
White Paper

Nokia and Symbian OS



2

White Paper

Contents
Nokia and Symbian – the history – 
extracts from Nokia announcements 3

What is Symbian 4

Symbian OS and Nokia products 5

Commercial benefi ts for both operators and developers 5

Symbian OS – fundamental customer requirements 6

Symbian OS – architecture 6

An open operating system 8

Symbian product releases – launching new technology 8

Writing applications for Symbian OS 8



3

White Paper

Nokia and Symbian – the history – 
extracts from Nokia announcements

21.5.2001
“Nokia expects 50% of its 3G phones 
to use the Symbian Operating System 
by 2004.” Jorma Ollila, CEO Nokia.

5.6.2001
The Nokia 9290 Communicator (for US) 
launched – “The 9290 Communicator 
demonstrates Nokia’s commitment to 
not only provide unique, innovative 
products for our customers, but to do 
it using open standards, such as the 
Symbian OS, Java and SyncML” 
Paul Chellgren, Vice President of 
Business Development for Nokia.
 
12.11.2001 
Nokia introduced the Series 60 Platform 
for application and feature driven mobile 
devices. The new platform is designed 
for Symbian OS and will support mobile 
browsing, multimedia messaging and 
content downloading, as well as a host 
of personal information management 
and telephony applications. 

13.11.2001
Open Mobile Architecture alliance 
launched – AT&T Wireless, Cingular 
Wireless, MM02, NTT DoCoMo, 
Telefonica Moviles, Vodafone, Fujitsu, 
Matsushita, Mitsubishi Electric, 
Motorola, NEC, Nokia, Samsung, Sharp, 
Siemens, Sony Ericsson, Toshiba and 
Symbian to commit to products 
and services based on open mobile 
architecture enablers. 

19.11.2001
The Nokia 7650 launched – “The Nokia 
7650 delivers a full range of functions 
for professional needs in the 
EGSM900/1800 environment. 
Symbian OS allows the phone to be 
customized and upgraded by 
corporations and individual users, who 
will be able to purchase numerous 
add-on software applications designed 
by independent software developers.“

Symbian is key to the future of the telecommunications industry. 
Nokia is basing its future smartphones on Symbian OS and it forms 
the basis of the recently launched Series 60 platform.

Nokia is a founding member and shareholder of the Symbian alliance. 

This paper provides a basic understanding of why Nokia is strongly 
committed to Symbian – from both a commercial and a technical 
perspective. Additionally, some of the technical qualities of 
Symbian OS are examined in some detail – this section is aimed at 
the more technically minded reader.

24.6.1998
“It was announced today that Ericsson, 
Nokia and Psion have conditionally 
agreed to form a new joint venture 
called Symbian. Nokia’s investment is 
approx. USD 50 million. This agreement 
is further strengthened by the support 
of Motorola who have signed a 
Memorandum of Understanding to join 
Symbian.“

21.11.2000
The Nokia 9210 Communicator launched 
– “Symbian’s EPOC operating system 
bring open development interfaces to 
the Nokia 9210 Communicator for 
numerous additional applications to be 
provided by any third party developers,” 
Anssi Vanjoki, Executive Vice President, 
Nokia Mobile Phones.



4

White Paper

What is Symbian

Symbian OS 
By setting the standard for wireless computing and telephony, Symbian 
brings together the wireless value chain. Symbian OS drives standards for 
the interoperation of data-enabled mobile phones with mobile networks, 
content applications and services:

A platform for wireless services
Symbian delivers an advanced, open, standard operating system to its 
licensees. Symbian OS is fl exible and scalable enough to be used in the 
variety of mobile phones needed to meet a wide range of user requirements. 
Symbian OS supports complex requirements of network protocols worldwide 
and enables a broad, international developer community.

Providing wireless services
Open standards ensure global network interoperability, allowing mobile phone 
users to communicate with anyone, any way, at any time. The compelling 
advanced data services that operators can provide on Symbian OS phones will 
help minimize churn and maximize revenue.

Developing wireless services
Software developers are able, for the fi rst time, to build applications and 
services for a global mass-market of advanced, open, programmable, mobile 
phones. A set of standard application programming interfaces (APIs) across 
all Symbian OS phones and the advanced computing and communications 
capabilities of Symbian OS, enable development of advanced services.

Symbian OS is a powerful aligning force for the wireless value chain. Mobile 
phone manufacturers, network operators and software developers are assured 
that they are working with an industry standard, open operating system that 
allows customization and is focused on the mass-market, driving the wireless 
community. 

The Company
Headquartered in London, Symbian Ltd 
is owned by Ericsson, Nokia, Panasonic, 
Psion, Siemens and Sony-Ericsson. 

Customers
Symbian’s customers include all of its 
shareholders, but any company is free 
to license the product – Symbian OS is 
open to all on equal terms. So far, 
in addition to the shareholders, Sony, 
Sanyo, Kenwood and Fujitsu have all 
taken licenses.

Business model
The Symbian business model is simple – 
manufacturers pay a fee to Symbian 
for each device that they sell that uses 
Symbian OS. Symbian also earns money 
working with licensees to develop their 
products.

Basic principles
Nokia is committed to open platforms – 
in the area of Operating Systems as in 
many other areas. The cornerstone of 
Symbian’s modus operandi is to use 
open – agreed – standards wherever 
possible. Symbian is focussed squarely 
on one part of the value chain – 
providing the base operating system for 
mobile internet devices. This enables 
manufacturers, networks and application 
developers to work together on a 
common platform.

Symbian history
Symbian OS started life as EPOC – 
the operating system used for many 
years in Psion handheld devices. 
When Symbian was formed in 1998, 
Psion contributed Epoc into the group. 

Epoc was renamed Symbian OS and 
has been progressively updated, 
incorporating both voice and data 
telephony technologies of ever 
greater sophistication with every 
product release.



5

White Paper

Symbian OS and Nokia products
• Multimedia messaging 
• Content Downloading 
• Mobile browsing 
• Native Symbian applications

Symbian components include data 
management, communications, graphics, 
multimedia, security, application 
engines, messaging engine, Bluetooth, 
browser engines and support for data 
synchronisation and internationalisation.

In May 2002, Nokia and Siemens 
announced an agreement – part of 
which included the licensing of Series 60 
Platform by Siemens.

Future Nokia products based on 
Symbian OS
Nokia will launch new – Symbian OS based 
– products in the following categories:
• Communicator – building on the success 

of the Nokia 9000 Communicator, 
Nokia 9110 Communicator and Nokia 
9200 Communicator series of phones

• Imaging phones – the fi rst of which 
is the Nokia 7650

• Media phones – designed for 
consuming media and browsing

• Entertainment focussed phones

On 21.5.2001, Jorma Ollila, CEO Nokia 
said “Nokia expects 50% of its 3G 
phones to use the Symbian Operating 
System by 2004.” – and these product 
plans are building towards this.

Nokia 9200 Communicator Series 
In June 2001, Nokia shipped the Nokia 
9210 Communicator. This was the 
third Nokia Communicator, but the fi rst 
based on Symbian OS. The full 9200 
Communicator range now includes:
• Nokia 9210 Communicator
• Nokia 9210c Communicator – 

a chinese language version
• Nokia 9290 Communicator – 

designed for the Americas
• Nokia 9210i Communicator – 

an upgraded version of the 
original 9210

Nokia 7650 
Nokia launched the Nokia 7650 in 
November 2001. This is the fi rst Symbian 
OS phone to feature the “always on” 
capability of GPRS. With its built in 
camera, the Nokia 7650 is the fi rst 
Nokia phone to feature Multimedia 
Messaging (MMS).

Series 60 Platform 
In November 2001, Nokia launched the 
Series 60 Platform – which provides 
licensees with the ability to make 
advanced mobile phones. Licensees 
will be other phone manufacturers, 
who will be able to take advantage of 
Nokia technology to short-cut the usual 
development process.

Series 60 Platform builds on Symbian OS, 
complementing it with a graphical 
user interface library and reference 
applications. 

For licensees, Series 60 is a platform 
on which they can build their own 
feature-rich terminals. It takes as a base 
a large colour screen and an easy to use 
User Interface, and includes a rich suite 
of applications.

Commercial benefi ts for both 
operators and developers
The widespread establishment of Symbian 
OS will bring signifi cant commercial 
benefi ts, both direct and indirect.

Operators 
• Operators will benefi t from having a 

wide pool of interoperable devices, 
built on open standards. They will be 
able to select from a wide range of 
terminal and infrastructure 
manufacturers with a rich set of 
interoperable solutions.

• In terms of value that operators can 
add, applications and content can all 
be more cost effectively supplied – 
given the common OS shared across 
phones.

Developers
• Developers will benefi t from being 

able to target a greater number of 
consumers across one platform. 
Their porting and development costs 
will dramatically decline as the 
common OS means that applications 
will need to be developed only once.

• Applications can be written by 
virtually anybody. This software could 
be stand-alone, used only by the user 
of the device. However, just as easily, 
the software could be a networking 
application, enabling users to 
communicate with other users, or to 
access a resource somewhere in the 
internet.

• Equally, whilst costs are reduced, 
potential returns are increased as a 
wider pool of users is accessible – 
a win-win situation for all concerned.



6

White Paper

Indirect benefi ts for the whole 
industry
• The above benefi ts assume that the 

number of users stays constant. 
In establishing Symbian OS, Nokia 
and the other industry players believe 
that there will be a Metcalfe effect – 
whereby the value of a network is 
the square of the number of users. 
As users proliferate, they will interact 
more, attracting even more users 
and consequently, more application 
developers, and content. This will 
benefi t the whole industry.

• Symbian OS is the key to creation of 
this virtuous circle. 

Symbian OS – 
fundamental 
customer 
requirements
• It must work on stand alone portable 

devices 
• It must work on different sorts of devices
• It must be future proof 
• It must be open to all to license on 

fair and equal terms
• It must be open to all to develop 

applications – again with a level 
playing fi eld for all

• It must be based on open standards

Perhaps the most important requirement 
is to work on a stand alone device. 
Symbian OS is fundamentally designed 
for mobile phones – with highly 
advanced features – but they must still 
function primarily as mobile phones. 

This means that expectations are already 
set – for a user to consider buying 
Symbian OS based phones they must 
outperform a users current model in 

some areas and be at least equal in all 
others. The performance benchmark for 
Symbian OS is not the PC or portable 
computing devices but the phones that 
around one billion people already have 
in their pockets!

Symbian OS – 
architecture 
Symbian OS architecture is designed to 
meet a number of requirements. It must 
be hardware independent so it can be 
used on a variety of phone types, it must 
be extendable so it can cope with future 
developments, and it must be open to all 
to develop for.

Architectural overview
• Core – Symbian OS core is common to 

all devices, i.e. kernel, fi le server, 
memory management and device 
drivers. Above this core, components 
can be added or removed depending 

on the product requirements. 
• System Layer – the system layer 

provides communication and computing 
services such as TCP/IP, IMAP4, SMS 
and database management

• Application engines – above the 
Systems Layer sit the Application 
engines, enabling software developers 
(be they either employed by the phone 
manufacturer or independent) to 
create user interfaces to data.

• User Interface Software – can be 
made or licensed by manufacturers 
(for example in the case of the Nokia 
Series 60 platform).

• Applications – are slotted in above the 
User Interface.

Client Server Architecture
The power of the client-server 
framework is widely acknowledged in 
the software community. In Symbian OS, 
clients are programs that have user 
interfaces, and servers are programs that 
can only be accessed via a well-defi ned 
interface from other programs. The role 
of a client is to serve the user, while 

Symbian OS

UI platforms

Data Services
Enablers

User Interface
Framework

Application
Engines

Test UI

Applications

CORE

Symbian architectural overview (Table provided by Symbian)



7

White Paper

servers ensure timely response to all the 
clients while controlling the access to 
the resources of the actual system. 
Additionally, in practice, one server will 
often have many extra servers relying on 
the one original server. 

Event management
Event management has long been 
considered a core strength of Symbian 
OS – refl ecting the fact that Symbian OS 
was designed from the start to have 
event-based time sharing in a single 
thread. Rather than more conventional 
methods of having multi-threaded 
applications, Symbian OS enables the 
developer to think in terms of 
interactions and behaviours as the main 
artefacts. Enabling this shift from 
procedural to interactive designs has 
been one of the main challenges of 
modern software engineering – and this 
is one reason why Symbian OS has 
earned its reputation for advanced 
design. 

Object oriented design
Because Symbian has an object-oriented 
design, it is easy to confi gure for 
different sorts of hardware, and being 
component-based, it allows 
manufacturers to add or remove 
components. This is crucial in enabling 
manufacturers to make devices that best 
suit their customers needs. This fl exibility 
extends even to the user interface – 
again allowing a variety of different 
device designs to work from the same 
operating system.

For Symbian itself, the design allows 
new technology to be slotted into an 
already stable platform. This will provide 
a stable base as the telecommunications 
industry moves from 2G to 2.5G to 3G, 
with the further introduction of new 
technologies such as SyncML, 
Bluetooth, Multimedia Messaging 
amongst many. The picture will grow 

ever more complicated, especially when 
technologies are used in combination, 
but Symbian OS is ready!

For application developers, this separation 
of components allows them to program 
far richer applications – getting into the 
middle of the operating system.

Power management
Symbian OS users are used to the 
performance of mobile phones – and so 
demand similar performance in terms of 
weight and operating times when they 
adopt new devices. 

Power management is built into the 
kernel of Symbian OS and is designed to 
make effi cient use of the processor and 
peripherals and so minimise power 
usage. When peripherals are not being 
used they are switched off by the 
system. This lowers battery consumption, 
prolonging usage and allows for smaller 
batteries. 

This meets the requirement to work 
on stand-alone portable devices – 
enabling manufacturers to make phones 
that capture the optimum combination 
of size and weight for their target 
market. 

Robust and dependable
Symbian OS users will have experienced 
the performance levels achieved in this 
area by mobile phones. Devices should 
not lose user data, crash or require 
rebooting. 

Symbian achieves this in two ways:
1. Each process runs in a protected 

address space – thus it is not possible 
for one application to overwrite 
another’s address space. 

2. The kernel also runs in a protected 
address space – so that a bug in one 
application cannot overwrite the 
kernel’s stack or heap. 

The client server architecture of 
Symbian OS allows applications to 
exchange data without compromising 
overall system integrity. This meets the 
requirement to work on stand alone 
portable devices – even though Symbian 
devices offer greatly enhanced 
functionality over standard mobile 
phones.

Memory management
For stand-alone portable devices, 
memory management is important. 
The need to minimise weight, device 
size and cost means the amount of 
memory available on a Symbian OS 
device is often quite limited.

Symbian OS always assumes that 
the memory available is limited, 
and minimises consumption at every 
turn. Consequently, less memory is 
actually required by the system. Also, 
having less memory helps to keep down 
power consumption.

Full multitasking
Symbian OS runs each application as a 
separate process – allowing multiple 
applications to run concurrently. 
For instance, if a user is checking the 
calendar, and receives a call, the system 
must allow the user to switch between 
applications instantaneously. Equally, 
should the phone call result in an 
appointment, the user must be able to 
check the calendar – and still maintain 
the phone call. As phones become more 
data enabled, this ability will become 
ever more important.



8

White Paper

An open 
operating 
system
Symbian OS is “open” – what does this 
mean?

Open to anyone to license 
All manufacturers are treated equally – 
licensing Symbian OS is open to all on 
fair and equal terms. 

Open to anyone to develop 
applications
The even-handed approach adopted 
towards manufacturers extends to 
developers. API’s are made available as a 
matter of course. Support for 3rd party 
developers is a key tenet of Symbian OS 
so full SDKs and support are available 
for all products. Anyone can build an 
application for Symbian OS and again 
there is fair and equal access for all. 

Based on open standards
Symbian focuses on one clear part of the 
value chain – providing a platform for 
all to build upon. Consequently Symbian 
avoids proprietary standards. It is an 
active participant in many standards 
forums – often drawing on the expertise 
of its shareholders and licensees. 
The components of Symbian OS are 
based on agreed open standards. 

Owned by the industry
Symbian has steadily increased the 
number of shareholders since it was 
inaugurated. With the addition of Siemens 
as the latest shareholder, Symbian 
shareholders now make over 70% of the 
phones sold globally. This breadth of 
ownership ensures that Symbian acts in 
the interests of the whole industry, 
driving open standards and promoting 
interoperability.

Symbian product releases – 
launching new technology

Symbian has trusted relationships with 
its shareholders and licensees – who are 
the leading players in the mobile industry 
– so new technology is extensively tested 
with licensees before it is launched.

Each product release is accompanied by 
Software Developer Kits for both C++ 
and Java developers, with full emulators 
for PC and cross compilers for installing 
applications on the device.

Symbian regularly releases updated 
versions of its software as new 
components are incorporated 
(for instance Symbian OS v6.1 includes 
GPRS components). These updates are 
mostly developed in-house by Symbian 
but in some cases they license software 
from other sources including the 
licensee companies. 

Writing applications 
for Symbian OS
C++
Symbian OS is written in C++, so it is 
natural fi t to develop applications also in 
C++. This provides the developer with 
the most fl exibility and scope. However, 
this fl exibility brings with it complexity, 
and in some cases it may be more 
appropriate to develop an application in 
Java, which is also well supported on 
Symbian OS devices.

Symbian’s use of C++ is effi cient and 
thoroughly object-oriented. The design 
of the OS focuses on getting the most 
out of the limited hardware resources of 
mobile devices and this affects the way 
that code is written throughout the 
system including at the application level. 
This requires developers to get used to a 
few programming idioms that aren’t 
common in other systems. However, 
these idioms help in making effi cient 
use of the hardware resources, especially 
the very limited amount of memory. 

They also help simplify some of the more 
diffi cult tasks in application development.

Some of the idioms are:
• the cleanup stack – a straightforward 

method for claiming back memory if 
a memory allocation fails part-way 
through a function.

• the rule that a C++ constructor 
cannot leave (i.e. cause an exception). 
This results in a two-phase construction 
system for objects (i.e. make a empty 
new object fi rst, then allocate the 
memory in a second step) which 
makes the cleanup stack system keep 
working even for complicated class 
constructions.

• Various naming conventions. 
E.g. C, T and R type classes, L (leaving) 
and non-L functions. The conventions 
quickly tell the developer useful 
information about the class or method 
without having to look up the 
defi nition.



9

White Paper

Multitasking
One of the major design decisions taken 
in developing Symbian OS was to 
optimise the system for effi cient event 
handling from the ground up. Native 
Symbian OS programs are written from 
the viewpoint of the events that occur 
rather than the traditional programming 
model of a main control program that 
regularly polls for events and then 
performs the appropriate actions. 
This traditional model often requires 
multiple threads to be used to perform 
these actions and this results in the 
complicated problem of synchronising 
access to application resources. 

Symbian OS multitasking system 
eliminates this problem by having only 
a single thread that responds to events 
as they happen. An Active Scheduler 
implements non-preemptive multi-
tasking within the context of this single 
thread. The Active Scheduler catches 
events as they occur and then runs the 
appropriate Active Object for that event. 
The Active Object does the processing 
for that event and then returns control 
to the Active Scheduler. If several events 
occur in quick succession, they are 
stored and each Active Object is run in 
turn. There is a priority system to 
determine which Active Object should be 
run fi rst, but if there is an Active Object 
already running it will run to completion 
before the next one can be run, even if 
the next one is of a higher priority. 
Thus we have multitasking that is 
non-preemptive. Since a Active Object 
function can’t be preempted there is no 
need to use mutexes, semaphores, 
critical sections or any kind of 
synchronization to protect against the 
activities of other active objects in the 
thread. However, to keep the system 
responsive, the processing of each 
event must be quick so that control is 
returned in order for the next event to 
be processed. 

Traditional multi-threading is also 
implemented in Symbian OS. Multiple 
applications and servers can be run 
simultaneously. Threads implement 
preemptive multi-tasking, so one thread 
can preempt another if it has to handle 
an event – for instance, the window 
server can handle a key-press event 
while an application is running, 
by preempting the running application 
thread. The ability of one thread to 
preempt another depends on thread 
priority. The most critical threads in the 
system are given the highest priorities – 
with the kernel, including device drivers, 
the highest priority of all. 

Application Architecture
Symbian OS has an application 
architecture that helps developers 
manage the complexity of graphical 
user interface based applications. 
A Symbian OS application is made up 
several parts. An Application Engine 
that contains all the non-UI parts of an 
application, an Application UI that 
handles the application events coming 
from the user and calls the Engine, 
and then there is the Application View 
(or several views) which contains the 
actual windows and controls (e.g. buttons, 
text and graphics) that show on the 
screen of a Symbian OS device. 
The Application Architecture has a 
built-in Active Scheduler so that 
developers don’t need to understand the 
ins and outs of the Active Object system 
when writing normal applications.

The tools that come with Symbian OS 
SDK can be used to generate an 
application with this basic structure. 
This provides the developer with a good 
guide for how to continue the 
development of the application.

Java
All Symbian OS devices have Java 
available on them. The higher end 
devices tend to have Personal Java and 
the more popular devices have MIDP Java.

Programming in Java for Symbian OS
Programming in Java for Symbian OS is 
the same as programming for Java on 
any other OS. Some phone manufacturers 
may implement additional device-
specifi c APIs which are not part of the 
Java specifi cation. However, all 
implementations will at least have all 
the required APIs for the particular Java 
profi le that is being supported.

Personal Java + JavaPhone
PersonalJava (or pJava) is in many ways 
similar to Standard Java as embodied 
in JDK 1.1. The main difference is 
that certain functional components – 
packages, classes or methods – 
which are obligatory in Standard Java, 
are optional, so reducing the minimum 
ROM budget for handheld devices like 
PDAs and mobile phones. It also adds 
some functionality like timers. However 
Symbian has opted for a fairly complete 
PersonalJava API set, implementing 
virtually all optional components 
including RMI and JDBC support.

Over and above the standard Java 
functionality, Symbian OS also provides 
an implementation of the JavaPhone 1.0 
API that gives Java programs access to 
a selection of invaluable native services 
on the phone. For example, with the 
Java Telephony API an application can 
create and terminate calls, listen for and 
answer incoming calls, detect changes in 
call state. There is also a Calendar and 
address book API, a P2P wireless 
datagram API for exchanging exchange 
datagrams with other devices via UDP 
or SMS, and javax.comm which allows 
Java programs to use the serial and 
infra-red ports on the phone.



10

White Paper

MIDP Java
The Mobile Information Device Profi le 
(MIDP) is a set of Java 2 Micro Edition 
(J2ME) APIs targeted at mobile 
information devices, such as mobile 
phones and two-way pagers. The MIDP 
specifi cation addresses issues such as 
user interface, persistent storage, 
networking, and application model. 
It is generally implemented on the 
Connected Limited Device Confi guration 
(CLDC) and it provides a basic J2ME 
application runtime environment.

MIDP applications (or midlets) run on 
the KJava Virtual Machine (KVM). 
This is a small-footprint, highly 
optimized virtual machine that meets 
the CLDC’s minimum requirements. 
KVM implementations provide only a 
subset of the standard Java APIs. 
Limitations on memory management 
require that care is taken when writing 
applications and make it diffi cult to port 
or run larger applications.

Porting 
Porting is feasible from a variety of 
sources:

Porting between Symbian OS devices
There are both different Symbian OS 
devices made by the same manufacturer, 
and devices made by different 
manufacturers. It is in the fi nancial 
interests of developers to make their 
applications available for all devices and 
so maximise their potential market. 
An important feature of the design of 
Symbian OS is that the Core of the 
system is the same for all the devices 
that are based on the same OS release. 
The differentiation is in the Graphical 
User Interface style – the screen size 
varies between devices and there are 
also different input methods. This means 
the representation of the application on 
screen for one device may be very 
different than for another device.

However, if an application is developed 
according to the application architecture 
mentioned above, then porting an 
application means only the GUI part 
of the code needs to be modifi ed. 
The Application Engine can stay the 
same for all devices. The Application UI 
will probably stay the same if different 
device types were considered when it 
was developed; i.e. different input 
methods are allowed for. The Application 
View, which is the part the user actually 
sees will be the only part that requires 
signifi cant change or rewriting. Within 
the same UI – for instance Series 60 
platform, these changes are further 
reduced.

Porting from Palm or WinCe devices
Both Nokia and Symbian have 
documents covering this – contact 
Symbian or www.forum.nokia.com for 
more details.

Porting C applications
To aid in porting engine and 
communications code from other 
systems, the C Standard Library provides 
a Posix-compliant API set, layered on 
top of the more fundamental C++ APIs. 
However, it is best to re-write user 
interfaces in the standard Symbian OS 
way since this will make most effi cient 
use of the resources of the device.

Development environment (SDK’s)
Nokia provides SDK’s for Nokia’s 
Symbian-based phones to enable 
independent developers to create 
software for those phones. The Nokia 
9200 Communicator Series SDK for 
Symbian OS is recommended when 
creating Nokia 9200 Communicator 
series optimized applications. The Nokia 
9200 Communicator Series SDK for 
Symbian OS guides the implementation 
of Communicator specifi c sequences and 
commands, which in turn improves the 
end user experience. 

Nokia Series 60 SDK for Symbian OS is 
compatible with the Nokia 7650. 
Nokia Series 60 SDK for Symbian OS 
offers a great range of Application 
Programming Interfaces (APIs) to build 
software on. Part of the SDK includes 
documentation on these API’s – not only 
describing the APIs but also offering 
examples of how to use them.

The main parts of an SDK are a device 
emulator that runs on the PC, a cross 
compiler for compiling software for the 
device and assorted tools that are 
required for application development. 

There is also a large amount of 
documentation and plenty of example 
applications in the SDK that help a 
developer get started with using the 
system.

Symbian also provides support for 
3rd party developers. 

For more information contact 
www.forum.nokia.com or 
www.symbian.com.

Forum Nokia
Forum Nokia’s Symbian-section and 
Business Opportunities- section provides 
developers with valuable information 
about development and business 
opportunities for Nokia devices running 
on Symbian OS. It is possible to 
download Software Development Kits, 
view documents to familiarise oneself 
with Nokia 9200 Communicator Series, 
Nokia 7650 and Series 60 Platform and 
also get information about Nokia sales 
channels.

For more information visit 
www.forum.nokia.com

Symbian and the Symbian Competence 
Centres have training courses for 
developers with different levels of 



11

White Paper

The contents of this document are copyright ©2002 Nokia. All rights reserved. A license is hereby granted to download and print a copy of this document 
for personal use only. No other license to any other intellectual property rights is granted herein. Unless expressly permitted herein, reproduction, transfer, 
distribution or storage of part or all of the contents in any form without the prior written permission of Nokia is prohibited.

The content of this document is provided “as is”, without warranties of any kind with regards its accuracy or reliability, and specifi cally excluding all implied 
warranties, for example of merchantability, fi tness for purpose, title and non-infringement. In no event shall Nokia be liable for any special, indirect or 
consequential damages, or any damages whatsoever resulting form loss of use, data or profi ts, arising out of or in connection with the use of the document. 
Nokia reserves the right to revise the document or withdraw it at any time without prior notice.

Nokia and Nokia Connecting People are registered trademarks of Nokia Corporation. Nokia product names are either trademarks or registered trademarks of Nokia. 
Other product and company names mentioned herein may be trademarks or trade names of their respective owners.

experience. Developers new to Symbian 
OS can read one of the Symbian 
programming books that are available 
and try a few examples before going on 
the beginner course. 

Symbian also has a developer focussed 
website www.symbian.com/developer 
where they host online discussions for 
Symbian OS developers and have a very 
useful knowledge base with answers 
for many problems that Java and C++ 
developers will come across. 

Symbian OS and all Symbian OS based trademarks and logo’s are trademarks of Symbian Limited. 
Certain parts of the text have been adapted from Tasker et al, Professional Symbian Programming, Wrox Press, ISBN 1-861003-03-X

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.



N
okia M

obile Phones
P.O. Box 100

FIN
-00045 N

O
KIA G

RO
U

P, Finland
Phone: +

358 (0) 7180 08000
w

w
w

.nokia.com

0602

© Nokia 2002. Nokia and Nokia Connecting People are registered trademarks of Nokia Corporation.
Other product and company names mentioned herein may be trademarks or trade names of their respective owners.
Products are subject to change without notice.


