

Editor: UWC-136 RTT

Evolution of TDMA to 3G

Paul Meche

Chairman Global TDMA Forum

c/o Nokia Mobile Phones

6000 Connection Drive

Irving, Tx U.S.A. 75039

Tel: +1.972.894.4822

Fax: +1.972.894.4988

paul.meche@nmp.nokia.com

TDMA Standards Evolution

3rd Generation Programs: *Mobility Market Evolution*

1 st Generation	2 nd Generation	Next Generation	
• analog cellular (single band)	♦ digital (dual-mode, dual-band)	♦ multi-mode, multi-band	
♦ voice telecom only	♦ voice + low speed data	• evolve services beyond telecoms (High speed data, multimedia)	
◆ macro cell only	• macro / micro / pico cell		
• outdoor coverage	 seamless indoor / outdoor coverage 	• integration with PSTN,	
♦ distinct from fixed PSTN	• complementary to fixed PSTN	complementary to IT offers (data networks, Internet, VPN)	
♦ business customer focus	• business + consumer	♦ communications subscriber	
		- 16 1 . D :	
Technology Driven Service Market Driver			

3rd Generation Programs:

Additional IMT-2000 Data Requirements

Mobile data rate	Macrocell, very high speed (<500 km/h), rural outdoor	144 kilobits per second
Portable data rate	Macro / microcell, pedestrian or moderate speed (<100 km/h)	384 kilobits per second
In-building fixed data rate	Indoor / low-range outdoor	2 megabits per second

The UWC-136 Standards Program to Meet IMT-2000

• Phase I (Current 136 Capability

85% IMT-2000):

- Voice quality comparable to wireline
- Provides security comparable to PSTN/ISDN
- Supports multiple public/private/residential operators in the same area
- Allows interconnection to other mobile or fixed users
- Supports multiple cell layers (hierarchical cell structures)

Phase II (UWCC.136+ Program Target: YE 98)

92% IMT-2000):

- Provides reduced delay and improved voice quality
- Provides higher speed packet and circuit switched data capability
- Achieves high spectral efficiency

Phase III (UWCC.136HS Program Target: YE 99

100% IMT-2000):

- Supports 384 Kbps data rates over wide area
- Supports 2 Mbps data rates over local area

UWC-136 Evolving to IMT-2000

Global TDMA Convergence

ETSI/TIA TR45.3/UWCC/GSM Alliance

Convergence

- December 1997 UWCC selects 8-PSK for 136+
- January 1998 UWCC chooses "Double EDGE" for 136 HS solution
 - Harmonized with ETSI EDGE feasibility study
 - EDGE feasibility study based on QAM modulations
 - GPRS assumed in 136 HS simulations
- January 1998 ETSI considers other modulations for EDGE
- Feb.- April 1998 TR45.3/UWCC/ETSI cooperation on modulation
- April 1998 TIA and US TG 8/1 "freeze" on RTT technical content
- May 1998 ETSI selects 8-PSK for EDGE
 - same modulation as selected for 136+ in December 1997
 - demonstration of "WIN WIN" negotiation and cooperation

Convergence

- June 1998 US Based RTTs forwarded to ITU
- June 1998 UWCC Adopts GPRS Packet Data Architecture for 136
- July 1998 Self-Evaluations provided to US Evaluation group
- August 1998
 - US Evaluation Group Conducts & Completes RTT evaluation
 - Conclusion: UWC-136 fully meets IMT-2000 requirements
 - Window to update RTTs re-opens in US
 - UWCC/TIA officially adopts 8-PSK for 136 HS
- September 1998 Evaluation Groups determine UWC-136 meets IMT-2000 Requirements

Convergence Summary

- Demonstrated cooperation
 - 384 kbps Radio and Service Requirements (136 HS/EDGE)
 - 8 PSK Modulation core for common service on 200 kHz carriers
 - GPRS as common packet data architecture
- GMSK modulation for GSM/136 HS robust mode
 - UWC-136 provides RF level compatibility with existing GSM
 - same vocoder (US 1) supported in 136+ and GSM EFR systems
- Same modulation for 136+, 136 HS and EDGE
 - significant advantage in cost / complexity / economy of scale
 - integrated AMPS / 136 / GSM products available in 1999
- 3G UWC-136 products anticipated 2000-2001

Status of UWC-136 Convergence

- 136 HS / EDGE 200 kHz work
 - UWC-136 proponents and ETSI cooperation continues
 - QAM to 8-PSK updates 90 % complete
 - draft under review TR45.3.AHIC (Ad-Hoc on International Coordination)
 - Complete IMT-2000 compliance maintained
 - Detailed status report submitted to WG 5

Characteristics	UWC-136	GSM
Multiple Access	TDMA	TDMA
Band Width	30 / 200 / 1600 kHz	200 kHz
Bit Rate	48.6, 72.9 kbps	
	270.8 kbps	270.8 kbps
	361.1, 722.2 kbps	
	2.6, 5.2 Mbps	
Carrier Spacing	30 / 200 / 1600 kHz	200 kHz
Frame Length	4.6 / 40 ms	4.6 ms
Data	π/4 DPSK	
modulation	8 PSK	8 PSK (EDGE)
	GMSK	GMSK
	QAM	
Slots	6 per 30 kHz	
	8 per 200 kHz	8 per 200 kHz
	16-64 per 1.6 Mhz	
backward	AMPS/IS54/136/GSM	GSM
compatibility		

136HS/EDGE Packet Data Access

World Subscribers by Digital Technology, Year 2000

Source: Herschel Shosteck, 1998

UWC-136 Initial Cost to Deploy: Example

- Incremental Cost to start service from existing 136 base
- Typical large city (similar to Chicago)
 - 200 cells
 - Spectrum at 1900 MHz
- Provide voice, circuit data, packet data to 384 kbps
- Includes:
 - Site development
 - Base station electronics
 - MSC, Data network
 - Spectrum, Transmission facilities

UWC-136 Initial Cost to Deploy: Example

- 136HS deployment
 - Add one 136HS radio per sector
 - Transmission increment
 - Data network increment
 - Spectrum impact <1 MHz

- Wideband system deployment
 - Base-station site development, fixed electronics
 - One WB radio per sector
 - MSC, 33% soft handoff
 - Transmission network
 - Data network
 - Spectrum 5 MHz

Incremental Cost to Deploy 384 kbps service on existing 136 system

UWC-136 Commercial Advantages

- Macrocell deployment with < 1 MHz spectral clearing
 - protect existing operator's investment
 - minimize risk to trial new high speed data services
- 384 kbps service in vehicular application (100 km/h)
 - IMT-2000 requires 384 in pedestrian environment only
- Multiband operation 500 MHz 2.5 GHz
- Link budget to provide similar path loss as 136
- Clear evolution from 1st, 2nd and 3rd generation
 - incremental investment to provide 3G services

UWC-136 Commercial Advantages

- Multiple public/private/residential operators in one locality
- Supports hierarchical cell structures
- Support for TDMA Based Software Radios
- Converged Solution for Packet Data Architecture (GPRS)
- Meets IMT-2000 requirement per ITU Evaluation Groups
- ITU IPR compliance achieved by February 1998
 - ITU-R Document 8-121-E, 13 January 1998
- "Commercially Deployable Multiple Access"