
What This Country Needs
Is a Good S- Bit
High Level Language

Have you ever tried to tal k
to a person who speaks a
language other than your
own? You know that the
person must think as a
rational, sentient being or
you wouldn't make the
attempt to communicate. As
a human being your
conversational partner's basic
thought patterns are of
necessity sim ilar. Yet you
can't understand him and he
can't understand you. There
a re ways aro und th is
problem, given a sincere
interest in communications
by both parties.

A n a nalogous problem
exists in the field of personal
computing as it is practiced
by the readers of BYTE. If
you translate the words
referencing human beings
into words referencing
computers and reread the
preceding paragrap h, the
result will be a corresponding
s tat ement about the
comp ut er communication
problem: I n the home brew
compu tel- world, there are a
number of different
com puter architectures, all
speaking different machine
languages. There are even
dialects of machine languages
since each home brew
designer or manufacturer

Editorial
by
Carl Helmers

makes specific choices about
address space allocations and
input/output port
assignments used wi th the
standard computer chip
designs . Yet all of these
machines are potentially
programmable to do similar
functions.

Like two human beings
facing each ot her but
speaki ng different languages,
computers can talk to each
other on compatible channels.
But maki ng sense - that is to
say, executing the same
programs - is another matter.
I t is possibl e to con nect an
Altair up to a Scelbi 8H
product using an RS-232
interface. The link can be
made and every bit of every
byte sent (for exampl e) from
the Altair will be received and
digested by the Scelbi. But
unless the machines have
common referents and means
of tr a nslation , the
information sent will be no
better than "noise" - just as
a foreign language perceived
by a person conveys no more
meaning than an arbitrary
sound until the language is
learned . Having a working
communications channel does
not guarantee that the
communications sent will
mean anything.

Levels of Intelligence

Given two or more
different computers and
compatible electrical
interfaces between them, the
simplest and easiest form of
common understanding is at
the level of raw data to be
processed by the different
computers. A binary number
is a binary number
independent of the machine
for which it was generated.
The fact that the bit string
11000111 means "load
accumulator from memory"
in the machine language of an
8008 and means "You fool -
that's an unimplemented op
code" for the Motorola 6800
is an accident of hardware
design at two different
companies. I n either case, as
data, the binary number
11000111 means an integer
value of 199. Similarly, an
ASCII character is an ASCII
character independent of the
place and time of its creation.
Given the decision to use
ASCII for communications -
or binary numbers, for that
matter - both parties to the
communication can talk
characters or numbers. These
simple data formats provide
an easily implemented link
between computers which

~~TI
staff

EDITOR
Carl T. Helmers Jr.
PUBLISHER
Wayne Green

MANAGING EDITOR
Judith Havey
ASSOCIA TE EDITORS
Dan Fylstra
Chris Ryland
CONTRIBUTING EDITORS
Hal Chamberlin
Don Lancaster

ASSISTANT EDITOR
Beth Alpaugh
PRODUCTION MANAGER
Lynn Panciera-Fraser

ART DEPARTMENT
Nancy Estle
Neal Kandel
Peri Mahoney
Bob Sawyer

PRINTING
Biff Mahoney

PHOTOGRAPHY
Bill Heydolph
Ed Crabtree

TYPESETTI NG
Barbara Latti
Marge McCarthy
ADVERTISING
Bill Edwards
Nancy Cluff
CIRCULATION
Pat Geilenberg
Dorothy Gibson
Pearl Lahey
Charlene Lawler
Judy Waterman
INVENTORY CONTROL
Marshall Raymond
Kim Johansson
DRAFTING
Bill Morello
COMPTROLLER
Knud E. M. Keller

5

does not require a large
amount of software
intelligence on the part of
receiving and sending
computers. I t does not matter
whether such a link is in the
form of tape cassettes sent in
the mail or a direct RS-232
connection when all the
neighborhood hackers get
together for a multiprocessor
powwow and computerized
crap game. ASCII and binary
numbers can be shuffled back
and forth with the assurance
that, at this data level of
coding, the information will
be understood by both
parties.

The communication
represented by binary
numbers or ASCII encoded
data is not at all what might
be called true understanding
between the two computers
involved. Sending data is a
first step, but it is by no
means the ultimate. The
significance of the
communication at this level
must be determined by the
human beings who
manipulate the data being
sent. There is no direct way
of affecting the
understanding the
programming of the
computer which is dutifully
receiving the ASCII or binary
data in this simple fashion .

. Simple transmission of
data across a parallel-serial
parallel or parallel-parallel
interface enables the users of
the computers to tal k to one
another, but the computers
which carry out the exchange
"couldn't care less." The
computer in this type of an
exchange is simply serving as
a "dumb" transmission
channel.

8

BASIC is an adequate
language - but it has its
drawbacks.

Borrowing again from the
analogy to human beings, this
data level communication
between computers might be
compared to the non-verbal
emotional forms of
interpersonal exchange .
Common languages and
verbal understanding are not
required for humans to
exchange emotional states,
using music, facial gestures
and other body motions
which are inherent in the
nature of the beast. But to
exchange knowledge and
practical data humans must
speak a common language; it
is not an accident that verbal
activity and the tools of
language are so much a part
of the dominant species on
this planet. If merely sending
data represents a low level of
communications intelligence
between computers, what
does it mean to transmit a
higher level of intelligence?

Program Level Intelligence

To transmit data between
computers is the first step
toward a higher level of
co mmun ications among
diverse types of computers.
Every computer on the
market can handle 7-bit
ASCII and other forms of
information encoded into
8-bit bytes. (Of course, it
may be easier to program
ASCII data manipUlations on

some machines than on
others.) Having a computer
which can easily be
programmed (possibly with
no human intervention) as a
result of an ASCII exchange
with a computer of a
different internal architecture
is the essence of this next
level of intelligence in
i ntercomputer communica
tions. I n such program level
exchanges the computers are
speaking to each other in the
form of abstract program
representations wh ich can be
automatically translated into
specific machine language
represe ntations for execution.

I n the previous analogy,
this is like human beings
exchanging information and
thought in a commonly
understood language - for
example, English. Each
person who understands the
I anguage has incorporated
within his mind a
"translator" which creates an
internal understanding based
upon what was heard . The
result of this translation -
which must be consciously
performed is an
understanding of the message
which can be used as a basis
for further thoughts.
Emotional data is a much
more directly perceived input
(although it may of course be
colored by thoughts). But
verbal inputs require

cogitation and analysis before
they can be used and
integrated.

The Goal : Exchange of
Programs

The goal of program level
interchange betw ee n
computers is thus the ability
to communicate
understand a ble and
potentially executable
programs between computers
of different design . When this
goal is achieved it will be
possible for a reader in one
corner of the technological
world - for instance an 8080
user - to develop a neat little
utility program which can be
sent to a friend in another
corner of the technological
world who has just completed
a different processor such as a
PACE machine. Since the
program is recorded and
communicated using the
program level techniques, the
recipient need only read the
ASCII representation from
the communications channel
and process this data with a
suitable "translator" in order
to obtain a new executable
program for a different
machine design .

This program level of
exchange is a well known
technique which has been
developed very thoroughly
over the past 15 years after
computer science left its
formative years of the 1950's.
I t is the technique of high
level languages and compilers.
The language is the machine
independent notation for the
programs which are to be
exchanged. The compiler is
the computer program which
carries out the translation.
(Variations on this technique
of course exist; for instance
some languages like BASIC
and FOCAL rarely have
compilers, but typically use
"i n te r preters" instead to
compile, then execute
statements one by one.) In
the computer world at large,
of cou rse, there is no
unanimity about choices of
languages - and there no

doubt will be considerable
variation in program
representation philosophies in
this personal microcomputer
f ield . Be that as it may,
exchanges at the program
I e v e l a re n ee d e d an d

co mput e r la nguages/co m
pilers are the technique for
accom pli shing such exchanges
with minimum machine
dependence.

So that's th e story behind
t he need for a good 8-bit hi gh
o rder language. The home
brew computing field is much
m ore ex tensive than the
confines of just one computer
arch it ect ure, a nd the
technological problem of
passing 8-bit bytes allover
the place is not at all
impossibl e. The need is the re,
but can it be satisfied?

What Exists Now?

What currently exists in
t he way of high level
languages for the field of
home brew computers is
I imited. Currently available is
only o ne language - BASIC
- which to a certain extent
satisfies the need for a good
language . BASIC now exists
for the MITS Alta ir, and will
soon be offered by several
other manufacturers. As such
it is the only high level
language wh ich both exists
and will (hopefully) run the
same programs on anyone of
the se s mall computer
systems. As a high level
language, BASIC is adequate
but it has a few drawbacks :

Descriptive names of
variables are impossible with
singl e character identifiers.

Only a primitive
GOSUB/RETURN facility
ex is ts for subroutine
link age , and parameter
passing is not built into the
language.
- The language BASIC is
in te rpretatively executed,
which means that each
statement is "compiled on
the fly" and executed
whenever it is encountered.
(Pre-scanning of programs
and reduction of the source

text is sometimes done,
howeve r.) An interpreter is
necessaril y slowe r than an
eq ui valent compil er' s o bject
code.
- BASIC is missing the
more advanced software
t oo l s such as the
IF-THEN-ELSE construct,
a nd statement grouping
constructs, like the PL/1
DO .. _ END block.
- Only line numbers may
be used to labe l places in
th e program.

Now don't make the mistake
of concluding from this
criticism that BASIC is
use less. Far from it. Any high
level language which works
as we ll as BASIC is better
than none at a ll in the
majority of programming
circumstances. This is because
for most probl ems the minute
de ta ils of execution are
unimportant, provided that
certain functional building
blocks of software (provided
by the higher order language)
are ava il able to use.

The BASIC langu age has
been used as a tool for
initially teaching computer
programming concepts, a nd
has done so from its
inception in the early 1960's
at Dartmouth. Th ere are also
innumerabl e tutorial books
about BASIC, due to its
widespread use in the
educational field. It is
certa inly the case that in
most implementations BASIC
is a quick and conversational
way to write simple programs
at a terminal. The criticisms
have to do with features in
con t e m p 0 r a r y com p u ter
language technology which
are not present in BASIC, but
which are extremely useful
when writing programs.

An Alternative to BASIC

Criticism without giving an
a ltern a tive is an empty
activity. The purpose of
criticism is to find a way to a
better approach. So what
language exists, can be
dreamed up, or adapted to
the small systems context -

a nd provides a better
a lte rnative to BASIC? At
present the re is one language
which was ex pressly designed
for systems programming and
applications programming for
microprocessors . This
I anguage is called PL/M,
wh ich is a registered
trademark of the Intel
Corporation. The origins of
PL/M can be traced back to a
book published in 1970 by
three compiler specialists, W.
M. McKeeman, J. J. Horning
and D. B. Wortman cal led A
Compiler Gen erat or
(Pr e ntic e -Hall, Englewood
Cliffs NJ) .

XPL is a subset of the IBM
language PL/1 . The XPL
s ubse t is designed to
e liminate many extraneous
bells and wh istles from PL/1,
reta ining only those features
most needed for writing
compiler programs: Simple
character string and binary
data, manipulations of such

In most programming
circumstances, any high
level language is better
than no high level
language at all.

data, and a block structured
procedure oriented language.
Another design criterion of
XPL is that it had to be a
simple language so that its
compilers could easily
generate efficient object
programs without burning up
incredible amounts of
computer time. The authors
of the language and the book
describing it succeeded well,
producing a powerful
language design system which
has been used in a number of
large projects.

Now, as it turns out, the
features which are in XPL are
in many respects the features

BOMB: BYTE's Ongoing Monitor Box

BYTE would like to know how readers evaluate the efforts of
the authors whose blood, sweat, twisted typewriter keys, smoking
lCs and esoteric software abstractions are reflected in these pages.
BYTE will pay a $50 bonus to the author who receives the most
points in this survey each month. The following 'rules apply :

1. Articles you like most get 10 points, articles you like least get
o (or negative) points - with intermediate values according to
your personal scale of preferences.

2. Use the numbers 0 to 10 for your ratings, integers only.
3. Be honest. Can all the articles really be 0 or 10? Try to give a

preference scale with different values for each author.
4. No ballot box stuffing: Only one entry per reader!

Fill out your ratings, and return it as promptly as possible along
with your reader service requests and survey answers. Do you like an
author's approach to writing in BYTE? Let him know by giving him
a crack at the bonus through your vote.

Page LIKED
No. Article LEAST BEST

12 Ryland: Software Vacuum o 1 2 345 6 7 8 9 10

20 Burr: Logic Probes 0 2 3 4 5 6 7 8 9 10
26 Baker-Errico: Test Clip 0 234 5 6 7 8 9 10
30 Peshka: Characters 0 23456789 10
48 Helmers: LIFE Line 3 0 2 3 4 5 6 7 8 9 10
58 Browning: Flip Flops 0 234 5 6 7 8 9 10
64 Lancaster: ROM Technology 0 234 5 6 7 8 9 10
70 Nelson: HP-65 0 2 3 4 5 6 7 8 9 10
72 Kay: Build a 6800 0 2 3 4 5 6 7 8 9 10
78 Zarrella: Altair 8800 0 234 5 6 7 8 9 10
82 Hogenson: Tell Time 0 234 5 6 7 8 9 10
94 Helmers: Photo Notes 0 234 5 6 7 8 9 10

9

PL/M is becoming an
industry standard
language : The
computer language
equivalent of a "black
box" integrated circuit.
BYTE would like to see
a PL/M compiler
adapted to the home

brew computer

context.

which are desirable for a
programming language used
wit h microcomputers for
both applications and systems
programming. XPL is not too
far removed from assembly
language and becomes very
handy as a way to generate
large programs without
getting bogged down in
details. This fact makes XPL
a language of far more utility
than a mere compiler writing
tool.

When the time came for
Intel to commission a high
o r d e r I a n g u age f.o r
programming of their
microcomputers, the XPL
language and compiler had

been proven in several years
of pract ical use by several
compiler writing
organi zations. I ts practical ity
as a systems programming
tool no doubt resulted in the
use of XPL as a model for the
new PL/M language. PL/M is
effectively an adaptation of
XPL to the context of a
microcomputer with 8-bit
d ata quanta and 16-bit
addressir.g. The result is a
language which looks very
much like XPL - with a few
keyword substitutions and
a dditi ona l features. This
resemblance is sufficiently
close that at least one version
of PL/M h as been
impl eme nted s imply by
modifying a working XPL
compiler, although Intel's
original was implemented in
FORTRAN.

PL/M as a la n guage
possesses many desirable
attributes wh ich are not
found in BASIC. These
attr ibut es includ e the
PL/1-like statements and
stateme nt groups, long
descriptiv e names for
variables and labels, block
structure, and subroutine
linkages with parameters. As

DIAGNOSTICS: Documentation of bugs in previous
BYTEs.

BYTE #2, p. 54, Fig. 3.
An inverter (e.g., 1/6 7404,
or 1/4 7400) should be
inserted between the CE
inputs of the 7489 circuits

Dan Clarke (lOS Fir
Court, Fredericton NB,
Canada E3A 2E9) notes that
the originate modem transmit
frequency definitions (Fig. 14
and text of "Serial Inter
face"), page 35, BYTE #1,

and the 7400 which drives
them in the original drawing.
Thanks to Martin E. Haling,
Edison NJ and several other
readers for pointing this ou 1.

are incorrect. Using the
Motorola M6800 Micro
pro cessoy Applications
Manual page 3-32 as a source
of data, the following table
should correct the matter:

Mode Data Transmit Freq. Receive Freq.

Originate Mark 1270 Hz 2225 Hz

Originate Space 1070 Hz 2025 Hz

Answer Mark 2225 Hz 1270 Hz

Answer Space 2025 Hz 1070 Hz

10

a systems programming
language for microcomputers,
the PL/M langu age adopts
some of the features of an
absolute assembler - there
are locatio n counters for
program code and data which
can be set during a
compi lat ion. To top it all off,
the PL/M language is a
relatively simple one which
ca n potentially be
self-comp il ed upon a small
(but not minimal) home brew
system.

At the time of this writing,
PL/M is fast on its way to
becoming a n industry
standard. It is definitely a
I an gu age wh ich has the
potential for adaptation to
the software requirements of
the more adva nced
program mers in BYTE's
readership - yet at the same
time it is simple enough for
the novice to und erstand . At
the present time, however,
only cross compilers - large
programs running on big
machines - are available for
PL/M . There are PL/M
versions currently in the
works or producing code for
the 8080, the 6800 and
PACE microcomputers - but
all are cross compi lers. These
cross compiler versions are
widely used via time sharing
networks by a variety of
industria l and commercial
users of microprocessors. This
accep tance indicates that
PL/M is a language wh ich is
likely to be around for some
time.

A Call For Compilers

So PL/M is the tool which
the industrial and commercial
world uses for efficient code
generation with a high level
language for microprocessors.
Will this technology be made
avai lab le in the home brew
computer markets ? Yes. One
reaso n for writing this
editorial is to point out the
existence of PL/M and direct
a few BYTE readers to
appropriate sources of
information. In future issues,
BYTE will be getting into

Information Sources

PL/M:
8008 and 8080 PL /M

Programming Manual,
MCS-451-0275-10K

I ntel Corporation
3065 Bowers Ave ., Santa

Clara CA 95051
This describes 8008/8080

PL/M as originated by I nte!'

PL/M6800:

P L/M6800 Programmers
Reference and PL/M6800
Language Specification

I ntermetrics, Inc.
701 Concord Ave.
Cambridge MA 02138

These manuals descri be
the version of PL/ M being
marketed for the 6800 pro
cessor.

As this issue goes to press,
National Semiconductor has
announced a version of PL/M
called "PL/M+" fo r the PACE
system. Further details will
be provided by BYTE as they
become available.

more of the details of PL/M
as a language. Until then, the
acco mp a nyin g list of
information sources will have
to suffice .

A second reason for this
editorial is to serve as a call
for compilers. What is needed
is a compiler for PL/M or a
similar language which will
run on a typical 16K (RAM)
8-bit microcomputer using as
many as three serial I/O
devices for multiple passes
through the data of a source
program. Ultimately there
should be one such
se I f-compiler program for
eac h of the m a jor
microcomput er chip
architectures. The compilers
should be written with
system design flexibility in
mind (in other words,
modularity throughout and
i solation of hardware
dependent portions to ·
specific modules). Who will
be the first person, club or
firm to provide such a
self-compiler? -

	Cover
	Index
	In This BYTE
	Editorial
	Opinion: The Software Vacuum
	BYTE's Bits
	Logic Probes - Hardware Bug Chasers
	Powerless IC Test Clip
	What is a Character?
	LIFE Line 3
	Flip Flops Exposed
	Read Only Memory Technology
	THE H-P 65: WORLD'S SMALLEST COMPUTER SYSTEM
	Build A 6800 System With This Kit
	Assembling an Altair 8800
	Can YOUR Computer Tell Time?
	BYTES's Bits
	Welcome, IBM, to personal computing
	Clubs and Newsletters
	Book Reviews

