
(]ispcis's (]iPCBit (]Bllsp
COPYright '1') 1980 by Steven A Clarcla, All rights reserved,

Ease into 16-Bit Computing:
Get 16-Bit Performance from an 8-Bit Computer

Stopping for coffee at the local
doughnut shop has become a morn­
ing ritual. I am quite capable of mak­
ing coffee at home, but I am not what
you would call a "morning person."
Even though I have culinary talents
that include the preparation of eggs
Benedict and strawberry crepes, it
had better be evening when you re­
quest them around our house.

This morning started out like any
other. I pulled my car into the
doughnut shop's parking lot only
after carefully examining all the
potential hazards. I carefully avoided
the broken glass, the beat-up 1962
Chevy and the large black van with a
'Tax the Richl" bumper sticker.

After entering the shop, I sat down
and spread my reading material, the
latest issue of BYTE, on the counter.
As my coffee and bran muffin were
delivered, I could not help but
overhear the conversation of two
other people at the counter.

"Dave, have you been reading any
of the magazines lately? It looks like
everyone is going 16-bit crazy."

"I've read a lot of descriptive
articles, but I suppose it'll take' a
while before we see any real hard­
ware."

"Actually, I'm a little hesitant to
just jump 'on the bandwagon. My
8085 works just fine."

"1 know what you mean, Ed. The
l80 system I built from scratch is still

Steve Ciarcia
POB 582

Glastonbury CT 06033

cranking along. I'd like to do
something with the 16-bit chips, but I
sure don't want to throw out my 8-bit
system."

'What about building a small
system to experiment with? Didn't I
see an article a few months ago on a
single-board 8086?"

''Yeah, I remember. It was in
BYTE. Wasn't it written by that guy
who lives around here someplace, in
his cellar or something?"

Upon hearing that last statement, I
nearly choked on my muffin. I
thought it would be prudent to
remain anonymous until I learned
whether or not they enjoyed the arti­
cle. I carefully closed the magazine
and placed it face down on the
counter.

One way to ease
yourself into the world of
16-bit computers is with
the Intel 8088. This micro­
processor is an 8086 on the
inside with an 8-bit data
bus on the outside.
111

"Maybe, but anyway, the article
wasn't too bad," said Ed. I'm sure
they didn't hear the sign of relief from
across the counter. Then he con­
tinued, "But it just seemed like a

larger computer than I have time to
build. It's obviously oriented toward
guys who don't have any other
development system. I'd prefer a
minimal hardware configuration to
start with. If I want large programs,
I'll run a macro assembler on my 8085
system, write the object code into an
EPROM, and then plug it into the test
board."

"Eliminating all the keys and
displays will help, but how small a
computer can we end up with and still
be 16-bit? You'll need 16-bit address
and data buses, and what's 1 K words
of memory-four chips? All the
EPROMs I know are 8-bit output.
That means at least two of them."

'Wait a minute," said Ed. "1 didn't
say I had all the answers. The
minimal configuration may be twenty
chips, but isn't this closer to
something we could afford to experi­
ment with?"

This was the perfect opportunity to
express my point of view concerning
the things that I write and consult
about. "Excuse me," I said. "1
couldn't help but overhear your con­
versation. Had you considered using
an 8088?"

The two young men looked up at
me, paused, and harmonized, "An 80
what?"

"1 know a little about micro­
processors. Have you considered
using an Intel 8088?"

March 1980 © BYTE Publica tions Inc 17

"Is it 16-bit7" asked Dave.
'Well, yes and no," I repiied. "It

uses an 8-bit data bus, but, internally
it's an 8086. Essentially it's an 8-bit
chip that's completely 8086-software­
compatible."

Should they listen to this doughnut
and coffee philosopher? "That sounds
tremendous, but won't it still require
quite a few chips to make an opera­
tional computer?"

I sensed that this was a good time
for my exit. Staying any longer
would involve my designing a com­
puter for them on the back of a
napkin. Ordinarily I probably would
have stayed, but I had just completed
a similar task in my latest article, so I
decided to let them wait a few more
weeks. I rose to leave, carefully roll­
ing up the copy of BYTE, cover page
inside, and stopped behind them on
my way out. "My recollection is that
while four chips is a possibility, a
five-chip computer is quite a reality.
I've even seen how a BASIC inter­
preter could be written to run on it . In
case you're interesteq, the next issue
of BYTE has an article all about it."

I excused myself to attend an

NEW

important meeting. As I opened the
door I heard, 'Thanks, I'll look for­
ward to reading it." They watched me
intently as I drove out. I could only
speculate on their final conversation.

The 16-Bit Generation
The exciting items in microcom­

puting these days are the 16-bit
microprocessors made by companies
such as Intel (the 8086), Zilog (the
Z8000) and Motorola (the M68000).
All of these devices, although they
differ in internal architectures, com­
monly claim to have compressed the
power of a minicomputer within a
single chip of silicon. Most notably
are the 16-bit data bus and increased
addressing space. A 20-bit address
can directly address a megabyte of
memory.

There seems to be little doubt in the
minds of microcomputer-system
designers that the 16-bit processors
are the wave of the future . Already
some major manufacturers are
designing the new processors into
intelligent terminals, word-processing
systems, and other equipment. The
day when this revolution within a

INCREDIBLE Computer
only $24.95

ses. Entertains as he plays-with
music and colorful visua effects. Cassette programs available
for 16 K APPLE II' and 16K Level II TRS-80' microcomputers for use
with your Monopoly game. MONTYTM is a shrewd operator.
But he can be beaten. Send $24.95 check or money order (postage paid)
Iowans add 3% sales tax. Remember ... " MONTYTM plays Monopoly."

-Monopoly is a trademark of Parker Bros., Inc .
Apple is a trademark of Apple Computer, Inc.
TA S-BO is a trademark of Tandy Corp.

ClAllam Corporation. 1980

18 March 1980 © BYTE Publications Inc

P.O. Box 921, Fairfield, Iowa 52556
Name __________ _

Address ______ _ _ _ _

Cily _______ S lale Z'P

D APPLE o TRS-80

Circle 8 on inquiry card.

revolution will affect the personal
and small-business computer market­
place is not too far away.

But if it is obvious that the 16-bit
machines will be the trend of future
product technology, it is equally
obvious that it is relatively difficult
for the designer to make a leap from
the 8-bit world of the 8080, Z80, 6800
and 6502 to the emerging 16-bit
world. The 16-bit instruction sets are
more complex. The 8086, for
instance, has a repertoire of some 133
instructions, as compared to seventy­
eight for the 8080. Simply because of
the larger range of memory that can
be addressed and because of address
segmentation, addressing of memory
is more advanced. Also, the register
set is more complicated, and the types
of operands with which the processor
can work are more extensive.

As complex as the 8086 or any
other 16-bit microprocessor is from a
software viewpoint, it is in the design
of hardware circuits to work with the
16-bit processors where the real
complexities arise. Peripheral inter­
faces and existing hardware systems
are generally based on an 8-bit data
bus. When your whole design is built
to make efficient use of an 8-bit data
bus, converting to a 16-bit architec­
ture is not a simple matter of replac­
ing the processor. This incompatibil­
ity dictates substantial design changes
to take advantage of the new 16-bit
microprocessor.

A Gradual Approach to 16-Bit
Computing

There is an alternative to con­
verting abruptly to 16-bit architec­
ture. Look at photo 1 and observe the
Intel 8088 microprocessor. This
device uses an 8-bit data bus, so all of
your present hardware system com­
ponents will work with it from the
standpoint of getting information be­
tween the processor and the
peripheral -support devices or
memory, but the 8088 features a com­
mon internal architecture and com­
plete software compatibility with the
16-bit 8086 processor.

As a result, the 8088 provides an
excellent way for designers,
engineers, hobbyists, and students to
ease into the world of 16-bit com­
puting. Its 8-bit-compatible bus struc­
ture makes it the logical choice for
upgrading 6800, 6502, Z80 and 8080
designs to 16-bit capability without

Photo 1: An exhibit of advancing
microprocessor technology. Here are four
integrated circuits produced by Intel Cor­
poration. From bottom to top, we have
the 8008, the first 8-bit general-purpose
microprocessor; the 8080A, one of the
breed of 8-bit devices that helped ignite
the microcomputing boom; the 8086, the
advanced 16-bit processor; and the 8088,
the subject of this article-a component
that contains 16-bit computing capability
in a package that can communicate with
the outside world through an 8-bit data
bus.

alteration of existing 8-bit hardware.
The 8088 can be used in projects

such as a low-cost system that
employs multiplexed peripherals such
as the 8155, 8755A and 8185. Or,fully
expanded, it forms a system that
allows a full megabyte of address
space and compatibility with the 8086
family of coprocessors and multi­
processors.

This two-part article is designed to
give you a glimpse of the 8088. This
month in Part 1, I shall attempt to
familiarize you with the instruction
set of the 8088 and the hardware of a
microcomputer that is made from an
8088 and only four other integrated
circuits. The power of this five-chip
circuit will be emphasized by illus­
trating, among other examples, how
it can be configured to support a
multi·ouser Tiny BASIC.

Architecture of the 8088
Anyone comparing the internal

architectures of the 8088 and the 8086
processors will realize that they are

20 March 1980 © BYTE Publications Inc

Photo 2: An exhibit of advancing memory technology. The single black integrated cir­
cuit at the center can replace the entire board of components. The center component is
the Intel 8185 1 K-byte static programmable memory. The board is a 1 K-byte memory
board from a Scelbi 8B microcomputer system, which used the 8008 microprocessor
(circa 1975).

Photo 3: Using the 8088 and other components of kindred technology, it is possible to
build a functional microcomputer system with only five integrated circuits. Part 2 of
this article (in the April 1980 BYTE) will present more detailed information about this
system.

identical. Even though I have pre­
viously discussed the 8086, a brief
explanation of this architecture is
necessary since the capabilities of our
five-chip computer depend directly
upon it. However, if you wish to read
a more detailed description, you
should refer to a previous Circuit

Cellar article, "The Intel 8086"
(November 1979 BYTE, page 14) .

A diagram of the internal structure
of the 8088 is shown in figure 1. The
8088 contains two logical "units", the
bus-interface unit (BIU) and the exe­
cution unit (EU), and a 4-byte
instruction queue.

Circ le 10 on inquiry card. ~

MEMORY INTERFACE

r------ -----------------------..,
8US­
INTERFACE
UNIT

INSTR UCTION
f----=3'----I ST REA M

2 BYTE
f---::----t QUE U E

I
I
I
I
I
I
I

CS r------- --------1
SS I
OS I
IP I

.... ------
_________ J

CONTROL
SYSTEM

I EXECUTION ,.I ••• l!I!e~~E:::;iTI~i!!8L==:::::::_~::!iE~~ I UNIT

I
I
I
I
I
I
I

AH

BH

CH

DH

SP

BP

I S I

AL

BL

CL

DL

I 01 FLAGS L _______________________________ J

Figure 1: Diagram showing internal operational principles of the 8088 microprocessor.
The 8088 (and the 8086) use a pipelined architecture that increases performance by
overlapping instruction execution with memory-fetch operations. The 8088 can directly
execute any 8086 software.

8088 REGISTER MODEL: (8080 REGISTERS SHADED)

07

ACCUMULATOR

BX (HL) BASE

CX (BC) COUNT

ox (DE) DATA

15 0

{I SP

I''''
STACK POINTER

BP BASE POINTER

SI SOURCE INDEX

01 DESTINATION INDEX

15

[, (PC) I NSTRUCTION POINTER

(PSW) STATUS FLAGS

0

CS CODE SEGMENT

OS DATA SEGMENT

5S STACK SEGMENT

ES EXTRA SEGMENT

Figure 2: The 8088 contains fourteen 16-bit registers. The shaded registers are those
common to the 8088 and the 8080."

22 March 1980 © BYTE Publications Inc

The execution unit is where the
actual processing of data takes place
inside the 8088. It is here that the
familiar arithmetic logic unit (ALU) is
located, along with the registers used
to manipulate data, store inter­
mediate results, and keep track of the
stack. The execution unit accepts
instructions that have been fetched by
the bus-interface unit, processes the
instructions, and returns operand
addresses to the bus-interface unit.
The EU also receives memory oper­
ands through the bus-interface unit,
processes the operands, and then
passes them back to the bus-interface
unit for storage in memory.

The role of the bus-interface unit is
to maximize bus-bandwidth utiliza­
tion, (that is, to speed things up by
making sure that the bus is used to its
full capacity). The bus-interface unit
carries out this assignment in two
basic ways:

• by fetching instructions before
they are needed by the execution
unit, storing them in the instruc­
tion queue

• by taking care of all operand fetch
and store operations, address
relocation, and bus control (These
actions of the bus-interface unit
leave the execution unit free to
concentrate on processing data and
carrying out instructions.)

Figure 2 summarizes the 8088 regis­
ter set. The shaded registers are the
8080 register subset, that is, the
registers that are common to the 8088
and its 8-bit predecessors.

The general registers, also called
the HL group because they can be
subdivided into High and Low bytes,
include the accumulator (AX), base
(BX), count (CX) and data (OX)
registers. The AX register may be
addressed as a 16-bit register, AX, or
the high-order byte can be addressed
as the register AH and the low-order
byte as AL. The same holds true of
the other three general registers (BX,
CX, and OX).

Another group of registers is the
pointer and index (or P and 1) group.
This set contains the stack pointer
(5P), base pointer (BP), source index
(51), and destination index (01)

~'r------:;1 fF F FF H

-r
}ooo, "'M'" 64 KB

1 XXXXOH

I
+OFrET

SEGMENT
REGISTER FILE

~
s (-

WORD {
MSB

LSB } ,m "'M'"
SS
OS
ES

S •

BYTE

l' l' OOOOOH

Figure 3: Memory organization. The 8088 uses a memory-segmentation technique to ad­
dress up to 1,048,576 bytes (1 M byte) of memory. The user can use attributes of the
memory-addressing system to dynamically relocate a program anywhere within the en­
tire address space.

registers. Generally speaking, these
registers hold offset addresses used
for addressing within a segment of
memory. They can also participate,
along with the general register group,
in arithmetic and logical operations
of the 8088.

The 8088 uses memory segmenta­
tion to address this large memory
space efficiently. At anyone time, the
8088 can deal with memory as a set of
four 64 K-byte segments. The total
memory is organized as a linear array
of 1,048,576 bytes, addressed as
hexadecimal 00000 to hexadecimal
FFFFF. The 8088 creates a 20-bit
address by combining a 16-bit offset
and a segment boundary value stored
in one of the segment registers . Figure
3 demonstrates how this works.

Each of the 16-bit-segment regis­
ters, the code segment (CS) register,
the stack segment (S5) register, the
data segment (OS) register, and the
extra data segment (E5) register, con­
tains a value that is added to a 16-bit

24 March 1980 © BYTE Publications Inc

offset address, forming a 20-bit ad­
dress. The memory is thus divided
into a maximum of four 64 K-byte
segments that are active at any single
time. The code segment of memory is
where instructions are stored, the
stack segment of memory is where the
pushdown stack is located, the data
segment is where data to be operated
on is found in memory, and the extra
segment is an addition~i 64 K-byte
data area.

When fetching an instruction from
memory, the location accessed is
given by a 20-bit address that is the
sum of two numbers. The first
number is the value of the 16-bit
instruction pointer. The second
number is a 20-bit value that is the
16-bit code-segment register with four
low-order zero bits appended . This
forms the 20-bit address required to
specify any location in the megabyte­
sized address space.

In the case of a memory-reference
operation for a transfer of data, the

absolute memory address referenced
by a given memory-access instruction
is calculated by adding the given
16-bit address to the base address.
The base address is given by the con­
tents of the data-segment or extra­
segment register and is followed by
four low-order zero bits.

In the case of a stack operation, the
memory location referenced is simi­
larly offset from the value contained
in the stack-segment register.

The 8088 has both relative and
absolute branch instructions. When
all branch instructions within a given
segment of memory are specified in
relation to the instruction pointer and
the program segment does not modify
the value of the code-segment regis­
ter, the program segment can be
relocated dynamically anywhere
within the megabyte address space . A
program is relocated in the 8088
simply by moving the code, updating
the value of the code-segment
register, and resuming execution.

Small System Applications
The 8088 can be used in a broad

range of applications, from systems
requiring use of a minimum number
of components to systems requiring
maximum performance. The compo­
nent-count-sensitive applications in­
clude point-of-sale terminals and sim­
ple controllers, which require that
system cost be kept low, but need
substantial processing power. A big
reason for this design flexibility is the
ability of the 8088 to operate in a
minimum-hardware mode .

The minimum-mode, multiplexed
configuration, as shown in figure 4, is
an effective way of building a power­
ful system around the 8088, while
using the smallest number of parts.
The processor is connected in the
minimum mode by wiring its Mn/ Mx
pin in the high-logic state (at Vee
potential). The multiplexed bus is
directly compatible with the Intel
8085A-family peripheral components
(8155, 8355, 8755A, and the new
8185).

A four-chip system can be designed
using the following components: an
8088 microprocessor; an 8284 clock
generator; an 8155 memory, input!
output (I/O), and timer device; and
an 8755A EPROM and I/O device. A
fifth component, the 8185, is a simple

r ~ VSS VCC
1--- ' ,'

• ~ ,c

J f-I':~ CE -WR
PORT

;c:'
A

I' RQ PORT -I ~.
B

ALE -i ~.
PORT

DATAl C

I:'
ADDR

_ IN -101M TIMER
I--

~
RESET OUT

8155

I lOW 83551
AS - A15

RD 8755A

ADO-AD7 !. ALE --PORT
,-- CE A

CRYSTAL ClK

r01 8088 VCC r- A8-10

VCC
.----- READY U I I I I I DATAl

MN I MX

~ =
ADDR PORT

Xl X2 B
ALE ~ 101M

Cl K f- RQ - ~ ...- VCC
RESET -.1-

READY I-- ;-- RST WR lOR

RES 101M -
t .f J t 8284

!
VSS VCC VDD PROG

RESET

WR
~, RD 8185

-
CE1

ALE

~ CS, CE 2

A8. A9

I ~
ADO-7

~. I I I I I f~; t t
[~ ~ , Vss Vcc
.....

Figure 4: When used in the minimum mode (MNI MX line held high), the BOBB interfaces directly with the multiplexed address and
data components in the BOBSA-support family to form a functional microcomputer system using only five integrated circuits. Detailed
information concerning this circuit will be given in Part 2.

addition to the system and provides
an extra 1 K bytes of user memory.

In the minimum-mode configura­
tion, the 8088 provides all necessary
bus-control signals, including RD,
WR, 10/ M and ALE. It further

provides HOLD and HLDA (hold­
acknowledge) signals to allow direct­
memory-access (DMA) data transfer,
INT and INT A to interface the
8259A interrupt controller, and
DEN and DT / R to control trans­

ceivers on the data bus.
The power of the 8088 can be

extended in large-system applications
by wiring it into the maximum-mode
configuration. However, a discussion

26 March 1980 © BYTE Publica tions Inc

of maximum-mode features is beyond
the scope of this article .

The 8088 Instruction Set
A complete discussion of the 8088's

instruction set is also beyond the
scope of this article. Rather than
attempt it, I shall concentrate on
some specific features of the 8088
instruction set that facilitate the
specific application discussed next
month in Part 2 of this article . These
features include extended arithmetic
instructions, direct use of ASCII­
encoded data, multiprocessing
features, string-manipulation instruc­
tions, and table-translating aids. The

8088 instruction set includes single­
instruction multiplication and divi­
sion instructions, along with five dif­
ferent types of addition and seven
types of subtraction operations.

These multiply and divide instruc­
tions greatly facili tate "number
crunching." This numerical ability
saves much time in such applications
as data sampling, signal processing,
and scientific calculation. Not only
are fewer machine instructions need­
ed to perform a given task, with
corresponding savings in memory
usage and execution time, but the ver­
satility of the instructions and the

Text continued on page 30

Listing 1: An example of the efficiency of the 8088 and 8086 instruction set. This short
routine accepts input of five values from an input port, and then calculates and sends a
running-average value to an output port. Compare this listing with listing 2.

XOR BX, BX ;CLR BX
MOV CX,5 ; Set loop counter

Average INC BL ;Increment data counter
IN AL, Port # ;Input data
ADD BH,AL ;Update running total
MOV AL, BH
DIV BL ;Divide running total by

;data counter .

OUT Port #, AL ;Output running average.

LOOP Average ;Return unless fifth pass
;is completed .

HLT

Listing 2: A routine that performs the same task as the routine given in listing 1. This
code, however, was written for the older 8080 processor. As you can see, it is longer
and more tedious to write.

MVI
MVI

Average INR

MOV
IN
ADD

Divide XRA
MOV
MOV
MVI

Loop MOV
RAL
MOV
MOV
RAL
MOV

CMP
JC

SUB
MOV
MOV
ORA
MOV

Next MOV
RRC
JNC

MOV
OUT

MVI
CMP
JNZ

HLT

30 March 1980 © BYTE Publications Inc

H,OO
E,OO

E

C,H
A, Port #
H

A
B,A
L, A
C,80

A,C

C,A
A,B

B,A

E
Next

E
B,A
A,D
L
L,A

A,D

Loop

A, L
Output #

A, 05
E
Average

;Clear H register
;Clear E register

;Increment data counter

;Input data
;Add data to running total

;Clear accumulator
;Clear B register
;Clear L register
;Initialize bit counter

; Shift Band C as
;a l6-bit unit-
; one bit left

;Compare data
;counter (divisor) with
;dividend; if divisor is larger,
;bypass subtract.
;Divisor is smaller; subtract.

;Set current bit of
;L to 1

;Shift D right and check carry

; If no carry, return for next bit.

;Outport running average

; Return unless fifth pass is
;completed.

Text continued from page 26
ability of the 8088 to deal with several
types of data remove the usual
necessity of handling messy conver­
sions from one type of data represen­
tation to another and back again.

Two program listings demonstrate
the saving of effort. Listing 1 gives the
8088 code for the skeleton of a
subroutine that accepts data from a
specified input port and calculates a
running average of the values
entered. The same subroutine section
coded for the older 8080 micro­
processor is shown in listing 2.

Direct Use of ASCII and
Decimal Data

The direct use of unpacked binary­
coded decimal (BCD) or ASCII­
encoded data in a microcomputer has
a number of obvious advantages.
Since many 110 devices present data
to the processor in American Stan­
dard Code for Information Inter­
change (ASCII) format and expect
responses in the same format,
microcomputer-system designers
have for years faced the necessity of
putting their input and output
through a translation process (usually
involving a table look-up operation)
before processing the input or
responding with output.

With the 8088's instruction set,
such manipulation is no longer
necessary. All four mathematical
instruction types (add, subtract,
multiply, and divide) provide for
ASCII adjustment of the accumulator
contents by a single instruction. This
feature is obviously of great use in
everyday microprocessor applica­
tions. Equally interesting (and useful)
are the two instructions that adjust
the results of addition and subtrac­
tion to packed decimal form.

Table-Translating Aid
Despite the availability of single

instructions to convert accumulator
contents from one type of data
representation to another, it may still
be necessary from time to time to
translate data by means of the tradi­
tional look-up table. This might, for
example, be necessary if the data is
being received or transmitted in
EBCDIC (Extended Binary-Coded­
Decimal Interchange Code) rather
than in ASCII form.

Listing 3: A segment of BOBB code that translates characters from Extended Binary­
Coded-Decimal Interchange Code (EBCDIC) to American Standard Code for Informa­
tion Interchange (ASCII) form . The BOBB instructions for manipulating and translating
strings of characters are put to good use.

MOV
MOV
MOV
MOV
CLD
JCXZ
LODS
XLAT
STOS
CMP
LOOPNE

sr, FFFE
BX,OIOO

; Source index register contains start of EBCDIC Buffer
; B register points to translate table

DI, ASCBUF
CX,528

; Destination index points to ASCII buffer
; C register contains length of buffer

EMPTY
EBOBUF
TABLE
ASCBUF
AL, EOT
NEXT

; Skip if input buffer empty
NEXT: ; Get next EBCDIC characte r

; Translate to ASCII
; Transfer ASCII character to buffer
; Test for EOT character
; Continue if no EOT received (CX decrements first)

EMPTY: (Program continues)

The XLAT (ie: translate) instruc­
tion allows the user to define a
256-byte table of correspondence and
then to reference any point in the
table very easily. The base address of
the table is placed in the BX register
and the index (ie: table position) is
stored in the accumulator. Then the
single instruction code XLA T is used
to refer to the proper point in the
table, pick out the translation, and
store the result in the accumulator.

This is useful particularly when
data that has been entered from a
port comes into the accumulator for
disposition or transfer. If you are
dealing with a stream of incoming
characters in EBCDIC format, for
example, the translation proceeds
thusly. You begin by storing the
beginning memory address of your
256-byte translation table in the BX
register. If you set up the table so that
the base address of the table cor­
responds to an incoming EBCDIC
value of 00, the next address to an in­
coming value of 01, etc, all you must
do is simply accept a byte of data and
execute the XLAT instruction.

This simple procedure lets us
obtain the correct translation of that
byte into the proper format for hand­
ling by the 8088 or some other pro­
cessor. A MOV instruction will then
store the result of translation until it
is needed; the translation process can
then be repeated with the next incom­
ing byte. Setting up the necessary
instruction sequence requires one
instruction: a MOV to the BX register
of the base address of the table. The
loop for handling the translation
requires only three basic instructions:

32 March]980 © BYTE Publica tions Inc

the input instruction, XLA T, and
MOV.

String-Manipulation Instructions
Since typical computer applica­

tions often deal with strings of
characters consisting of letters,
numbers, and special symbols, easy­
to-use string-manipulation instruc­
tions are a welcome enhancement to
8-bit processors. The 8088 addresses
this need by providing five powerful
primitive string operators that may
be preceded by a single-byte repeti­
tion prefix.

For a byte-for-byte or word-for­
word comparison of two data strings
(as you might use in verifying the
accuracy of data loaded into memory
from a mass-storage device, for
example), the 8088 offers the CMPS
instruction. This also allows termina­
tion of a program segment upon
occurrence of a predetermined
equality or inequality condition, as
well as automatic incrementing or
decrementing.

You can scan through a string of
data for an occurrence or for an
absence of occurrence of a specific
string or character by using the SCAS
instruction. This operation subtracts
the byte or word operand in memory
(or elsewhere) from the accumulator
and changes the logic state of the
flags; it does not, however, return a
result. Again, decrementing or incre­
menting is automatic.

The STOS instruction allows you
to fill a string of arbitrary length with
a single value (eg: a string of zeros or
nulls for a floppy disk initialization
routine), once more with automatic

incrementing or decrementing of a
predetermined count.

Putting Some Things Together
Let's take a quick look at a small

but powerful example that employs
both the string manipulation and the
XLAT instructions to solve a very
practical problem.

You are designing an input routine
that must translate a buffer filled with
EBCDIC characters into ASCII form,
continuing the transfer until one of
several possible EBCDIC characters is
received. The transferred ASCII
string should be terminated with an
EOT (end-of-transmission, hexa­
decimal value 04) character. Assume
that the buffer starts at hexadecimal
memory location FFFE, the table to
translate the EBCDIC form to ASCII
begins at hexadecimal location 0100
and the CX register is to contain a
value giving the length of the buffer
containing EBCDIC characters. The
buffer may, of course, be empty.

The small 8088 program segment
shown in listing 3 accomplishes this
task in a small number of instructions
and handles a great deal of overhead
work with little effort or concern on
the part of the system designer and
programmer.

By now you should have an under­
standing of the power of the 8088
microprocessor. Even in a minimal­
mode, five-component circuit, our lit­
tle computer will have the following
attributes :

• 5 MHz 8088 8-bit processor (com­
pletely 8086 software-compatible)

• 1280 bytes of static user memory
• 2048 bytes of erasable, program­

mable read-only memory
(EPROM)

• 38 parallel 1/ 0 lines
• a 14-bit counter/timer
• power-on reset and nonmaskable

interrupt.

Next month, in Part 2, we will deal
with some key features of the 8088
which make it particularly suited to
multiprocessing situations. We will
investigate the operating system of a
multi-user, Tiny BASIC language
system on our minimal-configuration
computer .•

These figures are provided through the
courtesy of Intel Corporation.

	Cover

	Index

	Editorial

	Letters

	Ciarcias Circuit Cellar: Get 16-Bit Performance from an 8-Bit Computer
	Electron Behavior in a Chemical Bond
	Hewlett-Packard's New Personal Computer The HP-85
	Programming Quickies: Gear-Ratio Calculation for Bicycle' Derailleurs
	Solving Problems Involving Variable Terrain Part 2: Special Cases, Including Hexagonal Grids
	TRS-80 Performance Evaluation by Program Timing
	BYTE News
	Electronic Planimetry
	A Power-Line Protection Circuit
	Landing Module Simulation with Random Surface
	The Dirt-Cheap Bootstrap More Notes on Bringing Up a Microcomputer
	Hydrocarbon Molecule Constructor
	Book Reviews

	BYTE's bits

	Clubs and Newsletters

	BYTE's Bugs

	Product Reviews: Lucidata P-6800 Pascal
	Technical Forum
	The Direct Impact of the Computer
	Cutting the Gregorian Knot

	Operation Codes of the 8080, 8085, and Z80 Processors
	DeskTop Wonders: The Periodic Chart at Your Fingertips Using the TI-59
	Programming Quickies: KIM-l Multiplication and Division
	Event Queue

	To Err Is Human
	Super TIC
	Programming Quickies: The Towers of Hanoi
	The Correct Order of Operations Can Shorten Code: Pointer Decrementing on the6502
	Whats New?

	Unclassified Ads

