For instance, the price
is $80 for quantities of 25 - 99. This is still
more expensive, however, than e ither the
8080A, 6800 or 6502, and is about the same
as 16 bit microprocessors.

The result is a tradeoff of cost versus
performance. Much of the cost difference
relative to other 8 bit processors is made up
by the Z80 's better memory utilization and
(with respect to the 8080A) by the fact that
fewer parts are needed to get a minimum
system going. Although the Z80 processor is
priced higher than the 8080A, when the cost
of all the support devices the 8080A requires
are included, the costs are comparable.-

	Cover

	In This BYTE
	Index

	Some Notes on Clubs
	What Do You Do With a Video Disk?
	Letters

	Friends, Humans, and Countryrobots: Lend me your Ears
	The Time Has Come to Talk
	Microprocessor Update: Zilog Z8O
	MACHINE LANGUAGE PROGRAMMING FOR THE "8008" and similar microcomputers
	True Confessions: How I Relate to KIM
	What's New?
	Jack and the Machine Talk (or, the Making of an Assembler)
	Build a TV Readout Device for Your Microprocessor
	BOOK REVIEW
	Scelbi's Galaxy Game for the 8008/8080
	BYTE's Bugs

	What's New?

	Software Bug of the Month 3
	Whats an I2L (I squared L)?
	Systems of Note
	What's New?

	Interfacing the 60 rnA Current Loop
	What's New?

	Clubs and Newsletters
	What's New?

