tditorisl

By Carl Helmers

Based on a computer
graphic suggestion by
students Joel McCormack
and Owen Hampton at
UCSD, we arranged with
Russell Myers for this
Statement of an extreme
opinion about Pascal. . . .

A Vision of an Industry

In mid-March of this year, | finished a
trip to the West Coast by having a day long
meeting with Ken Bowles and his associates
at the University of California, San Diego.
The purpose of this meeting was to explore
some of the possibilities which arise from
the standardization of extensions to Niklaus
Wirth’s language Pascal, and the equally
important implications of the technology of
intermediate languages such as the optimized
form of “P-code” developed at UCSD.

| came to this meeting with a background
of familiarity with the reasons for encour-
aging highly structured languages such as
Pascal. Before starting BYTE, | had been
involved with the NASA HAL/S language
developed by my employer of the time,
Intermetrics Inc of Cambridge MA. | lived
and breathed considerations of software
reliability, ease of program design and the
conceptual economy of a detailed program
representation which doubles as the docu-
mentation of the algorithm. My personal
experiences were with the context of the
need to “‘man rate’ the flight software of a

Al A

) 1978 by Chicago Tribuna-N.Y. News Synd. tnc
hts Ratarved

“UCSD Pascal”

6 August 1978 © BYTE Publications Inc

contemporary spaceship through the use of
high reliability software tools and techniques.
These points are made elegantly in a number
of books and papers which have been
published on the subject to date.

What came out of this meeting with Ken
Bowles is a vision of an important synthesis
of machine independent software representa-
tions, the technology of printing machine
readable software on paper, and the distribu-
tion of software in the form of convention-
ally printed and bound publications. It is a
vision of what the software publishing
business could look like over the course of
the next few years.

Out of this vision of a machine independ-
ent software publishing industry comes a
serendipitous justification for support of
Ken Bowles’ efforts to establish a ‘‘band-
wagon’ effect of support for the Pascal
language and machine independent software
systems. The purpose of this essay is to
discuss the present dimensions of the soft-
ware publishing problem, the technology
which exists for preparing and printing
machine readable representations, and the
vision of machine independent software
publishing which Ken Bowles and | saw
inherent in the Pascal P-code technology as
we discussed it that day.

Publishing Software

As the users of the personal computer
expand in number, the means of distribution
of software become critical to those who
would distribute such software. In personal
computing we are faced with a kind of
problem which is completely new in the
computer industries: the number of machines
installed is becoming incredibly large by
standards of the past 20 years, and the price
paid per unit installation is becoming incred-
ibly small. The computers which are a
potential market for software are in the
initial stages of becoming a mass market: too
large a market for the custom craftsmanship
of the traditional software vendor. To be
convenient for the customers programs must
be distributed with a machine readable copy
which eliminates the need for hand key-

Continued on page 133

Continued from page 6

stroking of programs or object code for
programs. The traditional manual and job
shop methods of production of copies of
software for distribution are not appropriate
when we think of a mass market of 10,000

to 100,000 copies (or more?) of a program’

distributed via retailers and mail order
houses with a retail price of (for example)
$9.95.

The Software Distribution Model

Given an identifiable set of computers
with sufficiently similar characteristics, soft-
ware can be marketed and distributed to
multiple users.

The “sufficiently similar” characteristics
which make a program marketable to mul-
tiple users include the formal representation
of the software, and the machine readable
medium in which the software is delivered.
The machine readable representation of a
program product is always accompanied on
delivery by extensive printed documentation.
At a minimum this documentation describes
how to use the product; in the optimal case
it includes details of the actual algorithms
employed. To summarize, the key points of
a delivered product are:

® Formal representation.
® Machine readable medium.
® Documentation.

I'll be making evaluations and comments
largely on the subject of formal representa-
tion from the point of view of the new mass
market for software which is developing in
the personal computing field.

Formal Representation

The formal representation of programs to
be distributed by a software vendor is one of
the key choices which has to be made. At
one extreme, the vendor could provide
extremely machine dependent and configu-
ration dependent low level code for a
particular computer system product. At the
other extreme, the vendor of software might
provide a largely machine independent
formal representation in a high level language
shared by a number of computers. At an
intermediate point between these extremes,
especially in an era of mass production of a
small number of processor architectures as
microcomputer systems, we find the possi-
bility of delivering configuration independent
but machine dependent relocatable repre-
sentations of low level code for a particular
microprocessor instruction set.

For that class of software products
supplied by the original manufacturer of a

particular computer system, there is no
problem providing compatible software at
whatever level of representation is chosen.
The manufacturer of a system after all
controls the detail choices with respect to
processor hardware, system configuration
and systems software. Since all the details
are decided by the particular design, it is
even practical to market software in the
form of a memory image at the lowest
level (possibly in read only memory parts).
Since the choice of processor is well defined,
the manufacturer can also provide modules
of software represented as relocatable
machine code, along with a suitable loader
program which is part of his systems soft-
ware. Since the detailed choice of high level
language processors is well defined, the
manufacturer can also provide applications
and systems programs represented in Ais or
her high level language. The manufacturer
of computer systems products at most must
deal with a small integer number of pro-
cessors and high level languages.

We find this model of software delivery
by the manufacturer of a system throughout
the computer industry to date. Every main-
frame and minicomputer comes with low
level representations of systems software and
(eventually, if not at introduction) with user

Articles Policy

BYTL Publications Inc is continually
seeking quality manuscripts written by
individuals who are applying personal
computer systems, designing such sys-
tems, or who have knowledge which
will prove useful to our readers. For
a more informal description of pro-
cedures and requirements, potential
authors should send a self-addressed,
stamped envelope to BYTE Authors’
Guide, 70 Main St, Peterborough NH
03458.

Articles which are accepted are
purchased with a rate of $45 per pub-
lished page, based on technical quality
and suitability for the intended reader-
ship. As to articles appearing in BYTE
magazine, each month, the authors of
the two leading articles in the reader
poll (BYTE's Ongoing Monitor Box or
“BOMB’’) are presented with bonus
checks of $100 and $50. Unsolicited
materials shauld be accompanied by
full name and address, as well as return
postage.®

e Some models under $100!

¢ Direct from AJ factory
 30-day parts/labor warranty

e Nationwide AJ service network
¢ Fast delivery

e Limited quantities

CA 95131.

Circle 9 on inquiry card.

/Tremendous Savings
on Refurbished AJ
Couplers/Modems

Your chance to buy the best from the world leader in
data communications. We have a variety of couplers
and modems—formerly on lease to our customers
—fully refurbished at our factory. This is a rare
opportunity for you to have the same models used
by the largest companies in the world.

e Variety of models—up to 1200 baud

Act now. First come, first served. Write Anderson
Jacobson, Inc., 521 Charcot Ave., San Jose,

OR CALL (408) 263-8520

\

ANDERSON

JACOBSON

August 1978 © BYTE Publications Inc 133

Circle 43 on inquiry card.

’-------_-

Plus Shipping

IN KIT FORM and Handling

¢ 80 CHARACTERS/LINE ¢ 75-19,200 BAUD

* 24 LINES/SCREEN e FULL & HALF DUPLEX
* ADDRESSABLE CURSUR « ODD/EVEN/NO PARITY
¢ 9,10, or 11 BIT WORDS e RS232 INTERFACE OR
20 ma CURRENT LOGP

GET COMPLETE DETAILS WITH A DIRECT CALL:

214 258-2414 TWX 910-860-5761 TELEX 73-0022
.v' .t I 800 527-3248

equipment brokers
930 N. BELTLINE « IRVING, TEXAS 75061

~---- NN B NN N SN R B N

’-__ -——--------~

™ s
" OQ.%\\\\ o“ %

ADM-3A ‘756"

August 1978 © BYTE Publications Inc

LSI-11 TIME

It's TIME you brought your LSI-11 up to DATE. TIME and
DATE, two important parameters in the computer world, are
available to your LSI-11 on one DUAL SIZE BOARD. When
requested, the TCU-50D will present you with the date (month
and day), time (hour and minutes), and seconds. Turn your
computer off and forget about the time — your battery sup-
ported TCU-50D won't, not for 3 months anyway. The correct

date and time will be there when you power up.

The TCU-50D is shipped preset to your local time, but can be set

to any time you want by a simple software routine.

AT $295

YOU CAN'T AFFORD TO IGNORE TIME

Time is only one way we can help you upgrade your LSI-11 or
PDP-11 system. We'd also like to tell you about the others. So
contact Digital Pathways if you're into -11's. We are too.

4151 Middlefield Road * Palo Alto,
California 94306 ¢ Telephone (415) 493-5544

@ DIGITAL PATHWAYS INC.

Circle 91 on inquiry card.

libraries of high level and low level programs
applicable with the particular systems. At
the lowest end of the personal computer
spectrum of functions we find a similar case:
the major programmable calculator manu-
facturers with their independent incompat-
ible systems provide users with libraries of
magnetic cards or read only memories
expressed in a form consistent with the
particular machines.

But a characteristic of manufacturers of
computers is already evident again in the
personal computer world, just as it previously
existed in the world of minicomputers and
larger computers: whatever the resources of
the manufacturer, there is no way it can
cover all the myriad applications possible for
its computer. To draw an analogy from
music, we hardly expect a piano or-organ
company to supply sheet music (‘‘software’’)
with the musical instrument which is suit-
able for every user’s tastes. The music “‘user”’
purchases scores according to personal likes.
A personal computer provides an analogous
opportunity to exercise tastes in software
characteristics. Even for the traditional high
priced computer, customization through
software is for the most part independent of
the manufacturer once the basic operating
system and software tools have been defined.

In software, the past has seen a large
number of custom software vendors grow
large in the niches of large scale computing
and minicomputer technology. As the
number of people using personal computer
systems increases due to the low price of
these systems, independent software pub-
lishing seems to be one of the most promising
ways to assure a wealth of options to the
user, provided that the difficulties of the N-
representation problem can be overcome.

The N-Representation Problem

For the moment, let’s ignore all reference
to the problem of machine readable data
compatibility and simply look at the user’s
point of view with respect to software. The
user has purchased computer X for use in
personal or professional contexts. When he
or she has made the commitment to the sys-
tem, our user can in general expect to be
able to conveniently load programs created
on other X systems from the same manu-
facturer. But what if he or she wants to load
a program created by a neighbor on com-
puter Y from another manufacturer? Or if
the user wants to load a program from an
independent software vendor? The variety of
representations available in the traditional
world of computers as well as the personal
computer world is large — even within the
framework of nominally machine indepen-
dent high level languages.

Confining ourselves just to machine

dependent microcomputer assembly lan-
guages, there is a wide choice of architec-
tures. At present we find the 8080, Z-80,
6502 and 6800 dominate personal computer
architectures. Over the next two to three
years we will find added to this list the
9900, 8086, Z-8000 and 6809. If the user of
a personal computer sees a neat application
system which only comes represented in
8080 code when he has a 6800, that user
is effectively unable to run it without a
recoding effort. (But even confining our-
selves to assembly languages of the same
machine design, there is often incompati-
bility. One vendor of Z-80 software provided
an assembler using a hybrid extension of
8080 mnemonics, while others use Zilog
Z-80 mnemonics. So the same processor has
at least two low level languages available.)

Turning to high level languages, the
machine independence of software becomes
much greater. But current practices in the
personal computing industry are far from
machine independent. There is a de facto
standard BASIC interpreter in existence,
available on most 6502 and 8080 or Z-80
systems. This standard high level language
is that defined by the Microsoft company.
Extensions and changes of detail accompany
each implementation, especially when a
given computer has specialized graphics
capabilities not available on all the other
computers, With the Microsoft design, the
major portions of an extended BASIC are
identical over a large set of machines.

But Microsoft BASIC is not the only
interpreter in existence. A very prominent
BASIC in terms of the number of users
employing it as represented in the unsolicited
articles received at BYTE is the North Star
BASIC interpreter. This interpreter is widely
used on 8080 and Z-80 systems because of
the wide availability of the small floppy disk
systems manufactured by that firm: buying
a North Star disk peripheral for an S-100 bus
system gets the user a limited operating sys-
tem and the North Star BASIC. The North
Star BASIC interpreter and the Microsoft
interpreter are inconsistent in a number of
fundamental ways in areas of string handling
and array dimensions. And these are but the
two most prominent interpreters as seen
from my point of view as editor of BYTE. |
could almost comment that manufacturers
take any random formulation of a language
vaguely resembling BASIC as originally
implemented at Dartmouth, and call it
BASIC for marketing reasons. (The tempta-
tion to add or delete ‘‘features’’ in a language
is of course not confined to BASIC alone.)

From the point of view of a software
publisher, the economies of scale obtainable
from a mass market will only be obtained if
we use a common representation for applica-

Circle 40 on inquiry card.

systems, inc.

Boards D© Something

If your system needs to know
what time it is, our CL2400 is
the board for you. The present
time in hours, minutes, and sec-
onds is always available for input,
and is continuously updated by 4 :
the highly accurate 60 Hz power CL240() Real Tlme Clock
line frequency. Need periodicin- $98/ Kit $135/ Assembled
terrups? The CL2400 can do

that, too, at any of 6 rates. Reference manual with BASIC and
assembly language software examples included. r

If your system needs on/off con-
trol of lights, motors, appli-
ances, etc., our PC3200 System
components are for you. Con-
trol boards allow one 1/0 port to
control 32 (PC3232) or 16
(PC3216) external Power Con-
trol Units, such as the PC3202
which controls 120 VAC loads to

400 Watts. Optically isolated,low -PC3200

voltage, current-limited control Power Control System
lines are standard in this growing PC3232 $299/Kit $360/Assm.
product line. PC3216 $189/Kit $240/Assm.

PC3203 $39.50/Kit $ 52/Assm.
P.O. Box 516

La Canada, CA 91011
(213) 790-7957

(formerly comptek)

(o Sl

BKRS)

8K STATIC RAM

DIGITAL/ 1L ASSEMBLED

RELIABILITY
QUALITY
DEPENDABILITY

ADDRESSING T¥ososroar A sloos smaoTen
P ROT E C T ON-BOARD SWITCH WRITE PROTECTS/UNPROTECTS ALL 8K
OR EACH 4K BLOCK CAN BE PROTECTED VIA FRONT PANEL
BUFFERING ONE LS LoAD Fen g UTERED
LOW POWER " 2tozrems-me s imca Ly eroees 15 aves
WAIT STATES! | Sleaswarsms uaveesascmm
QUALITY D S s e e et GLD GONTAGTS
GUARANTEE oS o L D A SO R L prety WHAANTY
DELIVERY O G0 O FOR MOFE REDFMATION |10 FESERVE
P H A N 'I’O M MEMORY DISABLE IS IMPLEMENTED VIA PHANTOM (PIN 67)
TESTING B T S g o e STAS2
INTRODUCTORY 450 ns 250 ns
SPEC'AL :glscEEMBLED/TESTED $1499_.5 $1899—5
CALIFORNIA RESIDENTS ADD 6% TAX
(714) 992- 5540 o e
2555 E. CHAPMAN AVE.
SUITE 604
GITA
FULLERTON, CA 92631 DIGI L _I'L)

Circle 294 on inquiry card.

August 1978 © BYTE Publications Inc

135

tions and systems programs which can be
correctly executed by any low level architec-
ture available in the marketplace. With a
large number of mutually incompatible soft-
ware systems, this is not the case. It is my
contention that the N-representation prob-
lem can be solved once by use of appropriate
intermediate language representation and
efficient interpreters for particular micro-
processors. Then the key part of an applica-
tion or systems program product is the high
level language documentation, the equivalent
lower level intermediate language object
code, and the user documentation: all of
course independent of the final machine
upon which the software will run. The only
machine dependent part which needs to be
published is the intermediate language
interpreter for a given machine and system
configuration. This machine dependent part
needs only one definition and one publica-
tion version.

Given an interpreter definition, the
standard high level language, and the stand-
ard intermediate language representation of
programs, the user can be assured that once
the object code is in place in his machine,
the program will run with the same charac-
teristics as described in the documentation
for a radically different machine. (Hardware
differences due to favorable number repre-
sentations will make differences in precision
and accumulated numeric error effects of
course.)

Ruling Out BASIC

To the software publisher, a choice of a
high level language and intermediate repre-
sentation for executable code presents a
moderate problem. The widely used BASIC

interpreters could be used for a perfectly
functional representation for the code of
many programs. But such interpreters suffer
from many inherent disadvantages:

® [ack of uniform representation.

® Slowness of execution.

® Archaic nature of BASIC.

® | ack of a compact machine independ-
ent compiled form.

I've already commented on the lack of
uniformity in the various BASIC implemen-
tations. The slowness of execution is inherent
in this type of interpreter. In extreme cases
an active search through memory for a label
op code is used to find targets of subroutine
calls or unconditional transfers. At best
there is a level of semantic interpretation
necessary to convert a condensed version of
the source code into executed code. Many
applications and systems programs cannot
tolerate the lack of speed inherent in such
interpreters. But BASIC can be compiled
instead of interpreted, so this argument
alone is far from sufficient to rule out
BASIC.

More important, a language like BASIC
as presently implemented reflects an earlier
state in the evolution of computer languages,
circa the early 1960s, with innumerable
ad hoc patches and fixups to add ‘““features.”
Through the 1960s and early 1970s advances
were made in the concept of what a
computer language should be in order to
be convenient to use and conducive to
error free thinking and programming. (For
just one contrast, consider this: where the
BASIC programmer is required to go almost
to the machine language level of assigning
numbers to locations in a program, good

136

August 1978 © BYTE Publications Inc

$95 Stand Alone Video Terminal

‘hr:ﬂ‘)_:tx

LR S

[]estd

SCT-100 FEATURES:
@64 X 16 line format with 128 displayable characters
® Scrial ASCIl or BAUDOT with multiple Baud rates
@ 5187 Assembled or $157 Kit (Partial Kit $95)
@ I'ull cursor control with serolling and paging
@® On board power supply

® Many additional features
Call or write today. MC/VISA accepted

XITEX CORP. P.O. Box #20887

Dallas, Texas, 75220 @ Phone (214) 386-3859
Overseas orders and dealer inquiries welecome

Circle 400 on inquiry card.

contemporary high level languages such as
Pascal and its relatives allow the programmer
to use meaningful names based on the appli-
cation being programmed.)

Finally, BASIC as implemented in most
cases suffers from the lack of a compact
externally available machine independent
version of the compiled form of a program.
This is an important requirement for the
software publisher, since executable code
must always be supplied in some machine
readable representation, and compactness of
representation is important if the inconven-
ience of relatively slow input techniques is
not to discourage the user.

For the reasons just summarized, BASIC
is not the ultimate form in which programs
are best published. But if BASIC is not the
personal computing representation which
minimizes the N-representation problem,
then what is a better choice?

Enter Pascal

My own personal interest in Pascal came
about for reasons which | summarized in the
December 1977 BYTE, page 6, in an essay
entitled “ls Pascal the Next BASIC?” In
this issue several excellent articles including
those by Ken Bowles, Chip Weems and Allan
Schwartz provide further rationale by way
of tutorial argument and example.

This personal viewpoint with respect to
Pascal is that of a wser of a personal com-
puter system who wants to convenient/y and
quickly implement applications and systems
software projects ranging from the sublime
to the ridiculous. In the sublime category, |
include systems software as an art form in
itself. I also include writing systems software
for my pet projects in musical applications

of computers, sophisticated games, and
some experiments in the exploration of
artificial intelligence concepts. In the
ridiculous category, | include such mundane
tasks as trivial games, income tax calcula-
tions, personal mailing lists of friends and
relations, etc. The point about Pascal to be
made here is that it is a language well adapted
to the utility of computing, whatever your
personal definition of utility is. In the range
of applications | expect that the Pascal
approach to structured, self-documenting,
machine independent code will suffice with
only an extremely rare necessity to resort to
ad hoc kluges in the name of time or memory
space efficiency.

From general reading | knew that a Pascal
compiler was available and easily transferable
to new machines through the use of the
technique of “P-code’ intermediate language
representations. This availability throughout
the academic world was one of the reasons
for the spread of Pascal, for it is one thing to
extemporize about the virtues of a represen-
tation and another thing to be able to
actually write and examine the properties of
code in that representation. Since the
original Pascal compilers from Jensen and
Wirth et al in Zurich were written in Pascal,
producing a P-code intermediate language
output file, the task of making the compiler
run on a totally new machine architecture
was reduced to a relatively simple task of
writing an emulator for the hypothetical
“P-machine’” which executes ‘“‘P-code’ as its
machine language.

What | did not know at the time of my
earlier comments in these pages is the extent
to which that P-code technology had already
been applied to small computer systems, in

A/BASIC® 6800 COMPILER

MICROWARE'S new A/BASIC' compiler can break the software bottleneck in your M6800 system.
A/BASIC compiles BASIC source programs to fast, memory-efficient machine language programs.
A/BASIC is a cost-effective alternative to slow interpreters or complex assemblers at a price you can afford.

esNOW AVAILABLE FORDISK BASED AND CASSETTE SYSTEMSee
e COMPILED PROGRAMS RUN MUCH FASTER THAN INTERPRETERS
e GENERATES PURE M6800 CODE — NO RUN-TIME PACKAGE REQUIRED
e PROGRAMMER HAS COMPLETE CONTROL OF MEMORY ALLOCATION

* SUPPORTS LOGICAL, REAL TIME, AND EXTENDED STRING OPERATIONS

A/BASIC V1.0C 8K CASSETTE-ORIENTED VERSION* on K.C. CASSETTE
*(Cassette version requires RT/68MX)
A/BASIC V1.0D 12K DISK EXTENDED (MINIFLOPPY—Specify S.S.B. or SWTPC)
BANKAMERICARD ® MASTERCHARGE

We'd like to tell you more about A/BASIC' and other advanced M6800 products.
Write or call today for complete information and our free catalog.

MICROWARE" SYSTEMS CORPORATION

P.O. BOX 954 « DES MOINES, IOWA 50304 (515) 265-6121

Lrademark Reg. Pend

Circle 240 on inquiry card. August 1978 © BYTE Publications Inc 137

August 1978 © BYTE Publications Inc

BETTER

BASIC
FOR SOL

Introducing G/2 Extended
Basic for Processor Tech-
nology’s SOL computer
series. The best Basic you
can buy.

Developed by Micro-
soft}" the industry leader in
microprocessor languages,
and fully debugged and
field-proved, this 15.5K pro-
gram offers such outstanding
features as string arrays,
16-digit accuracy, fully
descriptive error messages,
automatic line numbering
and renumbering in selected
increments, long vanable
names, trace function for
easy debugging, and many
other superior capabilities.

G/2 Extended Basic can
read tapes written in PT’s 5K
and Extended Basic. This
allows you to use all your pre-
viously developed programs.

Available now on cassette
tape with full documentation.
At your dealer, or write for
information.

THEREASON

YOU BOUGHT "
YOUR COMPUTER. e

LE:Q—’...L GRT Corporation
Consumer Computer Group
1286 N. Lawrence Station Road
Sunnyvale, California 94086

(408) 734-2910

Circle 149 on inquiry card.

particular through the work of the people at
the University of California at San Diego
(UCSD). The UCSD Pascal project has
created a nearly machine independent low
cost operating system which includes Pascal
as the principal high level language, all the
usual disk filing system features, support of
high resolution bit map graphics including
user definable font storage for the character
set, an advanced cursor oriented text editor,
and interactive compilation and editing
features. All the systems software in this
package is written in Pascal with the ex-
ception of the P-code interpreter and asso-
ciated detail hooks to the hardware.

The hardware dependent core has already
been implemented and is readily available
for LSI-11, 8080, Z-80 and 8085 processors.
(The cost is only $200 for individual orders,
with UCSD quoting a $10 royalty per copy
to manufacturers distributing systems in the
highest volumes.) At this writing, in the
small computer arena, three systems are
available which come with UCSD Pascal
as a key feature: an LSI-11 system packaged
by Terak Corp and heavily used at UCSD,
an 8085 processor in a elegant wood finish
package with dual floppy drives manu-
factured by Northwest Microcomputer
Systems, and a compact Z-80 system with
dual floppy disks manufactured by Altos
Computer Systems. Individual users who
have 8080 floppy disk systems with the
CP/M operating system and enough main
memory get a floppy disk to bootstrap
UCSD Pascal.

A Serendipitous Result

The nature of the implementation of
Pascal compilers, and the UCSD Pascal in
particular, leads to an important byproduct:
by simply using the UCSD Pascal compiler
as the mode of expression of applications
programs to be published, it is possible to
provide a compact, machine independent
representation of programs which greatly
simplifies the N-representation problem for
the independent software distribution house.
The intent of discussing this serendipitous
result in print at all is to show the way in
which such independent software houses can
indeed solve one of the thornier issues and
provide their customers with programs
which are compiled once yet will run on any
one of a number of personal computer
systems.

What do we have which already exists in
a form which can be readily adapted to a
number of small computers? We have the
work at UCSD which has produced P-code
interpreter based systems for LSI-11 and the
family of microprocessors inspired by the
8080 (8080, 8085, Z-80). By the end of the

summer of 1978, indications are that UCSD
will also have bootstrapped the Pascal
compiler to run on 6502 and 6800 architec-
tures. Taking this P-code interpreter as the
input, it is not that difficult to conceive of a
self-contained software system which will
run in a 16 K byte or larger personal com-
puter system and will contain the necessary
interactive user interfaces to load and run a
program expressed in the P-code intermediate
form as output from the Pascal compiler,
but without the necessity of having the full
UCSD system available locally to support
local compilations.

As a means of demonstrating this con-
cept, a student at UCSD will spend some
time this summer creating and characterizing
a system based on the UCSD P-code inter-
preter software for two different machines.
This stand alone system will run in the
typical current memory sizes of 16 K to
24 K found in personal computers. The goal
is to demonstrate a system which can read in
a P-code object file (possibly in bar code or
audio format), then execute the object file.
Issues to be addressed are those of designing
the details of the program so that its machine
dependent parts can be relocated easily, and
so that initial patches for input/output (10)
conventions can be created without excessive
mental effort. The machine independent
part of this stand alone operating system will
be written in Pascal.

In principle, expanding this work to a
greater number of processors, it is possible
to create a set of Pascal P-code machine
emulators which can be published once and
only once for each common machine archi-
tecture and personal computer manufac-
turer’s configuration, so that this ‘virtual
machine’’ can be used by a whole family of
independent software vendors as a target
machine for their wares, rather than requiring
each software vendor to solve the N-machine
problem separately. By inexpensively pub-
lishing the code of the P-machine emulators,
we hope to help kindle both an interest in
Pascal as a source language and a chain
reaction of simplification in the software
conventions which must be addressed by
independent software vendors. Only time
will tell whether or not we accomplish this
goal.

A Solution to the N-Machine Problem

Given the existence of such inexpensive
standard emulators for the P-machine which
executes P-code, a number of beautiful
effects become evident for the distribution
of application and systems software among a
large number of users.

First, since P-code is conducive to use of
Pascal as a source language, there will be

Circle 149 on inquiry card.

BETTER
BASIC

FOR
PC

Introducing G/2 Standard
Basic for the SWTPC com-
puter series. It'll load faster
and do more than you ever
thought possible.

Developed by Micro-
soft; the industry leader
in microprocessor languages,
and proved for more than 3
years in MITS applications,
G/2 Standard Basic is now
available for the first time
for use with Southwest Tech-
nical Products Corporation’s
6800 hardware.

Four to eight times faster
than the basic you're now
using, this interpreter offers
string arrays, extensive string
functions, Peek, Poke, Wait
and Continue, direct execu-
tion of statements in the
calculator mode, 10 nested
machine language sub-
routines, multidimensional
arrays and much more. And
it uses only 7K of memory.

Available now on cassette
tape with full documentation.
At your dealer, or write for
information.

THEREASON
YOU BOUGHT 5
YOUR COMPUTER. 2

BRT] GRT Comporation

Consumer Computer Group
1286 N. Lawrence Station Road
Sunnyvale, California 94086
(408) 734-2910

August 1978 © BYTE Publications Inc

139

a trend toward use of Pascal to express
algorithms — a result which is laudable on
the abstract and practical grounds of Pascal’s
beauty as a self-documenting and structured
representation of programs. (We already see
this trend with respect to BYTE articles
presently queued for publication in the near
future.)

Second, the N-machine problem of distri-
bution is solved by the device of using the
P-machine emulator for each of N-machines
as the only machine-specific program, and
widely publishing the emulators at as low a
cost as possible.

Third, the P-code object code form is a
semantically compact representation which
in fact minimizes the number of bits neces-
sary to communicate a program to the
system which the end user employs. (Yet it
maps directly into the source code expressed
in Pascal as part of the documentation of the
program product in place of flowcharts or
other devices.) This consideration is impor-
tant to the relatively slow 10 devices such as
FM subcarrier broadcasts of programs,
printed bar code copy of programs, audio
channel recording of programs, phone
network transmission of programs, or silicon
real estate of read only memory parts (as
inspired by Texas Instruments’ SR-59
“Solid State Software’” and hinted at by
every other semiconductor manufacturer
interested in distributing computers at retail).

Why Not Publish Machine Readable Source
Code Instead of an Intermediate Language

Representation?

The intention of this argument is to

provide a way for compiled code to be
distributed for use with systems which have
diverse microprocessor architectures and
detail implementations. A key to publishing
software inexpensively is the requirement
that every detail copy of the software pub-
lished be identical. Further, a certain defini-
tion of the “lowest common denominator”
of the set of systems is required.

One way of publishing which is guaranteed
to be amenable to a wide variety of detail
representations is to publish the machine
readable source code of software. But the
sheer volume of the code for a well docu-
mented source listing argues for a way
which is more economical of the user’s time
and energy. By publishing the machine read-
able but machine independent intermediate
language object code compiled from a
printed source listing (also part of a product),
the executable representation can be loaded
into the machine much more quickly; for
program representations in read only memory
which are mass produced, an intermediate
code representation is also favorable because
of compactness relative to source code.

To summarize, the intermediate language
approach provides the benefits of machine
independence coupled with the compactness
of representation inherent in the usually
machine dependent object code for a partic-
ular architecture. (The negative side of using
a machine independent representation is of
course the time overhead of the required
low level interpreter. But for a well done
intermediate language interpreter, we would
expect this penalty could approach a mere
2:1 versus a typical 20:1 or worse penalty
for direct interpretation of the source code.)m

140

M9900 CPU-16 BIT MINI for the S-100 BUS with PASCAL

The M9900 CPU brings the most powerful single-
chip processor available today—the TI TMS9900—
to the S-100 bus and supports it with powerful
software. Included with the CPU board are Disc
Operating System, BASIC, Assembler,
Loader, Text Editor, and Interactive Debug. The
powerful Pascal compiler is only $150 more.

Linking

Move up to a 16 bit machine and the power of
Pascal without losing the economy and selection
of the S-100 bus — move up to the M9900 CPU.

Kit $550

August 1978 © BYTE Publications Inc

Assembled $700

Marinchip Systems

¢ f n‘ ; AN

16 Saint Jude Road
Mill Valley, Ca. 94941
(415) 383-1545

Documentation $20

Circle 219 on inquiry card.

Some Notes About Pascal. . .

As this issue was being prepared, a
number of interesting bits of information
became available:

® Ken Bowles reports that one associate
of the UCSD Pascal project is using the
microcomputer based Pascal which the
project has created in order to write a
P-code optimizer in Pascal. The
writing of an optimizer program is not
in itself particularly noteworthy, but
the fact that this optimizer is being
written for Pascal compiler output of a
Cray-1 computer shows ample evidence
of the relative machine independence
of Pascal techniques. Here we find the
LSI-17 based Terak machines at UCSD
(typically a fully loaded LSI-11 with
keyboard, bit map graphics, one
floppy drive) being used to write,
debug and check out programs for one
of the world’s largest and fastest com-
puters, the Cray-1. (How fast? Fast
enough so that light speed propagation
limits in the wires become a nontrivial
consideration in the physical design of
the machine.) Yet the Cray-1 uses a
dialect of Pascal for systems program-
ming, and even has a FORTRAN
compiler which uses P-code as its inter-
mediate language.

® |We note that even the US Defense
Department likes Pascal as a replace-
ment for such monstrosities as
JOVIAL. Two contracts for further
language design efforts on the “‘Steel-
man’’ phase of the search for a
“DOD-1"" language definition have just
been announced, with Intermetrics Inc
and Honeywell-Bull being finalists in a
language design competition based on
preliminary proposals. Much of the
content of this language definition is
expected to be inspired by Pascal, even
if it is not a proper superset of the
language.

® from the industrial side, Texas Instru-
ments Inc has a version of Pascal
which is supported for the 990 series
of minicomputers, where ‘supported’’
means that it is available for use with
their disk systems, marketing people
are pushing it at seminars for 990
system users, and a comprehensive
manual describing the system s
available. The 990 series of minicom-
puters of course includes the micro-
computer version of the processor,

which is the TMS-9900, and is one of
the logical choices for a serious home-
brewer or designer of a custom micro-
computer system which must use a fair
amount of complicated software. The
990 version of Pascal is probably a
little too expensive for the individual
to purchase, but it represents a very
good investment for a commercial user.

® Finally, as we went to press with this
issue in mid-May, a standards confer-
ence, called by Ken Bowles, was
scheduled for mid-July at San Diego.
Attendance was expected from the
worldwide Pascal community, as well
as representatives of major industrial
concerns, with the intent of defining a
set of ‘standard’’ extensions to the
Pascal language of the Jensen-Wirth
report. We expect to have some
comments in a future issue about the
major points covered in that standards
conference. (Of course, the reason for
standards must be properly under-
stood: a language standard provides a
reference so that any implementer can
flag users about how his particular
system deviates from the standard.
This philosophy is seen throughout
computer technology in areas as
diverse as character sets for terminals
and FORTRAN |V compilers which
use the ANSI standard model. A Pascal
standards consensus already exists in
the Jensen-Wirth report published by
Springer-Verlag, and the purpose of
the conference is to define an exten-
sions set that covers the superset of
the original language necessary to
enhance the practicality of the lan-
guage in real world situations.)

Pascal is one of the most exciting devel-
opments with respect to personal computing
we have seen in recent years. The small
computer is finally getting to a point where
the professionally oriented individual can
afford (at the price of a typical new auto-
mobile) a computer with some of the most
advanced software development character-
istics possible in today’s computers. Just as
a crank starter can get the engine going on
an automobile, BASIC and assembly lan-
guage can Iindeed be used to program com-
puters. But if one really wants to use an
automobile conveniently, an ignition switch
and electric starter are now considered
essential. The moral of this little simile is
that Pascal is the electric starter of the
computer world.m

August 1978 © BYTE Publications Inc

141

	Cover

	Index

	In This BYTE

	Editorial

	Letters

	Technical Forum: A Letter Exchange: Extending S-100 Bus?
	About the Cover
	On Building a Light-Seeking Robot Mechanism
	Languages Forum: A Homebrew Pascal Compiler

	Clubs and Newsletters

	Compilation and Pascal on the New Microprocessors
	BYTE's Bugs

	The Number Crunching Processor
	PASCAL: A Structurally Strong Language
	Philadelphia's 179 Year Old Android
	Antiqu eMechanical Computers Part 2: 18th and 19th Century Mechanical Marvels
	In Praise of PASCAL
	A Proposed Pascal Compiler
	Event Queue

	Pascal versus COBOL: Where Pascal Gets Down to Business
	Designing Structured Programs
	Ciarcia's Circuit Cellar: Let Your Fingers Do the Talking - Add a Noncontact Touch Scanner to Your Video Display
	JACPOT
	Pascal verus BASIC: An Exercise
	Whats New?

	Unclassifed Ads

