
E~ii()pial

By Carl Helmers

Based on a computer
graphic suggestion by
students joel McCormack
and Owen Hampton at
UCSD, we arranged with
Russell Myers for this
statement of an extreme
opinion about Pascal

"UCSD Pascal"

6 August 1978 © BYTE Publica(ions Inc

A Vision of an Industry

In mid-March of this year, I finished a
trip to the West Coast by having a day long
meeting with Ken Bowles and his associates
at the University of California, San Diego.
The purpose of this meeting was to explore
some of the possibilities which arise from
the standardization of extensions to Niklaus
Wirth's language Pascal, and the equally
important implications of the technology of
intermediate languages such as the optimized
form of "P-code" developed at UCSD.

I came to this meeting with a background
of familiarity with the reasons for encour
aging highly structured languages such as
Pascal. Before starting BYTE, I had been
involved with the NASA HALlS language
developed by my employer of the time,
Intermetrics Inc of Cambridge MA. I lived
and breathed considerations of software
reliability, ease of program design and the
conceptual economy of a detailed program
representation which doubles as the docu
mentation of the algorithm. My personal
experiences were with the context of the
need to "man rate" the flight software of a

contemporary spaceship through the use of
high reliability software tools and techniques.
These points are made elegantly in a number
of books and papers which have been
publ ished on the subject to date .

What came out of this meeting with Ken
Bowles is a vision of an impo rtant synthesis
of machine independent software representa
tions, the technology of printing machine
readable software on paper, and the distribu
tion of software in the form of convent ion
ally printed and bound publications. It is a
vision of what the software publishing
business could look like over the course of
the next few years.

Out of this vision of a machine independ
ent software publishing industry comes a
serendipitous justification for suppo rt of
Ken Bowles' efforts to estab lish a "band
wagon" effect of support for the Pascal
language and machine independent software
systems. The purpose of this essay is to
discuss the present dimensions of the soft·
ware publishing problem, the technology
which exists for preparing and printing
mach ine readable represen tations, and the
vision of machine independent software
publishing which Ken Bowles and I saw
inherent in the Pascal P·code technology as
we discussed it that day.

Publishing Software

As the users of the personal computer
expand in number, the means of distribution
of software become critical to those who
would distribute such software. In personal
computing we are faced with a kind of
problem which is completely new in the
computer industries: the number of machines
installed is becoming incredibly large by
standards of the past 20 years, and the price
paid per unit installation is becoming incred
ibly small. The computers which are a
potential market for software are in the
in itial stages of becom ing a mass market: too
large a market for the custom craftsmanship
of the traditional software vendor. To be
convenient for the customers programs must
be distributed with a machine readable copy
which eliminates the need for hand key-

Continued on page 133

Continued from page 6

stroking of programs or object code for
programs. The traditional manual and job
shop methods of production of copies of
software for distribution are not appropriate
when we think of a mass market of 10,000
to 100,000 copies (or more?) of a program
distributed via retailers and mail order
houses with a retai l price of (for example)
$9.95.

The Software Distribution Model

Given an identifiable set of computers
with sufficiently similar characteristics, soft
ware can be marketed and distributed to
multiple users.

The "sufficiently similar" characteristics
which make a program marketable to mul
tiple users include the formal representation
of the software, and the mach ine readable
medium in which the software is delivered.
The machine readable representation of a
program product is always accompanied on
delivery by extensive printed documentation.
At a minimum this documentation describes
how to use the product; in the optimal case
it includes details of the actual algorithms
employed. To summarize, the key points of
a delivered product are:

• Formal representation.
• Mach ine readable medium.
• Documentation.

I'll be making evaluations and comments
largely on the subject of formal representa
tion from the poin t of view of the new mass
market for software which is developing in
the personal computing field.

Formal Representation

Th e formal representation of programs to
be distributed by a software vendor is one of
the key choices wh ich has to be made. At
one extreme, the vendor could provid e
extremely machine dependent and configu
ration dependent low level code for a
particular computer system product. At the
other extreme, the vendor of software might
provide a largely mach ine independent
formal representat ion in a high level language
shared by a number of computers. At an
interm ediate point between these extremes,
especially in an era of mass production of a
small number of processor architectures as
microcomputer systems, we find the possi
bility of delivering configuration independent
but machine dependent relocatable repre
sentations of low level code for a particular
microprocessor instruction set.

F or that class of software products
supplied by the original manufac turer of a

particul ar computer system, there is no
problem providing compatible software at
whatever level of representation is chosen.
The manufactu rer of a system after all
controls the detail choices with respect to
processor hardware, system configuration
and systems software. Since all the details
are dec ided by the particular design, it is
even practica l to market software in the
form of a memory image at the lowest
level (possibly in read only memory parts).
Since the choice of processor is well defined,
the manufacturer can also provide modules
of software represented as relocatable
mach ine code, along with a suitable loader
program which is part of his systems soft
ware. Since the detail ed choice of high level
language processors is well defined, the
manufacture r can also provide applications
and systems programs represented in his or
her high leve l langu age. The manufactu rer
of computer systems products at most must
deal with a small integer number of pro
cessors and high level languages.

We find this model of software delivery
by the manufacturer of a system throughout
the computer industry to date. Every main
frame and minicomputer comes with low
level representations of systems software and
(eventually, if not at introduction) with user

Articles Policy

BYTt Publications Inc is con tinuoll),
seeking quality manuscripts written by
individuals who Of e applying personal
computer systems, designing such sys
tems, ur who have know/edge which
will pro I' £! useful to our readers. For
a more informal desaiption of pro
cedures and requirements, potential
au thors should send 0 self-addressed.
stomp('d ('nile/ope to BYTE Authors'
Guide. 70 Main 51. Peterborough NH
03458.

Articles which ore occepted ore
purchased with 0 rate of $45 p er pub
lished page, bosed on technical quality
and suitability for the intended reader
ship. A s to articles appearing in 8 YTE
magaline, each munth, the authors of
the two leading articles in the reader
poll (8 YTCs Ongoing Monitor 80x or
"BOMB"; art' presented with bonus
checks of S 100 and 150. Unsolicited
materials shauld be accompanied by
full name and address, as well as return
postage. ·

Tremendous Savings
on Refurbished AJ
Couplers/Modems
Your chance to buy the best from the world leader in
data communications. We have a variety of couplers
and modems- formerly on lease to our customers
- fully refurbished at our factory. This is a rare
opportunity for you to have the same models used
by the largest companies in the world .

• Some models under $100!
• Direct from AJ factory
• 30-day parts/labor warranty
• Nationwide AJ service network
• Fast delivery
• Variety of models-up to 1200 baud
• Limited quantities
Act now. First come, first served. Write Anderson
Jacobson, inc ., 521 Charcot Ave., San Jose ,
CA 9513l.

OR CALL (408) 263-8520

1:1 ANDERSON
~JAC:OBsON

Circle 9 on inquiry card. August 1978 © BYTE Publications Inc 133

Circle 43 on inquiry card.

,---------------~ , ~

I I
I I
I
I

4 ,~ " ~; ()

ADM-3A $ Z§§OO*
IN KIT FORM and Handling

I
I
I

• 80 CHARACTERS/LINE .75·19,200 BAUD I
• 24 LINES/SCREEN • FULL & HALF DUPLEX I
• ADDRESSABLE CURSUR • ODD/EVEN/NO PARITY I · 9, 10, or 11 BIT WORDS • RS232 INTERFACE OR I

20 ma CURRENT LOOP

I GET COMPLETE DETAILS WITH A DIRECT CALL: I

I ~VA c~pft~I";'~'~;';~;: !
I equipment brokers I
\ 930 N. BELTLINE • IRVING, TEXAS 75061 ,

,--------------~,
LSI-ll TIME

It's TIME you brought your LSI·ll up to DATE. TIME and
DATE, two important parameters in the computer world, are
available to your LSI·ll on one DUAL SIZE BOARD. When
requested , the TeU·50D will present you with the date (month
and day). time (hour and minutes). and seconds. Turn your
computer off and forget about the time - your battery sup·
ported TeU·50D .won't, not for 3 months anyway . The correct
date and time will be there when you power up.

The TeU·50D is shipped preset to your local time , but can be set
to any time you want by a simple software routine.

AT $295
YOU CAN'T AFFORD TO IGNORE TIME

Time is only one way we can help you upgrade your LSI·ll or
PDp·ll system. We'd also like to tell you about the others. So
contact Digital Pathways if you 're into -11's. We are too.

134 August 1978 © BYTE Publications Inc Circle 91 on inquiry card.

libraries of high level and low level programs
appl icable with the particular systems. At
the lowest end of the personal computer
spectrum of functions we find a similar case:
the major programmable calculator manu
facturers with their independent incompat·
ible systems provide users with libraries of
magnetic cards or read only memories
expressed in a form consistent with the
particular machines.

But a characteristic of manufacturers of
computers is already evident again in the
personal computer world, just as it previously
existed in the world of minicomputers and
larger computers: whatever the resources of
the manufacturer, there is no way it can
cover all the myriad applications possible for
its computer. To draw an analogy from
music, we hardly expect a piano or ·organ
company to supply sheet music ("software")
with the musical instrument which is suit·
able for every user 's tastes . The music "user"
purchases scores according to personal likes.
A personal computer provides an analogous
opportunity to exercise tastes in software
characteristics. Even for the traditional high
priced computer, customization through
software is for the most part independent of
the manufacturer once the basic operating
system and software tools have been defined.

I n software, the past has seen a large
number of custom software vendors grow
large in the niches of large scale computing
and minicomputer technology. As the
number of people using personal computer
systems increases due to the low price of
these systems, independent software pub
lishing seems to be one of the most promising
ways to assure a wealth of options to the
user, provided that the difficulties of the N
representation problem can be overcome.

The N-Representation Problem

For the moment, let's ignore all reference
to the problem of machine readable data
compatibility and simply look at the user's
point of view with respect to software. The
user has purchased computer X for use in
personal or professional contex ts. When he
or she has made the commitment to the sys
tem, our user can in general expect to be
able to conveniently load programs created
on other X systems from the same manu
facturer. But what if he or she wants to load
a program created by a neigh bor on com
puter Y from another manufacturer? Or if
the user wants to load a program from an
independent software vendor? The variety of
representations available in the traditional
world of computers as well as the personal
computer world is large - even within the
framework of nominally machine indepen
dent high level languages.

Confining ourselves just to machine

dependent microcomputer assembly lan
guages, there is a wide choice of architec
tures. At present we find the 8080, l -8 0,
6502 and 6800 dominate personal computer
architectures . Over the next two to three
years we will find added to this list the
9900, 8086, l-8000 and 6809. If the user of
a perso nal computer sees a neat application
system which only comes represented in
8080 code when he has a 6800, that user
is effective ly unab le to run it with out a
recoding effort. (But even confining our
se lves to assembly languages of the same
mac hine des ign, there is often incompati
bility. One vendor of l-80 software provid ed
an assembler using a hybrid extension of
8080 mn emonics, while others use lilog
l-80 mnemo nics . So the same processor has
at least two low level languages available.)

Turning to high level languages, the
machine independence of software becomes
much greater. But current practices in the
personal computing industry are far from
machine independent. There is a de facto
standard BASIC interpreter in existence,
available on most 6502 and 8080 or l-80
systems. This standard high level langu age
is that defined by the Microsoft company.
Exte nsio ns and changes of detail accompany
each implementation, especially wh en a
given computer has speciali zed graphics
capabilities not available on all the other
computers. With the Microsoft design , the
major portions of an extend ed BASIC are
identical over a large set of machines.

But Microsoft BASIC is not the onl y
interpreter in ex istence. A very prominent
BASIC in terms of the number of users
emp loying it as represented in the unsolicited
art icles received at BYTE is the North Star
BASIC interpreter . This interpreter is widely
used on 8080 and l-80 systems because of
the wide avai labi lity of the small floppy di sk
systems manufactured by that firm: buying
a North Star disk peripheral for an 5-100 bus
system gets the user a limited operating sys
te m and the North Star BAS Ie. The North
Star BASIC interpreter and the Microsoft
in ter preter are inconsistent in a number of
fundamental ways in areas of string handling
and array dimensions. And these are but the
two most promin ent interpreters as seen
from my point of view as edito r of BYTE. I
could almost comment that manufacturers
take any random formulation of a language
vaguely resembling BASIC as originally
implemented at Dartmouth, and call it
BAS IC for marketi ng reasons. (The tempta
tion to add or delete "features" in a language
is of course not confined to BASIC alone.)

From the point of view of a software
publisher, the economies of scale obtainable
from a mass market will only be obtained if
we use a common representation for applica-

Circle 40 on inquiry card.

systems, inc.

Boards IID® Something
If your system needs to know
what time it is, our CL2400 is
the board for you. The present
time in hours, minutes, and sec
onds is always available for input,
and is continuously updated by
the highly accurate 60 Hz power CL2400 Real Time Clock
line frequency. Need periodic in- $98/ Kit $135/ Assembled
terrups? The CL2400 can do
that, too, at any of 6 rates. Reference manual with BASIC and
assembly language software examples included.

PC3200

If your system needs on/off con·
trol of lights, motors. appli·
ances, etc., our PC3200 System
components are for you. Con
trol boards allow one 1/0 'port to
control 32 (PC3232) or 16
(PC3216) external Power Con
trol Units, such as the PC3202
which controls 120 VAC loads to
400 Watts. Optically isolated,low
voltage, current-limited control
lines are standard in this growing
product line .

Power Control System
PC3232 $299/Klt $360/ Assm.
PC3216 $189/Klt $240/Assm.
PC3203 $39.50/ K1t $ 52/Assm.

P.O. Box 516
La Canada, CA 91011

(213) 790·7957
(formerly comptek)

'T)~1.ic a~Pt5

}OIGITAL} J"L
8K STATIC RAM

ASSEMBLED

RELIABILITY
QUALITY
DEPENDABILITY

ON-BOARD SWITCH WAITE PAOTECTSNNPAOTECTS All. 8K
OR EACH 4K BLOCK CAN BE PROTECTED VIA FRONT PANEL

ALL 5- 100 BUS UNES ARE FUllY BUFFERED
ONE LS-TTL LOAD PeR UNE

21lO2 RAMS · lliE 8KRS TYPICAllY REQUIRES 1.5 AMPS
AT 8 VOLTS· 4 ON-BOARD 5 VOLT REGULATORS

0, I , OR 2 WAIT STATES MAY BE SELECTED
VIA A PlUGGABLE JUMPER

THE BOARD IS GLASS EPOXY WITH SILK SCREEN LEGEND,

S -100

ADDRESSING
PROTECT
BUFFERING
LOW POWER
WAIT STATES
QUALITY
GUARANTEE
DELIVERY
PHANTOM
TESTING

FUlL SOLDER ~SKS ON BOTH SIDES, flOW SOLDERING, GOI..D CONTACTS

SPECIAL
(714) 992 - 5540

IF NOT SATISFIED RETURN THE UNDAMAGED BKRS WITHIN
10 DAYS FOR FULL REFUND· ALSO 00 DAY UMrrEO WARRANTY

STOCK TO 30 DAYS· CAU.. BETWEEN 8:30 AND 6:00 TO RESERVE
YOUR 8KRS OR FOR MORE INFORMATION

MEMORY DISABLE IS IMf'tEMENTEO VIA PHANTOM (PIN 67)

COMPlETE TESTING NOT ONLY OF ALL MEMORY CELl.S BUT ALSO
OF ALL SUPPORT CIRCUITRY AND OPTIONS

INTRODUCTORY
PRICE
ASSEMBLED / TESTED

450 ns 250 ns

$149~ $189~
CALIFORNIA RESIDENTS ADO 6% TAX

2555 E. CHAPMAN AVE .
SUITE 604
FULLERTON , CA 92631

Circle 294 on inquiry card . August 1978 © BYTE Publications Inc 135

136 Augusl 1978 © BYTE Publicalions Inc

tions and systems programs which can be
correctly executed by any low level architec
ture available in the marketplace. With a
large number of mutually incompatible soft
ware systems, this is not the case. It is my
contention that the N-representation prob
lem can be solved once by use of appropriate
intermediate language representation and
efficient interpreters for particular micro
processors. Then the key part of an applica
tion or systems program product is the high
level language documentation, the equivalent
lower level intermediate language object
code, and the user documentation: all of
course independent of the final machine
upon which the software will run. The only
machine dependent part which needs to be
published is the intermediate language
interpreter for a given machine and system
configuration. This machine dependent part
needs only one definition and one publica
tion version.

Given an interpreter definition, the
standard high level language, and the stand
ard intermediate language representation of
programs, the user can be assured that once
the object code is in place in his machine,
the program will run with the same charac-

. teristics as described in the documentatio n
for a rad icall y different mach ine. (Hardware
differences due to favorable number repre
sentations will make differences in precision
and accumulated numeric error effects of
course.)

Ruling Out BASIC

To the software publisher, a choice of a
high level language and interm ediate repre
sentation for executable code presents a
moderate problem. The widely used BASIC

interpreters could be used for a perfectly
functional representation for the code of
many programs. But such interpreters suffer
from many inherent disadvantages:

• Lack of uniform representation.
• Slowness of execution.
• Archaic nature of BASIC.
• Lack of a compact machine independ

ent compiled form.

I've already commented on the lack of
uniformity in the various BASIC implemen
tations. The slowness of execution is in herent
in this type of interpreter. In extreme cases
an active search through memory for a label
op code is used to find targets of subroutine
calls or unconditional transfers. At best
there is a level of semantic interpretation
necessary to convert a condensed version of
the source code into executed code. Many
applications and systems programs cannot
to lerate the lack of speed inherent in such
interpreters. But BASIC can be compiled
instead of interpreted, so this argu ment
alone is far from sufficient to rule out
BASIC.

More important, a language like BASIC
as presently implemented reflects an earlier
state in the evo lution of computer languages,
circa the early 1960s, with innumerable
ad hoc patches and fixups to add "features."
Through the 1960s and early 1970s advances
were made in the concept of what a
computer language should be in order to
be convenient to use and conducive to
error free thinking and programming. (For
just one contrast, consider this: where the
BASIC programmer is required to go almost
to the machine language level of assigning
numbers to locations in a program, good

Circle 400 on inquiry card.

contemporary high level languages such as
Pascal and its rel atives allow the programmer
to use meaningful names based on the appli
cation being programmed.)

Finall y, BASIC as implemented in most
cases suffers from the lack of a compact
externall y ava ilable machine independent
version of the compiled form of a program .
Thi s is an important requirement for the
software publisher, since executable code
must always be supplied in some machine
readable representation, and compactness of
representation is important if the inconven
ience of relatively slow input techniques is
not to discourage the user.

For the reasons just summarized, BASIC
is not the ultimate form in which programs
are best published . But if BASIC is not the
perso nal computing representation which
minimizes the N-representation problem,
then what is a better choice?

Enter Pascal

My own perso nal interest in Pasca l came
abo ut for reasons which I summari zed in the
December 1977 BYTE, page 6, in an essay
entitl ed " Is Pascal the Nex t BASIC?" In
this issu e several exce ll ent articles including
those by Ken Bowl es, Chip Weems and Allan
Schwartz provide further rationale by way
of tutorial argument and example.

Thi s perso nal viewpoint with respec t to
Pascal is that of a user of a personal com
puter system who wants to conveniently and
quickly impl ement applications and syste ms
software proj ec ts ran gi ng from the sublime
to the ridicul ous . In the sublime category, I
in clude systems software as an art form in
itself. I also includ e writing systems softwar'e
for my pet projects in musical applications

Circle 240 on inquirv card .

of computers, sophisticated games, and
some experiments in the exploration of
artificial intelligence concepts. In the
ridiculous category, I include such mundane
tasks as trivial games, income tax calcula
tions, perso nal mailing lists of friends and
relations, etc. The point about Pascal to be
made here is that it is a language well adapted
to the utility of computing, whatever your
personal definition of utility is. In the range
of appl ications I expect that the Pascal
approach to structured, self-documenting,
machine independent code will suffice with
only an extremely rare necessity to resort to
ad hoc kluges in the name of time or memory
space efficiency.

'From general re(jding I knew that a Pascal
compiler was ava ilable <\ nd easily transferable
to new mach ines through the use of the
technique of "P-code" intermediate language
representations. This ava ilability throughout
the academic world was one of the reasons
feir the spread of Pascal, for it is one thing to
extemporize about th e virtues of a represen
tation and another thing to be able to
ac tually write and examine the properties of
code in that representation. Since the
original Pascal compilers from Jensen and
Wirth et al in Zurich were written in Pascal,
producing a P-code intermediate language
output file, the task of making the compiler
run on a totally new machine architecture
was reduced to a relatively simple task of
writing an emulato r for the hypothetical
" P-m ac hine" which exec utes "P-code" as its
mach ine language.

What I did not know at the time of my
earlier comments in these pages is the ex tent
to which that P-code technology had already
been applied to sma!1 computer systems, in

August 1978 © BYTE Publications Inc 137

138 August 1978 © BYTE Publication. Inc

Introducing G/2 Extended
Basic for Processor Tech
no logy's SOL computer
series. The best Basic you
can buy.

Developed by Micro
soft:M the industry leader in
microprocessor languages,
and fully debugged and
field-proved, this lS.SK pro
gram offers such outstanding
features as string arrays,
Hi.digit accuracy, fully
descriptive error messages,
automatic line numbering
and renumbering in selected
increments, long variable
names, trace function for
easy debugging, and many
other superior capabilities.

G/2 Extended Basic can
read tapes written in PT s SK
and Extended Basic. This
allows you to use aU your pre
viously developed programs.

Available now on cassette
tape with full documentation.
At your dealer, or write for
information.

THE REASON ..
YOU BOUGHT •

\'OURCOMPUTER. _,

l~!r CRT Corporation
Consumer Computer Group

1286 N. Lawrence Station Road
Sunnyvale, California 94086

(408) 734-2910
. Circle 149 on inquiry ca rd .

particular through the work of the people at
the University of California at San Diego
(UCSD). The UCSD Pascal project has
created a nearly machine independent low
cost operating system which includes Pascal
as the principal high level language, all the
usu al disk filing system features , support of
high resolution bit map graphics including
use r definable font storage for the character
set, an advanced cursor oriented text editor,
and interactive compilation and editing
features . All the systems software in this
package is written in Pascal with the ex
ception of the P-code interp reter and asso
ciated detail hooks to the hardware.

The hardware dependent core has already
been implemented and is readily available
for LSI -ll, 8080, l-80 and 8085 processors.
(The cost is only $200 for ind ividual orders,
with UCSD quoting a $10 royalty per copy
to manufacturers distributing systems in the
hi ghest volumes.) At this writing, in the
small computer arena, three systems are
available which come with UCSD Pascal
as a key feature : an LS 1-11 system packaged
by Terak Corp and heavi ly used at UCSD,
an 8085 processor in a elegant wood finish
package with dual floppy drives manu
factured by Northwest Microcomputer
Systems, and a compact l-80 system with
dual floppy disks manufactured by AI tos
Computer Systems. Individual users who
have 8080 floppy disk systems with the
CP/M operating system and enough main
memory get a floppy disk to bootstrap
UCSD Pascal.

A Serendipitous Result

The nature of the implementation of
Pasca l com pilers, and the UCSD Pasca l in
particular, leads to an important byproduct:
by simply using the UCSD Pascal compiler
as the mode of expression of applications
programs to be published , it is possible to
provide a compact, machine independent
representation of programs which greatly
simplifies the N-representatio n problem for
the independent software distribution house.
The intent of discussing this serendipitous
result in print at all is to show the way in
which such independent software houses can
indeed solve one of the thornier issues and
provide their customers with programs
which are compiled once yet will run on any
one of a number of personal computer
systems .

What do we have which already exists in
a form which can be readily adapted to a
number of small computers? We have the
work at UCSD which has produced P-code
interpreter based systems for LS 1-11 and the
family of microprocessors inspired by the
8080 (8080, 8085, l-80). By the end of the

summer of 1978, indications are that UCSD
will also have bootstrapped the Pascal
compiler to run on 6502 and 6800 architec
tures. Taking this P-code interpreter as the
input, it is not that difficult to conceive of a
self-contained software system which will
run in a 16 K byte or larger personal com
puter system and will contain the necessary
interactive user interfaces to load and run a
program expressed in the P-code intermediate
form as output from the Pascal compiler,
but without the necessity of having the full
UCSD system available locally to support
local compilations.

As a means of demonstrating this con
cept, a student at UCSD will spend some
time this summer creating and characteriz ing
a system based on the UCSD P-code inter
preter software for two different machines.
This stand alone system will run in the
typical current memory sizes of 16 K to
24 K found in personal computers. The goal
is to demonstrate a system which can read in
a P-code object fi le (possibly in bar code or
audio format) , then execute the object file.
Issues to be addressed are those of designing
the details of the program so that its machine
dependent parts can be relocated easi ly, and
so that initial patches for input/output (10)
conventions can be created without excessive
mental effort. The machine independent
part of this stand alone operating system will
be written in Pascal.

In principle, expanding this work to a
greater number of processors, it is possible
to create a set of Pascal P-code machi ne
emulators which can be published once and
only once for each common machine archi
tecture and personal computer manufac
turer's configuration, so that this "virtual
machine" can be used by a whole family of
independent software vendors as a tal'get
machine for their wares, rather than reqlli ring
each software vendor to solve the N-rn achine
problem separately, By inexpensivel y pub
lishing the code of the P-machine emulators,
we hope to help kindle both an interest in
Pascal as a source language and a chain
reaction of simplification in the software
conventions which must be addressed by
independent software vendors. Only time
will tell whether or not we accomplish this
goal.

A Solution to the N-Machine Problem

Given the existence of such inexpensive
standard emulators for the P-machine which
executes P-code, a number of beautiful
effects become evident for the distribution
of application and systems software among a
large number of users.

First, since P-code is conducive to use of
Pascal as a source language, there will be

Introducing G/2 Standard
Basic for the SWTPC com
puter series. It'll load faster
and do more than you ever
thought possible.

Developed by Micro
soft!M the industry leader
in microprocessor languages,
and proved for more than 3
years in MITS applications,
G/2 Standard Basic is now
available for the first time
for use with Southwest Tech
nical Products Corporation's
6800 hardware.

Four to eight times faster
than the basic you're now
using, this interpreter offers
string arrays, extensive string
functions, Peek, Poke, Wait
and Continue, direct execu
tion of statements in the
calculator mode, 10 nested
machine language sub
routines, multidimensional
arrays and much more. And
it uses only 7K of memory.

Available now on cassette
tape with full documentation
At your dealer, or write for
information.

THE REASON a
YOU BOUGHT •

YOURCOMPUTER. _"
[r f1TI CRT Corporation

Consumer Computer Group
1286 N. Lawrence Station Road

Sunnyvale, California 94086
(408) 734-2910

Circle 149 on inquiry card . August 1978 © BYTE Publications Inc 139

a trend toward use of Pasca l to express
algorithms - a res ul t whi ch is laud able on
the abstrac t and pract ica l ground s of Pasca l's
beauty as a self-documenting and structured
represe ntati on of programs. (We already see
thi s trend wi th res pect to BYTE artic les
presentl y qu eued for publi cation in the near
future.)

Second , t he N-mac hine pro bl em of dist ri
bution is so lved by the device of using the
P-mac hine emul ator fo r eac h of N-mac hines
as the onl y machine-specifi c program, and
widely publi shing the emulators at as Iowa
cost as poss ibl e.

Thi rd, the P-code object code for m is a
semant icall y co mpac t I-e presentati on whi ch
in fac t minimi zes the number of bits neces
sary to co mmuni cate a program to the
sys tem wh ich the end user employs. (Yet it
maps direc tl y in to the so urce code ex pressed
in Pasca l as part of the documentation of t he
program product in pl ace of fl owcharts or
other devi ces.) This considerat ion is impol-
tant to the re lative ly slow 10 dev ices such as
FM sub car ri er broadcasts of programs,
prin ted bar code co py of programs, audio
channel recording of programs, phone
network tra nsmi ss ion of programs, or sil icon
real estate of read onl y memory parts (as
ins pired by Texas Instruments' SR-59
"So lid State Software" and hinted at by
every other semico nductor man ufact urer
interes ted in di stribu t ing compu te rs at retail).

Why Not Publish Machine Readable Source
Code Instead of an In termediate Language
Representation ?

The intention of th is argum ent is to

prov id e a way fO!' compiled code to be
distri buted for use with syste ms whic h have
diverse microprocessor archi tectu res and
detai l implementatio ns. A key to publish ing
software inex pensi ve ly is the req uireme nt
that every detail copy of the software pub
li shed be id entical. Further, a ce rta in defini
t ion of th e "lowest common denominator"
of the se t of systems is requi red.

One way of publi shing which is guaranteed
to be amenable to a wide vari ety of detai l
representatio ns is to publish the machine
readabl e source code of software. Bu t the
shee r vo lu me of the code for a well docu
mented source li st ing argues for a way
which is more economi ca l of th e use r's ti me
and energy. By publ ishin g t he mach in e read
ab le but mac hine ind epend ent in termediate
language object code co mpiled from a
printed source li st ing (also part of a product),
th e executa ble re presen tat ion can be loaded
in to the mach ine much more quick ly; for
pl'Ogram represe ntat ions in read onl y memory
which are mass pl'O du ced, an inte rmediate
code represe ntation is also favOl'ab le because
of co mpactness re lat ive to source code.

To summari ze, the in te rmediate language
approach provides the benefits of machine
independence coupled wi th the co mpactness
of representation inherent in the usuall y
machine dependent object code fo r a partic
uiar arc hi tecture. (Th e negative side of usi ng
a mac hin e ind epend ent re presentatio n is of
course the t ime ove rh ead of the requ ired
low leve l interp re ter_ Bu t for a we ll do ne
in termediate language inte rpreter, we wo ul d
ex pect thi s penalty coul d approach a mere
2: 1 ve rsus a ty pica l 20 :1 or worse penalty
fo r d irect interpretatio n of the source code.) -

M9900 CPU-16 BIT MINI for the 5-100 BUS with PASCAL
The M9900 CPU brings the most powerful single
chip processor available today-the TI TMS9900-
to the S-100 bus and supports it with powerful
software. Included with the CPU board are Disc
Operating System, BASIC, Assembler, Linking
Loader, Text Editor, and I nteractive Debug. The
powerful Pascal compiler is only $150 more.

Move up to a 16 bit machine and the power of
Pascal without losing the economy and selection
of the S-100 bus - move up to the M9900 CPU .

Kit $550 Assembled $700

140 August 1978 © BYTE Publications Inc

ll.u·i Il(-h i I) SUHtt.tlllH
16 Saint Jude Road

Mill Valley, Ca. 94941
(415) 383-1545

Documentation $20

Circle 219 on inq ui ry ca rd .

Some Notes About Pascal. ..

As this issue was being prepared, a
number of interesting bits of information
became available:

• Ken Bowles reports that one associate
of the UCSD Pascal project is using the
microcomputer based Pascal which the
project has created in order to write a
P-code optimizer in Pascal. The
writing of an optimizer program is not
in itself particularly noteworthy, but
the fact that this optimizer is being
written for Pascal compiler output of a
Cray-7 compu ter shows ample evidence
of the relative machine independence
of Pascal techniques. Here we find the
LSI-77 based Terak machines at UCSD
(typically a fully loaded LSI-77 with
keyboard, bit map graphiCS, one
floppy drive) being used to write,
debug and check out programs for one
of the world's larges t and fastest com
puters, the Cray-7 . (How fast? Fast
enough so that light speed propagation
limits in the wires become a nontrivial
consideration in the physical design of
the machine.) Yet the Cray-7 uses a
dialect of Pascal for systems program
ming, and even has a FORTR AN
compiler which uses P-code as its inter
mediate language.

• We note that even the US Defense
Department likes Pascal as a replace
ment for such monstrosIties as
jO VIA L. Two contracts for further
language design efforts on the "Steel
man" phase of the search for a
"DOD-7" language definition have just
been announced, with Intermetrics In c
and Honeywell-Bull being finalists in a
language design competition based on
preliminary proposals. Much of the
content of this language definition is
expected to be inspired by Pascal, even
if it is not a proper superset of the
language.

• From the industrial side, Texas Instru
ments Inc has a version of Pascal
which is supported for the 990 series
of minicomputers, where "supported"
means that it is available for use with
their dis/? systems, marketing people
are pushing it at seminars for 990
system users, and a comprehensive
manual describing the system is
available. The 990 series of minicom
puters of course includes the micro
computer version of the processor,

which is the TMS-9900, and is one of
the logical choices for a serious home
brewer or designer of a custom micro
computer system which must use a fair
amount of complicated software. The
990 version of Pascal is probably a
little too expensive for the individual
to purchase, but it represen ts a very
good investment for a commercial user.

• Finally, as we went to press with this
issue in mid-May, a standards confer
ence, called by Ken Bowles, was
scheduled for mid-july at San Diego.
A ttendance was expected from the
worldwide Pascal community, as well
as represen tatives of major industrial
concerns, with the intent of defining a
set of "standard" extensions to the
Pascal language of the j ensen- Wirth
report. We expec t to have some
comments in a future issue about the
major poin ts covered in that standards
conference. (Of course, the reason for
standards must be properly under
stood: a language standard provides a
reference so that any implementer can
flag users about how his particular
system deviates from the standard.
This philosophy is seen throughout
computer technology in areas as
diverse as character sets for terminals
and FORTRAN I V compilers which
use the ANSI standard model. A Pascal
standards consensus already exists in
the j ensen-Wirth report published by
Springer- Verlag, and the purpose of
the conference is to define an exten
sions set that covers the superset of
the original language necessary to
enhance the practicality of the lan
guage in real world situations.)

Pascal is one of the most exciting devel
opments with respect to personal computing
we have seen in recen t years. The small
computer is finally getting to a point where
the professionally oriented individual can
afford (at the price of a typical new auto
mobile) a computer with some of the most
advanced software development character
istics possible in today's computers. just as
a crank starter can get the engine going on
an automobile, BASIC and assembly lan
guage can indeed be used to program com
puters. But if one really wants to use an
automobile conveniently, an ignition switch
and electric starter are now considered
essen tia!. The moral of this little simile is
that Pascal is the electric starter of the
computer world..

August 1978 © BYTE Publications Inc 141

	Cover
	Index
	In This BYTE
	Editorial
	Letters
	Technical Forum: A Letter Exchange: Extending S-100 Bus?
	About the Cover
	On Building a Light-Seeking Robot Mechanism
	Languages Forum: A Homebrew Pascal Compiler
	Clubs and Newsletters
	Compilation and Pascal on the New Microprocessors
	BYTE's Bugs
	The Number Crunching Processor
	PASCAL: A Structurally Strong Language
	Philadelphia's 179 Year Old Android
	Antiqu eMechanical Computers Part 2: 18th and 19th Century Mechanical Marvels
	In Praise of PASCAL
	A Proposed Pascal Compiler
	Event Queue
	Pascal versus COBOL: Where Pascal Gets Down to Business
	Designing Structured Programs
	Ciarcia's Circuit Cellar: Let Your Fingers Do the Talking - Add a Noncontact Touch Scanner to Your Video Display
	JACPOT
	Pascal verus BASIC: An Exercise
	Whats New?
	Unclassifed Ads

