Assembling an Altair 8800

My adventure with microprocessors began rather late in the hobby game, at the end of 1974. It was about this time, or so it seemed to me, that micros became the topic of conversation in anything related to computers and automation. With the IMP-16, the 8080, 8008, 4004, etc., it became clear that this was what the computer market was waiting for. However, it was the article on the MITS Altair in the January 1975 issue of Popular Electronics which finally did it. Although inaccurate and vague, it certainly decided me—I was definitely going to own a micro. The next few months saw hurried mailings of information requests to any company which produced a product even remotely connected with a microprocessor. I immediately got out my checkbook, and mailed all my hard earned dollars to every newsletter that was published, in my frantic search for the “right” processor.

The results were both rewarding and disappointing. I found that there were some fantastic processors, but since my hardware background is not all that hot, I decided that I would have to opt for a kit with one of the most powerful micros I could find. I figured that this would enable me to get on line quickly, learn enough hardware to keep up with the state-of-the-art, and permit me to evaluate new micros as they came out, so I could build my “dream machine” when the right parts became available.

I decided to build the Altair 8800. Although the instruction set looked rather impressive, what convinced me was seeing a process control system which used the 8080; I was truly impressed with its capability.

The Order

After calling in my order to MITS, I waited nearly seven weeks for delivery. MITS did make it within the advertised 60-day delivery time. All was not roses for those seven weeks, however; it seems that either MITS or BankAmericard got their signals crossed and couldn’t get a credit authorization (they both eventually declined to accept responsibility). You can imagine what it was like getting a call during dinner, explaining that my unit was...
The last bolt of any given size was always supposed to be used in at least 10 more places. I found that it pays to have a good assortment of screws and bolts (number 6, various lengths 1/2" to 3/4") to permit frustrationless assembly.

All soldering and component placement was easily accomplished — positions were clearly marked on the boards and in the manual. This is high praise since I hadn't built many kits before; and of these, none were this large. Of all the assembly, the worst (and easiest to mess up) part was correctly connecting the 60 bus wires between the display/control board and the chassis motherboard. I used an Ohmmeter to assure that each connection was correct and that there were no solder bridges to the other bus lines. There's got to be a better way. I hear Processor Technology, Inc., is currently marketing a 16-slot motherboard (on the Altair you have to jumper four of the four slot boards together, only one of which comes with the kit), and an improved connector for the display/control board. These will definitely be my first additions.

I made only one modification to the circuit during assembly. That modification was to add three protection zeners to the CPU board. Fig. 1 shows the electrical connections for this change. These were inserted to protect the 8080 chip (still pretty expensive in singles) from power supply failure. These zeners should ground out overvoltages at currents up to 100 Amps. ICTE5s were used for the +5 V and -5 V lines to the 8080 and a 1.5KE15 for the +12 V. The zeners on the CPU board are illustrated in Fig. 2.

I also added sockets for the 8101 RAMs, cleaned all boards with trichloroethylene solvent, and inspected the finished boards with a magnifying glass. I would highly recommend these procedures as they helped me find more than one solder splash and cold solder joint.

The Big Test
On the fourth weekend I got up the courage to mount the 8080 and 8101s. Then came turning on the power and checking voltages. Everything looked good, with very little ripple from the

---

Did you ever try to ask your insurance agent whether you need extra renter's insurance for a computer?
Fig. 3. Adding a parallel capacitance of .0047 uF to C8 of the Altair CPU board schematic lengths the data out enable line time so that memory write does not extend longer than the data out time.

Fig. 4. The additional .0047 uF capacitor is mounted on the rear of the control panel board.