
FIRST COMPUTER FAIRE PROCEEDINGS BOX 1579, PALO ALTO CA 94302 PAGE 220 

ABSTRACf 

HOME TEXT EDITING 

Larry Tesler 
Xerox Palo Alto Research Center 
3333 Coyote Hill Road 
Palo Alto CA 94304 

Your computer's text editor may be the program you use most. If you don't 
have an editor you like, it is best to copy the design of an existing system. If 
you decide to design your own, some guidelines are offered both for the 
design of the commands and for the design of the program. They focus 
primarily on "two-dimensional" editors that make full use of a display, but 
they pertain indirectly to "one-dimensional" editors such as those that can be 
programmed for teletypewriter style terminals. 

I. Text editors don't really edit. 

Almost every computer with a terminal also has a program that lets people 
type and alter text. Usually, that program is called an "editor". However, in 
English, an "editor" is a person who reads a document and improves its style, 
clarifies points, verifies arguments, and corrects grammar and spelling. 
Editing is a complex intellectual task best performed by humans. 

A computer can be a powerful tool to assist a human editor. Changes can be 
made to a text without the person having to completely retype it. But the 
machine does not improve style. does not clarify points, does not verify 
arguments, does not correct grammar, and usually does not even correct 
spelling. So a "text editor" is not really an "editor" at all -- it's just a fancy 
pencil. 

The term "editor" is a misleading name for such a program, not only because 
of what the program con't do, but also because of what it can do, which goes 
well beyond the improvement of someone else's prose. It can help a person to 
compose one's own prose -- or poetry -- by offering a neatly typed version of 
each new draft on command. It can do a certain amollnt of typography, 
including indentation, spacing. and sometimes justification of margins. It also 
can help a person to fill out a form, to provide data to a computation, to 
converse with a dialog system, and neither last nor least, to compose and alter 
a computer program. 

A better name than "text editor" might have been "interactive text processor". 
Unfortunately, the terms "editor" and "editing" have come into common 
misuse, so I will reluctantly employ them myself in the rest of this tutorial. 
Henceforth, whenever I use the term "editor". I will not mean a person, but 
rather a computer program that lets one type and alter text. The human user 
or such a program will be called the "operator". 

2. Designing a Text Editor. 

Many computer users find that the program they use most is the text editor. 
If you don't like your computer's texl editor. or if you want to take on a 
challenging programming task, it is often possible to concoct your own editor. 
You can design olle from scratch, or you can imitate a design you've seen and 
liked on a friend's machine. The latter is a far safer course. Designing an 
editor is difficult, and you may put in a lot of work only to end up with a 
tool that is frustrati ng to use. 

For those who are thinking of designing an editor, the remainder of this 
tutorial offers some advice to help in your adventure. Not every aspect of the 
problem is covered; it is assumed that you have used at least one editor and 
are familiar with the general concepts of editing. 

There are two aspects to the design of a text editor: What will 'be the 
command structure? How will the program work? I will call these two 
aspects "command structure design" and "program design". Command 
structure design is part of a larger problem known as "user interface design", a 
problem too large to address here. 

Although the design of the command structure and of the program are not 
completely independent tasks. we'lI take them up one at a time. Mainly, we'll 
talk about command structure design. Most people with sufficient interest can 
manage the program design for an editor on their own. 

3. Command Structure Design. 

3.1 Rube Goldberg never sold anything but comic strips. 

There are several ways to approach the design or commands for a text editor. 
If you're designing one just for your own usc, then you can dream up any that 
you like. After all, if you like catsup on your cottage cheese. who's to object? 

On the other hand, if you would like friends and family to be additional users 

of your editor, then it may help to consider the following. Each of us has 
unconscious idiosyncrasies that make Ol:r lives and the lives of our friends 
more interesting. But when one's isiosyncfa:ij('~ :-..:h}w tiP in the design of a 
program, other people who try to use the program "ften find it confusing. 
Even if you do your design by brainstorming with a friend. it's likely that the 
friend is a Whatsisology major just like you, and that your technical 
background has prepared you both to think that a Whatsis command is just 
what the world needs in a text editor. 

Therefore, I strongly suggest that you try to explain your command design to 
someone who majored in Southern Rumanian Poetry or to someone who was 
lucky enough to get out of school after the eighth grade. If the editor is to be 
special purpose. explain it to someone who would want to use it for that 
purpose. When the listener can not understand what you are talking about, 
please do not think that he or she is stupid. What has happened is that your 
design, like almost all others that people think up, is the computer equivalent 
of un Edsel. Learn from Ford's mistake; go back to the drawing boards. And 
reread the tips that follow. 

3.2 You can't bake a cake on a hot plate. 

The first constraint on the design of your editor is the physical hardware that 
your computer has. If there is a display screen, even a one-liner, then use it; 
it is chock full of advantages. If there is no display, a decent job can be done 
with your typeout terminal. If you have both a display and a printer, then the 
display should be used for editing and the printer just for typing neat drafts. 

There are two ways to use a display: "one-dimensionally", in which it is just 
like a fast typeout terminal, but only shows you the last few lines of dialog, or 
"two-dimensionally", in which many lines of a page are displayed as they 
would appear on paper. without commands interspersed. From the operator's 
viewpoint, two-dimensional editors are superior in many ways to 
one-dimensional ones. However. they are harder to implement; how hard 
depends on your machine characteristics. 

If you choose a one-dimensional approach. or if you have no display at all, 
then I recommend reading reference [1]. which describes the commands and 
lists the program for a very well implemented one-dimensional editor. The 
suggestions that follow pertain mainly to a two-dimensional approach, because 
the problems are less obvious. However. if you are sticking to one dimension, 
you may still get ideas from the discussion; just translate the concepts from 
one medium to the other. Sometimes, I do this for you by including [notes in 
brackets for one-dimensional editors]. 

The most important part of a text editor is the means the operator must use to 
specify the part of the text that is to be manipulated; this task is often called 
"entity selection". In most two-dimensional editors, the operator can select 
any character or line in the text; the selected entity is often marked by a 
"cursor". [In most one-dimensional editors, the operator can select any line 
and by various subterfuges can get at characters within the line.] 

It is often useful to be able to select words, sentences, form fields, or other 
entities of text, or to select the interstices between characters instead of the 
characters themselves. However. the benefit of such special selections is 
marginal for many applications. By designing them in, you may simply 
clutter the editor with unnecessary mechanisms and fill up scarce memory 
space with the software to implement them. 

If your display has a pointing device to go with it (a tablet, joystick, mouse, 
light pen, etc.). then by all means use it to make selections. If you have an 
AID board, you may be able to add a joystick for a few dollars. 

Many people think they can control an editor faster from the keyboard than 
with a pointing device, but some objective studies have found the opposite to 
be the case. 

Even ignoring the issue of speed, pointing devices have advantages over key 
control. It has been shown that, given a choice of selection methods, 
operators will usually gravitate to a single general-purpose method and ignore 
all others, even in cases where they may be faster. A pointing devi£e provides 
the most general selection method, because every selection -- no matter how 
far it is from the current selection -- can be made by the same means. 

Arrow keys. control keys, space bars, and so forth are less general; with them. 
the operator ends up devising strategies to. get the selection made. in an 
acceptable time. Imagine a car whose steering wheel was replaced by left turn 
and right turn keys for various angles. It may seem like fun to be devising 
strategies to get the best use out of a program. However, the fun of toying 
with the editor wears off when you are trying to get that term paper finished 
in time or when you are trying to write that neat program or an important 
love letter. 

Another advantage of a pointing device is that it reduces the number of keys 
needed to run the editor. Sparseness is a virtue in interactive computer 
programs; the fewer commands and the fewer keys you need. the easier it is to 
operate the system, even if an occasional command requires extra keystrokes 
as a result. 

Of course, if your computer has no painting device, then make the best use of 
the keys. Tens of thousands of people do it every day. If the terminal has 
cursor control keys. use them if possible. Otherwise, use other keys, but 
preferably not typing keys. It is very confusing to people when the same key' 
sometimes types the letter Wand sometimes selects the next Word in the 
document. 



FIRST COMPUTER FAIRE PROCEEDINGS BOX 1579, PALO ALTO CA 94302 PAGE 221 

[If your terminal has no display, then there are many ways to specify a line to 
select. Each line can have a number semi-permanently attached to it (number 
them 100, 200, 300, and so on). Insertions can use numbers in between the 
ones already used. There should be a renumbering command to use just 
before printing out a draft. It should be possible to print a draft with or 
without line numbers.] 

[Other ways to identify lines are by current ordinal number (constantly 
changing during the session -- very confusing), by distance from the currently 
selected line (".+6", ".-10"), by special name CO" for final line, "~" for 
preceding line, etc.), or by sample content (" 'the stove' "). In my experience, 
most people prefer the last three methods over the others.] 

There are other hardware attributes that can constrain your editor design. 
You may wish "control-M" to mean something special, but on an ascii 
terminal, that stroke often produces the same character code as a "return", so 
you can't tell them apart. The agility of the human hand is also a factor; it is 
easier to strike "control-A' or "control-L" than to strike "control-F" on a 
standard keyboard layout. It takes a long time to strike a key that is far from 
the home typing keys, even for a hunt and pecker. So think about which 
commands happen most often, and be sure to consider any physical 
disabilities that the potential operators may have. 

3.3 Some cuisines. 

There are many possible command structures for a text editor. I will try to 
give a sample to stimulate thought, and suggest some criteria to consider in 
choosing among them. 

If you have have used several pocket calculators, you know that there are 
"algebraic infix" models where you say "2 + 3 =" and "Polish postfix" models 
where you say "2 enter 3 enter +". It is even possible to have "prefix" 
calculators, where you would say "+ 2 enter 3 enter". A similar classification 
exists among editors. 

A "prefix" command structure has the operator specify an operation first and 
then the selection or selections on which to operate. For example, "Delete 
(select character) (return)" [or "Delete lines 2 to 10 (return)" in a 
one-dimensional editor]. Some people like prefix commands because they 
sound like English sentences and because they require confirmation of the 
command, which provides an opportunity to change one's mind. 

A "postfix" command structure has the operator specify the selection(s) first 
and then the operation. For example, "(select character) Delete". Postfix 
commands are usually easier to use because the absence of confirmation 
requires fewer keystrokes, and because machines to which people are 
accustomed work that way. On a typewriter, you first move the carriage and 
then type. On a vending machine, you first make your selection and then pull 
the handle (and then kick it). On a clothes dryer, you first dial the time and 
then push start. 

The trouble with postfix is that confirmation is not required. If you try 
requiring it, operators may complain about the superfluous keystrokes. To 
compensate for the lack of confirmation, each operation should have an 
obvious converse (e.g.. "Insert" for "Delete", or "Undo" for any prior 
command). 

There could in theory be "infix" commands in an editor. To move a 
paragraph from one place to another, you would say "(select source) MoveTo 
(select destination)". The trouble with this form is that the command ends 
with neither a confirmation nor an operation, and people feel uneasy: in 
postfix systems, they are used to an operation stroke at the end of each 
command, and in infix systems, they are used to a confirmation at the end. It 
is better in prefix systems to avoid infix altogether. In postfix systems, it can 
be approximated by a pair of commands: "(select source) Delete; (select 
destination) Insert". 

In prefix systems, it is useful to allow the same command to be applied to a 
number of selections without having to repeat the command: "Delete (select 
something) (return) (select another) (return) (select another) (return)". In 
postfix systems, it is useful for each command to leave some logical entIty 
selected when it is done (like the character after the one deleted), and for a 
command to omit a selection specification when that entity is the one desired, 
e.g., "(select character) Delete Delete Delete" could delete three consecutive 
characters. The latter is especially helpful if Delete is a repeating key on the 
keyboard. 

If there is a display on the machine, and especially when there is a pointing 
device for it, there is another way to issue commands, namely, through a 
"menu". The menu displays alternatives and the operator picks one by 
selecting it. Menus are very helpful for commands that are not performed 
often, like "Print pages i through j" or "Find a text string". 

An entry in a menu can have space for parameters to be typed in. In a prefix 
system, the logical thing to do would be to select the command first, then type 
in the arguments (if any have changed from last time) and then confirm the 
command. In a postfix system, type in the arguments first (if any have 
changed) and then select the command. 

[The one-dimensional analogy to the menu is prompting. For example, after 
typing "Find (return)" the program can prompt with "key=".] 

3.4 Some recipes. 

What commands should you have? 

The only command that almost every editor offers is "Delete". It is a good 
idea for the program to save the most recently deleted passage in a special 
place, and to offer an "Insert" command to put that passage back in the text 
before the specified selection. Such an Insert command not only can be used 
to undo blunders but also provides a way to move things around in a postfix 
system. 

A problem with "Insert" is that one may hit "Delete" twice in a row by 
accident and thereby loses the ability to undo the first Delete. This can be 
solved by storing the last two deletions and allowing two inserts in a row to 
bring both back. More than two are of marginal utility (even two are a 
luxury). 

Another useful command is "Copy", especially if the editor is to be used for 
writing programs. In a postfix editor, Copy should be like Delete in that it 
puts a copy of the selection in storage after which Insert can put it somewhere 
else. 

For typing in text in a postfix system, it is best if no command need be given. 
After making a selection, the operator should simply be able to type in the 
normal manner, and the typing should be inserted at that spot. Requiring'a 
command is prone to error; since people are used to typewriters, they may 
forget to give the. command. 

Speaking of typewriters, most people find an interactive program easier to use 
if it works a lot like a familiar machine. Thus, to retype the preceding 
character, the operator should be expected to type "backspace" (assuming there 
is a key that can be so labelled), not some arbitarily chosen key. 

Unfortunately, it is not always possible to design an editor so that typing can 
be dOlle without a command. With a terminal lacking control keys [or with a 
one-dimensional editor], it may be necessary to use the typing keys for 
specifying commands. In that case, a command will be needed to enter "insert 
mode" and some stroke will be needed to leave the mode. Many editing errors 
result from striking keys without first getting into or out of insert mode; so 
avoid having modes if you can. 

A major problem with typein is what to do when the line fills up. Some 
editors act like a typewriter: a bell rings and characters soon get discarded. 
Others allow a line to be quite long, in which case there is generally a way to 
see the whole thing a little at a time. Still others_automatically move the last 
word of the line to a program-created line below. In some editors of the last 
kind, a subsequent Delete command may cause words from created lines to 
move back up. Some people like this arrangement (called "paragraph 
editing"), but many are confused by it, even with a display. Furthermore, it is 
hard to implement, so I recommend skipping iton your home computer. 

If you don't implement paragraph editing, you may still want a way to specify 
that a group of lines is a paragraph. This can be done every time a command 
is to be performed on it, or it can be done at any time, whether by a "Start 
paragraph here" command, or by establishing conventions, such as a blank line 
between paragraphs. It depends on what kind of text you will be working 
with and what you will be doing to it. 

If you are editing long texts, rather than just short inputs to a dialog program, 
then other commands you may want are: 

Find next occurrence of a text phrase 
Change all occurrences of one text phrase to another ("substitute") 
IndentlUnindent paragraph's first line/non-first-lines/all lines 
Retype paragraph with as many words on each line as can fit 
Retype and insert extra spaces to justify each line but last to right margin 
Retype and insert extra spaces to center. each line between margins 
Paginate every n inches 
Print pages' i through j, or all pages 

There should be a way to abort a command, at least if it is time-consuming, 
such as Substitute or Print. The keystroke chosen for this purpose should be 
uniform regardless of the command or the mode. 

You will probably want a way to move text between files. A sample set of 
commands for this purpose are Include and Extract. Each takes a file name 
or number as an argument. The Include command inserts the whole text of 
the named file at the position selected in the current file. The Extract 
command moves the text selected from the current file to the named file. 
Although faster commands can be designed, these are both easy to implement 
and easy to use. 

A fancier way to deal with multiple files is by dividing the screen into 
"windows", left and right or above one another, and displaying a different file 
in each window. The "current" window ought to be clearly distinguished to 
avoid confusion. In a postfix editor, there should be only one selection on the 
whole screen, not one in each window, otherwise, many people get confused. 

You will want a way to browse through the text. The easiest way to 
implement browsing is to provide page turning, but it is nicer for the operator 
to scroll a line at a time. Fancier systems allow browsing by headings or 
through a table of contents. If you do work' by pages, then there is a problem 
when a page fills up that is the same as that mentioned earlier in connection 
with lines filling up. The possible solutions are analogous. 



FIRST COMPUTER FAIRE PROCEEDINGS BOX 1579, PALO ALTO CA 94302 PAGE 222 

There must be a way to move text from the floppy.or cassette to the editor 
and vice versa. There are two philosophies about when to write an updated 
file back on a floppy disk. One possibility is to work it as you would with a 
cassette, namely. require the operator to issue a "store" command. either 
specifying a file name or address, or defaulting to the same file or sector as 
before, or defaulting to a higher numbered version of the same file, Another 
possibility is to update "continuously", whenever there is a pause in operation, 
or whenever a certain amount of work has been done, or whenever that page 
of the text has been scrolled off the display. This technique provides safety 
against machine failures or later operator errors. However, it is a good idea 
for the program first to back up the original version of the text on a 
temporary file. 

If the text you will be editing will often be computer programs, it is nice (if 
the operating system supports it) to have an "assemble" or "compile" 
command that writes the text on a file and causes the system monitor to start 
the assembler or the compiler. Of course, any good interpreter should have a 
text editor as its front end to enhance the direct execution feature. 

3.5 Feedback 

When using an editor with either modes or prefix commands, operators often 
get confused about what they just did and what they can do next. In a 
two-dimensional editor, you can reserve a "feedback area" in which you 
announce these things in canned English. If you don't have time to display 
them continously, it is just as good to display them only when the operator 
pauses for at least a second, and almost as good to display them only on 
command. [In a one-dimensional editor, commands can be abbreviated and 
the program can expand them to supply feedback, but careful: operators get 
confused when the terminal types in and out at the same time.] 

One of the characteristics of a computer editor is that invisible characters like 
(space) and (return) ar~ usually represented by character codes just like visible 
characters. This is nice for the program, but when a naive operator is faced 
with joining two words'together, he or she may not understand the concept of 
"deleting the space in between". It makes no sense, really, to delete something 
that is not there! Even experts often have trouble telling an invisible 
character apart from the absence of texL 

There are two solutions to this problem, which can be used separately or 
together. One is to give feedback. Either always, or upon a special command, 
invisible characters can be replaced by special visible ones to let the operator 
tell them apart. Depending on your display controller, you may be able to 
show the difference in other ways (gray background, for example). An easier 
solution is to let selections be made in empty space on the screen. When 
typing is done there, have the program surreptitiously insert sufficient spaces 
before (and sufficient returns above) the selection to give the operator the 
impression that they were there all the time. 

4. I'rogram Design. 

4.1 General Considerations. 

The amount of "primary" (fast) memory in your machine limits both the 
program size and the amount of text you can handle quickly. Even if there is 
not much room for text in the primary memory, you can keep the text on a 
floppy disk or even on a cassette, except for the page or even for the few lines 
that the operat.or is currently dealing with. It is also possible to save program 
space by putting special features of your editor onl0 the floppy and bringing 
them into primary memory only when needed. 

The operating system or program library usually provides services useful to a 
text editor. For example, there should be a buffered keyboard input utility so 
that the operator can "type ahead" while the system is performing a 
time-consuming operation, 

If the secondary storage is organized into named files, use of the system is 
Simplified. Otherwise, files can be referenced by number or by starting 
address. Another way to let operators specify files is through a menu. In that 
case, each file can be identified by a string of text that describes its content 
rather than by a "name". Even if two files have the same description, they are 
distinguished by having separate entries in the menu. This alternative is 
especially attractive if no file system is available and you must provide access 
facilities yourself. 

4.2 Maps. 

Editors really aren't that hard to program, so I won't give you much advice. 
The hardest aspects to deal with are the variable number of characters in lines; 
the variable number of lines· in files, and (in a two-dimensional editor) the 
continuous update of the display to reflect accurately the current state of the 
text. 

Most solutions to all these problems rest on the concept of a /nap. A map in 
the abstract is a list of pairs which sets up a correspondence between elements 
of a domain and elements of a range. For example, there could be a map 
from each line number to the memory location of the first character of the 
corresponding line; a map from line number to screen y-coordinate; a map 

from paragraph number to starting line number; a map from command name 
to subroutine location; and so forth. 

In concrete terms, most maps have special properties that let them be 
implemented more efficiently than by a list of pairs. The simplest 
implementation is a pair of arrays of equal length. If the domain is simply 
the consecutive integers L.N, then only the range array is needed. If the 
range is only defined for domain values from M ... N, then no space is needed 
for the undefined values, as long as the values M and N are available to help 
access the map correctly, 

If the domain is ordered, you can use a "binary search" to search the table for 
a given value in log2n steps. If the domain values are unique, you can use a 
"hash table". These techniques can be learned in any good text book on 
programming, e.g., [2]. However, a straight linear search is preferable on a 
small machine unless you can demonstrate that it is causing a performance 
problem. 

A map can be inverted so that each line becomes a record whose fields specify 
the range elements to which certain maps map that line. 

The reason to think of all of these diverse data structures as maps is that your 
program can be simplified if you use.a uniform subroutine calling convention 
to look up in maps and modify maps, regardless of the way they were 
implemented. One advantage is that if you ·improvti the implementation of a 
map, the code that uses it won't have to change. A more subtle advantage is 
that the program will be easier to construct, understand, and improve because 
of the uniform application of a general abstract concept. 

4.5 Text Representation and Display Update 

On a system with 8KB of RAM, the program code of a typical editor written 
in assembly language occupies 2K to 4K. Of course, to achieve such a small 
program, you must be sparing of features and careful in coding. 

There are two basic approaches to the use of the 5K or so of leftover space. 
The simplest one is to store the current page of text right in the RAM. and to 
keep the data structures small enough so the largest page you'll ever need will 
fit. The more complicated approach is to cache only a small amount of text 
in the RAM, and to leave the rest on secondary storage. Some of the extra 
RAM space will now be needed to support the caching mechanism, but some 
may be gained for programming additional features. 

The caching approach has the advantage of allowing "pages" of great length to 
be handled. However, it will either be sluggish or complicated (or both), 
depending on whether the secondary storage is disk or tape, and whether the 
operator processes the text sequentially or jumps around a 10L 

On a home machine, it is generally better to restrict pages to about the size 
that can be displayed in one screenful, i.e., lK or 2K bytes. This eliminates 
the need for scrolling within a page, as long as commands are supplied for 
page merging, dividing, and flipping. Furthermore, the text can be stored as a 
single contiguous string to which any edit can be performed faster than the 
operator can type. 

With this approach, the map for display updates maps line numbers on the 
screen to starting character positions in the text string. Every edit must 
update the map as well as redisplay those lines that are affected. Note: Some 
displays can not redisplay a line without clearing all the lines below iL If this 
is the case with your system, defer screen update during typein until the 
keyboard input buffer is empty. 

4;4 Reliability 

It's never pleasant when a program fails, but when an editor fails, the operator 
(e.g., you) often attains new levels of agony. It seems as if the last three hours 
of work were just lost, and irreproducible work at that. You may find the 
CRT reduced to fragments of glass on the floor. 

Consider providing means of backing up files, checkpointing the program. 
recovering from crashes, and so forth. In critical parts. of the program, put 
validity tests for data structures and for important values, like disk or tape 
addresses. You can't fit too much of these aids in a small computer, but a 
little work in this area may save you a lot of distress later. 

Careful command design can help, too. Make it more difficult to delete a 
whole file than to delete a paragraph, and more difficult to delete a paragraph 
than to delete a character. Avoid situations where if the operator is looking 
away from the screen, a couple of stray keystrokes can cause disasters. 

When using your editor, don't. go too many· minutes without writing the text 
on a file, or too many days without getting printouts and backing up files. If 
the editor is new and still has lots of bugs, exercise these precautions more 
frequently. 

S. Conclusions. 

DeSigning Ii program is like writing a story: the possibilities are endless. It is 
helpful to establish guiding principles in the design to constrain it in a 



FIRST COMPUTER FAIRE PROCEEDINGS 

manner appropriate to one's goals. 

In the design of an editor, I recommend that you consider hardware 
limitations, operator habits, how much awareness the operator can devote to 
the system as opposed to the task at hand, and requirements for speed and 
reliability. 

The Author 

The author was turned on to computers in high school in 1960. He helped 
finance undergraduate work at Stanford by programming in such areas as text 
processing, simulation, statistics. graphics. and compilers; ran a freelance 
software company in Palo Alto for five years; then was a research assistant at 
the Stanford Artificial Intelligence Lab doing cognitive computing. natural 
language understanding. higher level languages. and text formatting. 
Somewhere in there he took off a year to live in rural Oregon and develop 
other interests such as folk music. cooperatives. and extra-sensory perception. 
For the past four years. he has been a member of the research staff of Xerox 
Corporation. specializing in text processing. user interfaces. and programming 
systems. He likes programming as well now as in 1960. He has never learned 
to operate a soldering iron. 

References 

[I] F. J. Greeb. "A Classy 8080 Text Editor", in Dr. Dobb's Journal, Vol. 1, 
No.6, June/July, 1976. 

[2] D. Knuth, The Art of Computer Programming (especially Volume 3), 
Addison-Wesley, 1973. 

BOX 1579, PALO ALTO CA 94302 PAGE 223 




