
Java™ 2 Platform, Micro Edition (J2ME™) Technology
February 2005

CLDC HotSpot™ Implementation
Virtual Machine

White Paper CLDC HotSpot™ Implementation Virtual Machine On the Web sun.com

Table of Contents

Executive Summary .1

Java Technology in Small Devices .3

History of the Java Stack for Mobile Phones .4

Demand for Performance .6

Processor and Memory Requirements .6
Key Requirements .7
Other Small Consumer Devices .7

Design Considerations .8

Value Proposition .9

Performance Advantage .9
Robustness and Short Time to Market .9
Scalability and Small Footprint .10

The CLDC HotSpot Implementation Architecture .12

Dynamic, Adaptive Compiler .12
Compact Object Layout .13
Unified Resource Management .13
The CLDC HotSpot Implementation Garbage Collector .14
Fast Thread Synchronization .15
Lightweight Threads .15
Thumb Mode Support (ARM Processors) .15

New Features in Version 1.1.2 .16

AOT Option .17
In-Place Execution .17
Shorter Execution Pauses .17
Multitasking Option .17

Multitasking in the CLDC HotSpot Implementation .18

Why Multitasking Capability? .18

Conclusion .20

Sun Microsystems, Inc. Chapter Title PiTable of Contents

Chapter 1

Executive Summary

The Connected Limited Device Configuration (CLDC) HotSpot™ Implementation is Sun’s high-performance Java™
virtual machine for resource-constrained wireless phones and communicator-type devices.

The first generation of Java technology-enabled wireless devices was based on the K virtual machine (KVM),
a reference design that demonstrated how the CLDC specification could be implemented and was the basis for
CLDC’s Technology Compatibility Kit (TCK). Sun introduced the CLDC HotSpot Implementation 1.0 in mid 2002 as
an optimized implementation that focuses on performance and footprint. Not only does it comply with the CLDC
specification, but it also includes a number of patented features that enable faster application execution as well
as more efficient resource management. In addition, it is supported on a number of targeted platforms and
optimized for the ARM processor architecture.

The CLDC HotSpot Implementation delivers nearly an order of magnitude better performance than the KVM
while running in a similarly small memory footprint required by resource-constrained mobile phones and personal
organizers. It delivers not only better performance, but also more robustness. The CLDC HotSpot Implementation
is the recommended virtual machine technology for new product deployments in this class of devices, and can be
integrated with the Sun Java™ Wireless Client 1.1.2 for a full stack solution using Java technology.

The CLDC HotSpot Implementation 1.1.2 includes a number of significant new features such as ahead-of-time
(AOT) compilation of Java methods, in-place execution, significant enhancements in performance, reduction of
pauses due to improvements in compilation and garbage collection, multitasking capability, and full integration
with Java hardware acceleration on enabled ARM processors (using Jazelle technology under license from ARM Ltd.).
Each of these new features will be explained in greater detail further on in this white paper.

Sun Microsystems, Inc. Executive Summary P1

Figure 1. The CLDC HotSpot Implementation With the Sun Java Wireless Client 1.1.2

The following trends are driving the features of next-generation handsets:
• Users are more sophisticated, demanding applications such as gaming, information services, messaging, location

services, and more.
• Screen sizes are larger and provide higher resolution and more colors, enabling more complex graphics such as

2D, 3D, animations, and so on.
• Networks are faster, allowing larger, more complex applications to be downloaded to handsets.

• Enterprises are deploying mobile workforce applications that require enhanced security and stability in the

underlying platform.

The desire for better performance in embedded Java runtime environments drove Sun to develop the CLDC
HotSpot Implementation Java virtual machine technology, with a goal of achieving:
• Faster performance
• A more robust platform

• Faster time to market

The CLDC HotSpot Implementation applies advanced tuning and performance techniques utilized in both Java
2 Platform, Standard Edition (J2SE™) and Java 2 Platform, Enterprise Edition (J2EE™) technologies, and further reduces
the footprint to fit into small devices. In addition, the CLDC HotSpot Implementation incorporates several innova-
tions in design that allow the virtual machine to run in resource-constrained devices, and enables it to:
• Provide cutting-edge performance
• Deliver fast application start-up time
• Require minimal footprint
• Reduce porting efforts

• Preserve battery life

Version 1.1.2 of the CLDC HotSpot Implementation supports both the CLDC 1.0 or CLDC 1.1 specification (it can
be compiled to support one of these). The CLDC HotSpot Implementation conforms to the corresponding version of
the CLDC specification and the Technology Compatibility Kit (TCK).

Sun Microsystems, Inc.P2 Executive Summary

Chapter 2

Java Technology in Small Devices

Today, a complete Java technology stack exists to support embedded devices such as mobile phones. These devices
are characterized as small, battery-powered devices with limited wireless connections to the Internet. The stack is
based on the Java 2 Platform, Micro Edition (J2ME™) specification, and consists of the virtual machine and CLDC
libraries as the foundation and the Mobile Information Device Profile (MIDP) and optional packages on top.

The J2ME specification defines configurations, profiles, and optional packages that, in combination with a Java
virtual machine, make up the Java technology stack. A configuration of J2ME technology includes a Java virtual
machine as well as the Java programming language libraries that are required as the lowest common denominator
of a range of embedded devices. A profile is a layer on top of the configuration that provides additional APIs for a
specific class of devices. A particular combination of configuration and profile is appropriate only for specific Java
virtual machines.

The J2ME platform fits in with the other editions of Java technology — the J2SE and J2EE platforms — as illus-
trated in Figure 2. Small, resource-constrained, battery-powered devices such as wireless phones and communicator-
type devices are the domain of the CLDC and MIDP specifications, also shown in this Figure 2.

Figure 2. The J2ME, CLDC, and MIDP Specifications

Sun Microsystems, Inc. Java Technology in Small Devices P3

History of the Java Stack for Mobile Phones

The history of the Java stack for mobile phones really began in 2000 with the release of two reference implemen-
tations of Java technology by Sun. The first was the reference implementation of the J2ME CLDC specification. A
key component of the CLDC Reference Implementation was the KVM, the first “complete” virtual machine for small,
embedded devices such as mobile phones. Also in the same year, Sun released the first reference implementation
of the MIDP specification. For the first time, it was possible to write useful applications in the Java programming
language that could be run on small, embedded devices such as mobile phones. Thus, a revolution was born that
today includes the deployment of more than 450 million Java technology-enabled mobile phones around the world.

Connected Limited Device Configuration (CLDC)

Working through the Java Community ProcessSM (JCPSM) program, the CLDC configuration was created to deliver
core Java library support to provide a basic application framework around the KVM. Java Specification Request (JSR)
30 — the J2ME Connected Limited Device Configuration specification — was approved in August 1999, and the
final public release of the CLDC 1.0 specification occurred in May 2000. A number of major mobile phone and PDA
manufacturers participated in the JCP expert group that developed CLDC 1.0.

CLDC 1.1 (JSR 139) was created to support the requirements of devices with more resources and capability,
especially in the area of hardware supporting floating-point arithmetic. It was a natural evolution of CLDC 1.0.
There was an even larger participation in the expert group for JSR 139, with the final public release of the CLDC
1.0 specification occurring in March 2003.

Mobile Information Device Profile (MIDP)

In addition to a configuration, J2ME technology requires that a profile be defined to provide a complete Java appli-
cation framework for a particular market segment. (See the Java 2 Platform, Micro Edition datasheet located at
java.sun.com/j2me/docs/j2me-ds.pdf) The MIDP specification was created through the JCP program to address
the limited screen size and battery power of this class of device. JSR 37 — the Mobile Information Device Profile
for the J2ME Platform — was approved in September 1999, and the final public release of the MIDP 1.0 specifica-
tion occurred in September 2000.

MIDP 2.0 (JSR 118) was developed to extend and enhance the MIDP platform, especially in areas such as secure
networking, support for network sockets and datagrams, support for push architecture, XML and GUI enhancements
to support color, larger screens, and game technology. Expert group participation in JSR 118 was dramatically
larger than for JSR 37. The final public release of the MIDP 2.0 specification occurred in November 2002.

The HotSpot Virtual Machine

At about the same time that the first specification of the J2ME CLDC was released, product deployments began of
J2SE and J2EE platform versions of a revolutionary Java virtual machine technology called the HotSpot performance
engine. The HotSpot engine was developed to address the perception that Java virtual machine performance was
insufficient for many mainstream applications, especially on large servers. By implementing a host of performance
enhancing techniques that went beyond innovations like just-in-time (JIT) compilers, the performance of the Java
virtual machine increased by an order of magnitude. HotSpot technology was rolled out in April 1999. (See The
Java HotSpot Virtual Machine, v1.4.1 Technical White Paper located at java.sun.com/products/hotspot/docs/
whitepaper/Java_Hotspot_v1.4.1/Java_HSpot_WP_v1.4.1_1002_1.html.)

Sun Microsystems, Inc.P4 Java Technology in Small Device

In 2001, these two technology trends converged with the creation of the CLDC HotSpot Implementation virtual
machine. In contrast to the KVM and CLDC Reference Implementation, the CLDC HotSpot Implementation is an
optimized implementation. Creating Java technology-enabled consumer devices with the KVM and CLDC Reference
Implementation was impressive, but the perception that formed in the marketplace was that here, as in conven-
tional Java technology, there was a need for faster performance (while working within the restricted resources of
the target devices). The CLDC HotSpot Implementation applies optimization techniques similar to those used in
HotSpot technology (but using considerably less memory and consuming less power) to realize nearly an order of
magnitude improvement in CLDC-based devices.

Version 1.1.2 of the CLDC HotSpot Implementation continues the path of technological evolution to further
upgrade virtual machine performance and responsiveness in this class of devices.

Wireless Deployments of Java Technology

In 2001, major manufacturers of mobile phones — such as Motorola, Nokia, Samsung, Siemens, and Sony Ericsson
— and mobile operators — such as Vodafone, NTT DoCoMo, and Sprint — began high-volume shipments of Java
technology-enabled phones. Other manufacturers have now entered this space, and combined shipments have
accelerated nearly exponentially. Part of this acceleration is due to the adoption of advanced Java technologies
such as the CLDC HotSpot Implementation.

Sun Microsystems, Inc. Java Technology in Small Device P5

Chapter 3

Demand for Performance

Many current-generation Java technology-enabled mobile phones have processor and memory requirements that
are typical of the original design parameters of the KVM and CLDC. But increasingly, there are models being intro-
duced with more computing power available. In the category of mass-produced handsets, the typical processor
is a 16- or 32-bit processor with a clock speed sometimes under 50 MHz, but more often from 50 to 200 MHz. The
minimum memory requirements for a target device are 300 KB of RAM and about 1 MB of flash and ROM. More
typical devices increase these sizes to 600 KB of RAM and about 1.5 MB of flash and ROM.

Although the KVM easily met the footprint requirements of this generation of target devices, the relatively
slow processor and the conventional implementation of a bytecode interpreter resulted in performance that was
adequate, but not impressive. With the CLDC HotSpot Implementation, Sun accelerated performance in the current
generation of devices while looking ahead to emerging mobile phone designs.

In addition to performance demands, device manufacturers also demand robustness and rapid time to market.
CLDC HotSpot Implementation is easy to port, which greatly enhances rapid product development.

Before finalizing the features of the CLDC HotSpot Implementation, the development team surveyed key man-
ufacturers to get an accurate picture of the capabilities of current-generation and next-generation mobile phone
designs.

Processor and Memory Requirements

The following table summarizes the minimum and typical processor and memory requirements that Java virtual
machine technology must work within for next-generation mobile phones.1

Table 1. Next-Generation Mobile Phone Minimum Requirements

1. Sun Microsystems Customer Survey, 2001.

Item Minimum Typical

CPU Type Mostly ARM Mostly ARM
CPU Speed 50 MHz 50 to 200 MHz
RAM 300 KB (including MIDP) > 600 KB (including MIDP)
ROM/Flash 1 MB > 1.5 MB

Sun Microsystems, Inc.P6 Demand for Performance

The ARM processor represents the majority of handset market share, and CLDC HotSpot Implementation
includes numerous optimizations for that platform.

The design challenge for the development team was to make the CLDC HotSpot Implementation run within
the same limits and restrictions as the KVM. It was anticipated that tuning and optimization would be required for
the CLDC HotSpot Implementation to run at the minimum configurations. The typical configurations in the table
would make hosting the CLDC HotSpot Implementation easier and also allow abundant room for Java technology-
based applications.

Key Requirements

The development team’s survey revealed that the following key points are important to manufacturers of current-
generation and next-generation mobile phones:
• Most of the available memory in a current-generation or next-generation handset is needed for system software

and media capabilities. Thus, the memory footprint of the virtual machine and CLDC libraries must be minimized.
• Moore’s Law does not apply to battery life. So far, no exponential expansion of battery capacity with the passage

of years has been observed. Every effort must be made to minimize battery consumption for the forseeable future.
• The key to executing Java programs at high speeds without draining the battery is keeping the working set of

the Java virtual machine inside the on-processor cache.
• Tunability is key: Implementers must be portable to a wide range of devices with varying capabilities.

Other Small Consumer Devices

Besides mobile phones, the CLDC HotSpot Implementation development team also considered the processor and
memory requirements of other devices that potentially belong in the CLDC and MIDP category, such as communi-
cator-type devices. Communicator-type devices typically have much more memory available than inexpensive mass-
market handsets, however, they are also manufactured in much smaller volume. Although footprint constraints
are much less stringent in this class of device, the next generation of Java virtual machine technology for embedded
devices must be appropriate for smaller, high-volume handsets as well.

Sun Microsystems, Inc. Demand for Performance P7

Chapter 4

Design Considerations

Certain fundamental challenges need to be addressed in the design of any virtual machine technology in small,
embedded devices. These challenges are also addressed in the CLDC HotSpot Implementation design:

• The Trade-off Between Fast Execution and Small Footprint: There is a trade-off between speed of execution and

memory (footprint) requirements. How can one build a fast dynamic compiler without blowing the memory

budget? To simply port the HotSpot technology would result in a memory footprint far too large for mass-market,

battery-powered devices.

• Good Memory Efficiency: How can an implementation avoid memory fragmentation as stacks and heaps shrink

and expand? An efficient garbage collector is a must.

• Good Cache Behavior: The importance of cache behavior might not be obvious at first. Abundant memory adds

to manufacturing cost, although Moore’s law tempts designers to waste memory. But additional memory —

especially RAM — also puts a great load on battery capacity. It was a prime design objective of the CLDC HotSpot

Implementation to obtain good cache behavior so that the working set for the Java stack could fit within the

on-processor or in the secondary (on-board) cache. In this way, substantial battery conservation is achieved by

avoiding reads and writes to the main memory array.

The design objective of good cache behavior implied a number of software strategies:
– Designing the virtual machine with mostly small objects
– Use of a generational garbage collector, which often touches memory only locally
– Keeping compiled code in the object heap where it is fully relocatable or flushable

• Enhancing Battery Efficiency: It bears repeating that the leap in execution speed provided by the CLDC HotSpot

Implementation directly enhances battery life. Quite simply, faster execution consumes less power.

• Leveraging the Advantage of Java Programming: The implementation must execute Java language programs

so efficiently that it minimizes the traditional advantages of native or low-level programming. More software,

including system software, may now be written in the Java programming language.

• Portability: The implementation must be relatively easy to port to a different operating system.

Sun Microsystems, Inc.P8 Chapter Title

Chapter 5

Value Proposition

There was a perception early in the history of the Java programming language that the performance of the appli-
cations written in the Java programming language was inadequate. With the advent of the HotSpot performance
engine, the competitive landscape was revolutionized for Java virtual machines on servers and on the desktop. In
much the same way, the CLDC HotSpot Implementation has revolutionized the deployment of Java technology in
battery-powered, handheld devices.

Performance Advantage

The performance of the CLDC HotSpot Implementation virtual machine approaches that of Java virtual machines
running on desktop systems. It does so using techniques such as:
• Dynamic, adaptive compilation
• A lightweight threading system
• Generational garbage collection
• Fast synchronization
• Unified resource management

To apply these techniques in the context of handheld devices, some very clever innovations were necessary.
(See Chapter 6, The CLDC HotSpot Implementation Architecture.)

Robustness and Short Time to Market

The CLDC HotSpot Implementation virtual machine addresses the customer requests listed previously, specifically:
• Increased Robustness: The CLDC HotSpot Implementation virtual machine can be built to comply with either

the CLDC Specification version 1.0 or CLDC Specification version 1.1. Approximately 10,000 TCK tests ensure com-
pliance with these specifications. Several thousand additional tests, including virtual machine stress tests, are
run on the CLDC HotSpot Implementation by Sun’s Quality Engineering team.

• Faster Time to Market: The architecture of the CLDC HotSpot Implementation is designed for easy portability to
different target operating systems. In most cases, a successful port can be accomplished within a few weeks. It
is also designed to be easily integrated with a J2ME profile, such as MIDP 2.0, to implement a complete Java
runtime environment.

Sun Microsystems, Inc. Value Proposition P9

Scalability and Small Footprint

The CLDC HotSpot Implementation places no restrictions on the number of loaded classes or on the size of the
object heap.

Despite its high performance, the CLDC HotSpot Implementation is compact enough to meet the footprint
constraints of next-generation and many current-generation mobile phones. The minimum total flash and ROM
memory requirement for the virtual machine and software is on the order of 1 MB. This includes the CLDC
HotSpot Implementation virtual machine, CLDC class libraries, MIDP class libraries, and Java applications.

Manufacturers who have successfully developed and deployed Java technology-enabled handsets might feel a
little competitive pressure to change their offerings. However, there is a substantial value to upgrading their
offerings to incorporate CLDC HotSpot Implementation technology.

The CLDC HotSpot Implementation Versus the KVM

In the KVM design, heavy emphasis was placed on portability and platform independence of the virtual machine.
Consequently, the KVM is a conventional virtual machine that executes Java applications exclusively by means of
a bytecode interpreter written in the ANSI C language. However, measurements reveal that on average, inter-
preted virtual machine performance is approximately one order of magnitude slower than compiled virtual
machine performance.

Figure 3. Performance of the KVM Compared With the CLDC HotSpot Implementation

To improve the performance of a virtual machine beyond pure interpreter performance, some type of a static or
dynamic compilation strategy is needed. To approach an order-of-magnitude improvement in performance, while
maintaining device-independent bytecode as the standard for applications, the CLDC HotSpot Implementation
virtual machine has an innovative adaptive compiler. The adaptive compiler dynamically compiles the most frequently
used, time-critical pieces of the applications into native code for significantly faster execution. The execution speed
of optimized native code can be up to 50 times faster than the speed of a conventional interpreter. When run in
mixed mode (using the adaptive compiler to optimize the frequently used operations and using the optimized byte-
code interpreter for infrequently used code), the CLDC HotSpot Implementation system can achieve a performance
advantage of approximately 8 to 10 times when compared to traditional bytecode interpreters.

Additional performance enhancement compared to straightforward virtual machines is achieved with a HotSpot
technology-style garbage collector and a fast synchronization mechanism.

Sun Microsystems, Inc.P10 Value Proposition

Faster Execution Consumes Less Power

The dramatic improvement in performance of the CLDC HotSpot Implementation “turbocharges” application
start-up time and execution time, resulting in a positive subjective experience. Just as importantly, it consumes
battery power at a proportionally lower rate.

Increasing Demands of Next-Generation Networks

With the emergence of next-generation networks, performance demands are increasing dramatically for on-phone
applications and data communications.

Next-generation mobile networks will support data bandwidth rates up to 2 Mbits per second, opening up new
possibilities for applications in the areas of:
• Enterprise mobility applications
• Games and gambling applications
• Multimedia applications
• Location-based services
• E-commerce applications
• System software

• Banking applications

The virtual machine must provide sufficient performance for these new types of applications while minimizing
battery drain. Paradoxically, battery power can be optimized even though a faster processor consumes battery
power at a proportionally faster rate. A very fast virtual machine, such as the CLDC HotSpot Implementation, makes
an overall savings in power possible — even while servicing this new generation of software — because it finishes
all tasks much sooner than a slower virtual machine.

Multitasking Capability

The CLDC HotSpot Implementation 1.1.2 introduces optional multitasking — the virtual machine’s ability to run
multiple MIDlets concurrently. This capability allows system software to be written as MIDlets and allows user
MIDlets to interact with them — in a dynamic mix of foreground and background tasks. The implementation of
multitasking in the CLDC HotSpot Implementation optimizes the use of compute resources. Multitasking capability
dramatically enhances your return on investment in Java technology.

Sun Microsystems, Inc. Value Proposition P11

Chapter 6

The CLDC HotSpot Implementation Architecture

The CLDC HotSpot Implementation design team met the demands for performance and design challenges detailed
in the earlier sections of this white paper. The resulting design strikes a strong balance between performance and
footprint constraints.

The architecture of the CLDC HotSpot Implementation virtual machine includes the following features:
• Dynamic, adaptive compiler, which compiles the most-used Java methods at runtime
• Optimized interpreter (written in assembly language)
• Support for lightweight threads, which greatly simplifies porting
• Compact object layout
• Unified resource management
• Accurate generational garbage collection
• Fast synchronization
• ROMizer, which stores system classes in a compact format that allows faster execution
• Support for CLDC 1.0 or CLDC 1.1 with full TCK compliance
• Integration of Java hardware acceleration technology, with battery savings and fast start-up
• 32-bit addressing capability to support a wide range of devices
• 16-bit Thumb mode (ARM) support
• Quick application start-up time
• Virtual machine can be built as a main program or as a subroutine in an event loop
• New features, as detailed in Chapter 7

Dynamic, Adaptive Compiler

In general, Java virtual machines with a compiler are an order of magnitude faster than those with only an inter-
preter. For that reason, the CLDC HotSpot Implementation includes a dynamic compiler to provide fast bytecode
execution. A well-known problem with compiling bytecodes into native instructions is that the generated code takes
four to eight times as much space as the original bytecodes. Adaptive compilation alleviates this problem by only
compiling methods that are recognized as “hotspots,” i.e., the most frequently used parts of the application. The
CLDC HotSpot Implementation dynamic compiler finds the hotspot by running a statistical profiler.

To minimize the amount of compiled code, the CLDC HotSpot Implementation virtual machine includes an
optimized interpreter used for infrequently executed methods.

Sun Microsystems, Inc.P12 The CLDC HotSpot Implementation Architecture

The CLDC HotSpot Implementation compiler is a simple one-pass compiler that utilizes the following basic
optimizations: Constant folding, constant propagation, and loop peeling. It is an adaptive compiler because it
reacts to data gathered at runtime to decide which methods to compile. Only the methods that execute most
frequently are compiled. Once compiled, a method is subject to deoptimization if it no longer is invoked for a
period of time.

The components of the CLDC HotSpot Implementation virtual machine are shown in Figure 4.

Figure 4. CLDC HotSpot Implementation Architecture

Compact Object Layout

The CLDC HotSpot Implementation supports a compact object layout to reduce general memory consumption. A
Java object has two parts: The first part is the object header, which provides reflective information and contains
hash code and locking status, and the second part is the object body, containing the object fields.

Most other virtual machines use at least two words for the object header. However, since the average object
size is small, object headers take up a big fraction of the total object space. The CLDC HotSpot Implementation
optimizes the usage of stack space. Only one word is required for the object header. In addition to reducing memory
usage, object allocation becomes faster.

Unified Resource Management

A major benefit of the CLDC HotSpot Implementation is unified resource management. This means that all allocated
data resides inside the object heap. Allocated data includes:
• Java technology-level objects
• Reflective objects, such as methods and classes
• Compiler-generated code
• Virtual machine internal data structures
• Java execution stacks

An important advantage of this unification is that the same garbage collector takes care of cleaning up all
allocated resources, even compiled code. Almost all other virtual machines have designated areas for user objects,
reflective data, temporary data, and generated code. Such a scheme results in memory fragmentation, multiple
cleanup strategies, and other complexities. The CLDC HotSpot Implementation solves these issues by using the
mark-sweep-compact garbage collector for everything. Another benefit of unified resource management is that
compiled code can be removed dynamically to free space for user-level objects.

Sun Microsystems, Inc. The CLDC HotSpot Implementation Architecture P13

The CLDC HotSpot Implementation Garbage Collector

A garbage collector automatically reclaims unused object memory and makes the freed memory available for new
allocations. The CLDC HotSpot Implementation uses an accurate generational mark-sweep-compact garbage
collector that results in:
• Fast object allocation
• Small garbage collection pauses
• No memory fragmentation

Accuracy

An accurate garbage collector knows where all pointers are when garbage collection takes place. This has two
major benefits. First, all inaccessible object memory can be reclaimed reliably. Second, all objects can be relo-
cated, allowing object memory compaction and eliminating fragmentation. Using a conservative garbage collec-
tion approach would be highly undesirable on a memory-constrained system because it causes object
fragmentation and unpredictable memory leaks.

Generational Mark-Sweep-Compact Collector

The CLDC HotSpot Implementation virtual machine employs a two-generational garbage collector, as illustrated
in Figure 5.

Figure 5. Two-Generational Garbage Collection

The object heap is segmented into old-generation, new-generation, and as-yet-unused portions of memory.
The old-generation segment contains objects that were previously garbage collected and compacted. New objects
are allocated in the new-generation segment, which is generally much smaller. When the new-generation seg-
ment is full, the garbage collector runs briefly and reclaims the unused memory for that generation. When all
memory in the object heap is consumed, the garbage collector runs across the entire heap and compacts objects
into a “new” old generation. Only during this large garbage collection is there a noticeable pause, but it occurs
infrequently.

This scheme takes advantage of the fact that the vast majority of objects are short lived. Since most objects
are short lived, only a small portion of allocated objects are promoted to the old generation. Most garbage collec-
tion operations focus only on the new generation, resulting in only small pauses.

Sun Microsystems, Inc.P14 The CLDC HotSpot Implementation Architecture

Fast Allocation

A side benefit of a compacting garbage collecting is that new objects are allocated contiguously in a stack-like
fashion in the first generation. Object allocation is then simply a matter of increasing a pointer.

Fast Thread Synchronization

The Java programming language provides language-level thread synchronization that makes it easy to express
multithreaded programs with fine-grained locking. The CLDC HotSpot Implementation uses a variant of the block-
structured locking mechanism developed for the HotSpot virtual machine. As a result, synchronization perform-
ance becomes so fast that it is no longer a performance bottleneck for Java programs.

Lightweight Threads

The CLDC HotSpot Implementation provides a lightweight threading system, which greatly reduces complexity
compared to native threading mechanisms. Porting of the CLDC HotSpot Implementation is simplified. There is
also a dramatic improvement in memory usage: There is no longer a need to allocate native stack space, which
must typically be of fixed size. All threads can be maintained with stacks that can be allocated in the same heap
as all other objects (another example of unified resource management).

Thumb Mode Support (ARM Processors)

The CLDC HotSpot Implementation supports ARM Thumb mode as follows:
• The CLDC HotSpot Implementation virtual machine can be compiled into 16-bit Thumb machine code.
• The dynamic adaptive compiler of CLDC HotSpot Implementation can be configured to generate 16-bit Thumb code.
• The optimized interpreter of CLDC HotSpot Implementation was implemented using the 32-bit ARM instruction

set. (There is no performance advantage in implementing it as 16-bit Thumb code.)

Sun Microsystems, Inc. The CLDC HotSpot Implementation Architecture P15

Chapter 7

New Features in Version 1.1.2

Version 1.1.2 of the CLDC HotSpot Implementation introduced numerous enhancements and optimizations,
including:
• Ahead-of-time (AOT) compilation of Java methods
• In-place execution (formerly known as Project Monet)
• Basic virtual machine performance enhancements
• Minimal pauses due to improvements in compilation and garbage collection
• Java hardware acceleration on Jazelle-enabled ARM processors (use of this feature requires a separate license

from ARM Ltd.)
• Multitasking capability — the ability to run multiple MIDlets concurrently

Figure 6. Key New Features of the CLDC HotSpot Implementation

Sun Microsystems, Inc.P16 New Features in Version 1.1.2

AOT Option

Ahead-of-time (AOT) compilation can be used to significantly reduce start-up times. In this release, only Java methods
in system classes may be AOT-compiled. Such classes are compiled and ROMized during the build process on the
development host.

In-Place Execution

The new in-place execution feature allows handset manufacturers to transform selected Java application class
files into a directly executable format known as an application image. An application image is loaded directly into
the Java heap for execution, greatly reducing application start-up time and dramatically increasing execution speed.

Shorter Execution Pauses

A number of new techniques have virtually eliminated noticeable pauses in execution. This is accomplished
through:
• Suspendable Compilation — Execution continues with bytecode interpretation
• Segregated Heap Architecture — Separate heap areas for compiled methods
• Improved Garbage Collection — Each heap area is managed separately for garbage collection

Multitasking Option

To further increase opportunities for product differentiation, this release of the CLDC HotSpot Implementation
includes optional support for multitasking — running multiple MIDlets concurrently. This permits, for example, a
running MIDlet to be suspended temporarily so that another MIDlet can alert the user about an incoming e-mail
or instant message.

This virtual machine feature allows a whole new universe of implementation possibilities, as discussed in
Chapter 8, Multitasking in the CLDC HotSpot Implementation.

Sun Microsystems, Inc. New Features in Version 1.1.2 P17

Chapter 8

Multitasking in the CLDC HotSpot Implementation

With version 1.1.2 of the CLDC HotSpot Implementation, multitasking (the ability to concurrently run multiple
MIDlets) was introduced. Multitasking in the virtual machine enables a much more dynamic user experience. In
addition, multitasking is well-suited to mobile applications such as e-mail and instant messaging, which demand
immediate user attention even when running another application. Multitasking capability dramatically enhances
product differentiation opportunities for manufacturers of mass-produced, resource-constrained handsets.

Why Multitasking Capability?

There are significant advantages of including the capability for multiple running MIDlets in next-generation hand-
sets. The key areas of advantage include:
• Native System-level Applications — System-level services written as native applications are inherently non-

portable and expensive to maintain. They must be rewritten for each new model of handset. It is very advanta-
geous to develop system level services as MIDlets.
System-level applications that typically run on today's handsets include instant messaging (IM) clients, calen-
dar clients, call management, and the application management system (AMS), which allows users to launch
other applications and MIDlets. Today, most system-level services on handsets are provided as native applica-
tions. Again, it is very advantageous to implement these system-level applications as MIDlets.

• The Security Offered by Java Technology — The security features of Java technology prevent MIDlets from being
used as hacking tools.

• The Portability of Java Technology — There is a tremendous advantage, namely the high degree of portability, if
the native applications can be replaced by Java applications or MIDlets.

Providing Multitasking in the CLDC HotSpot Implementation

There are a variety of problems that were solved to permit multiple running MIDlets in limited-resource environ-
ments. These problems included:
• Backwards Compatibility — Due to the success of the Java 2 Platform, Micro Edition (J2ME platform) and the

large number of MIDlets that are already deployed, these MIDlets must be usable in a multitasking environ-
ment without being rewritten to require new APIs. The MIDlets must be able to run without knowledge of other
running MIDlets.

Sun Microsystems, Inc.P18 Multitasking in the CLDC HotSpot Implementation

• Robustness — In prior versions of the CLDC HotSpot Implementation, a virtual machine needed to run only as
long as a single MIDlet was running. The virtual machine would be restarted every time a MIDlet was launched.
With the multitasking capability, the virtual machine must now run continuously, and robustness requirements
must be correspondingly high.

• OS Limitations — Most designs for emerging handsets do not have enough processor or memory resources to
run a full-scale operating system such as Linux. This would be inappropriate for products produced on a mass
scale. A multitasking solution must work within the resource constraints of this class of device.

Virtual Machine Support for Multitasking

It is the responsibility of the virtual machine to provide basic facilities and safeguards for multiple running
MIDlets. It must guarantee:

• Fair, Preemptive Scheduling — Similar to the operating systems of large platforms, the multitasking option of
the CLDC HotSpot Implementation virtual machine provides the mechanisms for scheduling of applications.

• Working Within Resource-Constrained Environments — The targeted platforms of the CLDC HotSpot
Implementation are limited in memory and processor power.

• Firewalled Tasks — Tasks (MIDlets) are isolated from one another except for orderly and appropriate exchange
of data.

• No Runaway Tasks — The virtual machine insures that no tasks can run past memory boundaries.
• Cleanup — The virtual machine must gracefully end each task when it completes and reclaim the system

resources of the task.

The CLDC HotSpot Implementation Provides the Multitasking Solution

Multitasking support within the virtual machine was achieved by providing task management and overall
resource management similar to that provided by a large operating system.
• The CLDC HotSpot Implementation does not rely on multitasking services from an operating system.
• It implements multitasking within a resource-constrained, virtual machine implementation.
• It offers a multitasking implementation that is very robust and reliable

Figure 7. Task Management and Resource Management

The higher MIDP levels of the full technology stack can be reimplemented to take full advantage of multitasking
support in the virtual machine.

Sun Microsystems, Inc. Multitasking in the CLDC HotSpot Implementation P19

Chapter 9

Conclusion

Sun continues to keep pace with the demands for performance of the emerging generation of mobile phones and
other small wireless devices. The CLDC HotSpot Implementation continues to evolve, adding improved performance
with each version. This optimized implementation of the CLDC is available to device manufacturers under license
from Sun Microsystems.

Sun Microsystems, Inc.P20 Conclusion

© 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 USA

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No

part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.

Sun, Sun Microsystems, the Sun logo, HotSpot, Java, Java Card, Java Community Process, JCP, J2EE, J2ME, J2SE, and The Network is the Computer are

trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.

Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the

pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a

non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and

otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-

19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a). DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS,

REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS HELD TO BE LEGALLY INVALID.

Sun Worldwide Sales Offices: Argentina +5411-4317-5600, Australia +61-2-9844-5000, Austria +43-1-60563-0, Belgium +32-2-704-8000, Brazil +55-11-5187-2100, Canada +905-477-6745, Chile +56-2-3724500, Colombia +571-629-2323
Commonwealth of Independent States +7-502-935-8411, Czech Republic +420-2-3300-9311, Denmark +45 4556 5000, Egypt +202-570-9442, Estonia +372-6-308-900, Finland +358-9-525-561, France +33-134-03-00-00, Germany +49-89-46008-0
Greece +30-1-618-8111, Hungary +36-1-489-8900, Iceland +354-563-3010, India–Bangalore +91-80-2298989/2295454; New Delhi +91-11-6106000; Mumbai +91-22-697-8111, Ireland +353-1-8055-666, Israel +972-9-9710500
Italy +39-02-641511, Japan +81-3-5717-5000, Kazakhstan +7-3272-466774, Korea +822-2193-5114, Latvia +371-750-3700, Lithuania +370-729-8468, Luxembourg +352-49 11 33 1, Malaysia +603-21161888, Mexico +52-5-258-6100
The Netherlands +00-31-33-45-15-000, New Zealand–Auckland +64-9-976-6800; Wellington +64-4-462-0780, Norway +47 23 36 96 00, People’s Republic of China–Beijing +86-10-6803-5588; Chengdu +86-28-619-9333
Guangzhou +86-20-8755-5900; Shanghai +86-21-6466-1228; Hong Kong +852-2202-6688, Poland +48-22-8747800, Portugal +351-21-4134000, Russia +7-502-935-8411, Saudi Arabia +9661 273 4567, Singapore +65-6438-1888
Slovak Republic +421-2-4342-94-85, South Africa +27 11 256-6300, Spain +34-91-767-6000, Sweden +46-8-631-10-00, Switzerland–German 41-1-908-90-00; French 41-22-999-0444, Taiwan +886-2-8732-9933, Thailand +662-344-6888
Turkey +90-212-335-22-00, United Arab Emirates +9714-3366333, United Kingdom +44-1-276-20444, United States +1-800-555-9SUN or +1-650-960-1300, Venezuela +58-2-905-3800, or online at sun.com/store

SUN™ © 2005 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, HotSpot, Java, Java Card, Java Community Process, JCP, JVM, J2EE, J2ME, J2SE, and The Network is the Computer are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC

International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other
countries, exclusively licensed through X/Open Company, Ltd. Information subject to change without notice. 02/05 R1.0

White Paper CLDC HotSpot™ Implementation Virtual Machine On the Web sun.com

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.com

