
BASIC, Computer Languages,
and Computer Adventures

Jerry Pournelle
c/ o BYTE Publications

70 Main St
Peterborough NH 03458

It's a typical Sunday afternoon here at Chaos Manor.
In one room a dozen kids are playing games on the Radio
Shack TRS-80, while here in the office I've been playing
about with the C programming language after adding a
check-writer to my accounting programs. My wife, the
only practical member of the family, gently reminds me
of my deadlines: galley proofs of a new novel , King
David's Spaceship (Simon and Schuster); two chapters of
the latest Niven / Pournelie collaboration , Oath of Fealty
(Simon and Schuster, Real Soon Now) ; plus three col
umns; a speech to a librarians' convention; and inputs for
a NASA study on America's fifty-year space plan. Some
business people worry about cash flow; for authors it's
work flow-work comes in bunches, like bananas, and
sometimes it seems everything has to be done at once.

So, since it's what we've been doing here lately, I'll talk
about computer games and programming languages; a
disparate set of topics, but not quite as unconnected as
they might seem at first glance.

languages
One of the biggest unsolved problems in the microcom

puter field is languages: which ones are going to be stan
dard? Everyone learns BASIC, of course, because it
comes with the machine, and it's a very easy language to
learn. Pretty soon, though, you come to the limits of the
BASIC supplied with the computer; and then what?

A few years ago there wasn't a lot of choice. You could
buy FORTRAN, and perhaps COBOL; you could learn
assembler; but then you were stuck. Moreover, there
didn't seem to be any obvious advantages to FORTRAN
and COBOL, both of which were not only hard to learn,
but also difficult to connect up with the computer. Most
of the books on those languages were written with big
mainframe machines in mind, and the documentation for
the small-system versions was, to put it kindly, rather
skimpy. Moreover, the user manuals were filled with
mysterious references to "logical devices" and other such
nonsense, while giving almost no clear examples of how
to get programs running on a home computer.

The result was a great expansion of BASICs. What was
once a simple teaching language, designed largely to let

222 December 1980 © BYTE Publications Inc

new users become familiar with the way computers
think, became studded with features. Every time you
turned around there was a new BASIC interpreter, each
one larger than the last, and almost none of them com
patible with each other. Whatever portability BASIC had
enjoyed vanished in a myriad of disk operations, func
tions, WHILE statements, new input formats, etc, etc,
and, at the same time, the "free" memory left over after
loading BASIC got so small that you couldn't handle
much data.

The logical end of that process is Microsoft 's newest
BASIC-BO. Understand, it's an excellent BASIC. It has
features that, not long ago, the most advanced languages
didn't have. It 's well documented-at least the commands
and functions , which are listed alphabetically, are clearly
described. The general information section could be ex
panded with profit-at present it's written for users who
are already more or less familiar with how BASIC oper
ates . There are elaborate procedures for error trapping,
and they all work. The editor has been improved . There
are procedures (not very well documented) for linking in
assembly-language subroutines. You can use long vari
able names, such as " Personal.data.l " and
"Personal.data.2", and be certain the program will know
they are different variables.

In other words, there's a lot going for it; but it takes up
24 K bytes of memory, and it's still BASIC. If you want
to understand your program six weeks after you write it,
you 'll have to put in a lot of REMark statements, every
one of which takes up memory space. As with all
BASICs, you have to sweat blood to write well-struc
tured code (and if you don't bother, that will come back
to haunt you when you want to modify the program) .
And, like all BASICs, it is slow . Fairly simple sorts, even
with efficient algorithms, take minutes; disk operations
are tedious.

I suspect that Microsoft BASIC-BO is the end of the
line; they have carried BASIC about as far as it can go .
They've done it very well, but they 've also reached the in
herent limits of the language; and those limits may not be
acceptable.

Of course most programmers have always known that

even the best BASIC interpreter wasn't good enough; that
if you add enough features to make the language useful,
you'll end up with a very slow monster that takes up far
too much memory., and that even if you could tolerate
those limits, the language itself forces sloppy thinking
and inelegant code. However, knowing the problem
didn't make the solution obvious; indeed, it's not obvious
yet . We can recognize the limits to BASIC and still not
agree on what to do about it.

There seem to be two fundamental paths. One is to
start over: to relegate BASIC to its original function as a
teaching language, and switch to some other language for
serious programming. Many took this path, and came
out with microcomputer versions of such languages as C,
APL, ALGOL, LISP, FORTH, STOIC, and Pascal.

The other way is to compile BASIC. One of the first
compiled BASICs, BASIC E, is in the public domain; I
obtained a fairly decent version with (barely) adequate
documentation from the CP 1M User's Group several
years ago . Then Software Systems brought out an im
proved BASIC E called CBASIC. It is easy to use and
features really excellent documentation, some of the best
I've ever seen. It has decent file structures; you are not
limited to either sequential or random-access disk files,
but may use sequential operations on random-access
files .

There are irritants in CBASIC, particularly with regard
to line-printer operations. CBASIC has only the PRINT
and PRINT USING commands; there is no LPRINT. To
get hard copy, you must execute a LINEPRINTER state
ment, then one or more PRINT statements, then do a
CONSOLE statement to have the copy sent to the ter
minal. Every time you do the CONSOLE statement, the
print buffer empties, and you can get unwanted stuff
printed on your hard copy; worse, you can also get un
wanted line feeds , making it tough to format hard copy
(although 'CBASIC does allow you' to output characters
through a port so that, if you are clever enough, you can
control the line printer directly; you could even make a
CBASIC program drive a Diablo for reverse printing if
you wanted to spend the time writing that program).
Another needless limitation is ' that CBASIC allows a
maximum carriage width of 133 characters, although a
12-character-per-inch printer can print lines 15B
characters long.

Irritants ' or no, CBASIC is both well designed and
well documented. It has WHILE; IF-THEN-ELSE (with
chaining); long variable names; and logical operations (IF
TAX >0 AND PRICE < MAXIMUM. ACCEPTABLE
THEN GOSUB 234 ELSE PRINT "NO GOOD" is a
perfectly valid CBASIC expression). It has the CASE
(Switch 'or ON-GOTO) statement.

And it saves memory by compiling. To use CBASIC,
one creates a program with any editor that makes ASCII
(American Standard Code for Information Interchange)
files (Electric-Pencil-created programs have to be put
through a converter), then turns the CBASIC compiler
loose on it . What comes out isn't true compilation; the
compiler strips out remarks and needless line numbers, '
and compacts the remainder into an INT (intermediate)
file ; when you ~ant to run the program, you must load in
a 10 K-byte run-time package. The INT file is still inter
preted; it is not a machine-language program. You can,
though, include scads of remarks, put each statement on

224 December 1980 © BYTE Publ icat ions Inc

a separate line, leave lots of blank space, put in rows of
asterisks, indent whole sections of the program, and thus
vastly increase program readability without using up
memory space. A CBASIC program can be written for
legibility.

But it's still BASIC. Becaus~ a program can be
reasonably well structured and self-documenting doesn't
mean that it will be; BASIC makes it easy to write incom
prehensible code and difficult not to. And CBASIC is
very slow, no faster than Microsoft BASIC-BO and often
slower. .

There's another limit. It's very hard to write long pro
grams in CBASIC. This problem is inherent in any com
piled language-whether true compilation to machine
code, or pseudocompiling to an IN! file. For example,
assume that I want to add a small feature to my account
ing package (which I did in fact write in CBASIC two
years ago) . I load the source program into the text editor.
I add the feature and hook it into the program; since I do
sweat blood to write structured code, that's fairly easy.
Now I must save the altered source and put it through the
compiler. Since it's a long program, the compilation takes
many minutes-and toward the end, I get a SYNTAX
ERROR message. I've put a comma where it wants a .
semicolon.

Now I have to load the editor, read in the source, make
the change, save, and recompile. Presuming that this time
it goes without error, I may have used up half an hour
just to change"," to ";"-and I still have no test of the
program's logic. If I now test for logic and it 's not right,
well, I have to start all over again, hoping that this Hme I
don't manage a new syntax error

Thus, you can use up a whole afternoon adding some
thing quite simple to a big program. There must be a bet
ter way. Why can't someone come up with a language
that runs interpretively like normal BASIC, letting you
correct both syntax and logic errors while in an interac
tive mode; and then allow you to compile the result7
While we're at it, let's wish for the compiled program to
be in true machine language, code that could be put into
read-only m'emory, and, moreover, code that would be
fast.

That 's the route that Microsoft took. Their BASCOM
compiler works just that way with their BASIC-BO. It will
also compile Microsoft BASIC 4.5, and, with con
siderable modifications to syntax, ' programs written in
both CBASIC and BASIC E. Moreover, it's a very power
ful compiler. It implements almost all the features of
BASIC-BO, including WHILE, IF-THEN-ELSE, CASE,
logicals, and string operations, etc . It sounds like the
answer to a prayer.

Of course there are problems. Random-access disk
operations are unbelievably messy, and worse, a
random-access file cannot be accessed sequentially.
There's considerable overhead burden. For example, this
program:

10· PRINT "Hello"
20 END

required 9 K bytes when compiled into a CP 1M COM
file; there's obviously a big run-time package built into
BASCOM. Worse, present Microsoft user contracts re
quire that anyone ma,rketing a program compiled by

BASCOM pay a stiff 9% royalty to Microsoft on every
copy soldl Since this is about equal to the profit margin
of many software houses, it's understandable that there's
been no great rush to sell programs employing
BASCOM.

But let's assume much of this is fixed. Microsoft has a
good reputation for responding to customer suggestions.
As an example, at the West Coast Computer Faire I spoke
to the Microsoft representatives about the lack of a FILES
statement (a means of finding out the file names present
on disk) in BASCOM; BASIC-80 supported FILES, . but
not the compiler. Two weeks later I received an updated
version of BASCOM-and lot-the FILES statement had
been implemented, along with several features other
users had suggested.

At the National Computer Conference, Microsoft re
presentatives said they were "rethinking" their contract
policy and would probably change it; that change may
have been implemented by the time you read this. I have
also mentioned to them the desirability of allowing se
quential access to random files, and they've promised to
look into that. It's not unreasonable to assume they'll
tighten up the overhead-code problem. Thus, as I said,
let's assume that the major problems of BASCOM are
fixed. What will we have?

First, the combination of BASIC-80 and BASCOM is
superb for quick and dirty jobs and for those little
special-purpose programs that aren't going to be run very
often (possibly only once). For example, I recently
wanted to reformat some financial data files. The pro
gram had to go open the file, read the data, make a
couple of changes, and write the information out in a new
format. The only problem was that I also wanted to sort
the data before putting it back out, and this had to be
done for a lot of files~ Doing it with interpretive BASIC
would take hours and hours; while writing even that
simple a program in Z80 assembler would, at best, use up
an afternoon, and might take a lot longer.

The solution was to write it in BASIC-80, test syntax
and logic while in interpretive mode, and compile with
BASCOM. That took an hour. In another hour, I had
reformatted about one hundred files . BASCOM is fast,
blindingly fast; sorts that take 3.5 minutes in CBASIC are
done by BASCOM (using the same algorithm) in under
20 seconds.

In other words, the combination of BASIC-80 and
BASCOM has a lot going for it. If I'd written this review
a year ago, I'd have concluded that BASIC-80/BASCOM
was what the world has been waiting for, and spent the
rest of the review suggesting incremental improvements
to make it even better.

Now I'm not so sure.
The problem is that when all the improvements are

done; when all the bugs (if any; I've found none in the
latest versions of BASCOM) are eliminated; when all the
new features are added; when the code is tightened; when
the disk operations are simplified-when all that's done,
it's still BASIC.

And there are many who believe BASIC is a dead end;
that the inherent limits to the language are just too severe
for it ever to be acceptable; that incremental im
provements actually harm rather than help the field,
because they encourage newcomers to stick with BASIC
instead of learning something better. My mad friend is
convinced of that. So are a number of my associates.

226 December 1980 © BYTE Publications Inc

"But," I protested to my mad friend, ''I'm interested in
using computers. I don't care about elegance. What I
want is something that lets me get the jobs done quickly,
and BASIC-80/BASCOM does that.. .. "

"But at a stiff price. How many times have you had to
start over with a program because it just wasn't worth the
effort to improve one of those BASIC routines? BASIC
doesn't let you build software tools. It's like Pidgin
English-you can manage to buy dinner and sell copra
with Pidgin, but you'll never write Hamlet. Or the
Declaration of Independence, or even good laws "

And the argument starts over and goes on until we get
hungry, and, at the bottom line, it's all a matter of opin
ion; and since my space is limited, I'll drop it for the mo
ment. Just now the bottom line is that BASIC-80 and
BASCOM work, and, if you're willing to accept the in
herent limits of BASIC, they're quite splendid; but those
limits are severe.

Looking Elsewhere
What, then, are the microcomputer user's best alter

natives to BASIC? Once again, let me be honest: these are
opinions. They're opinions based on considerable user
experience, but they're opinions still; and I have found
that every known language has passionate supporters, so
I am bound to make someone unhappy.

The earliest alternatives to BASIC were FORTRAN
and COBOL. These, in my judgment, are languages
whose time has long pas$ed. They have little to recom
mend them, because they have nearly all the limits of
compiled BASIC without the advantage of letting you
program in the interpretive mode before compiling. I've
had both for years, and after an initial flurry of en
thusiasm for FORTRAN (I never cared at all for COBOL,
which may be all right for very large systems, but is plain
crippled on microcomputers) they went on the shelf and
haven' t come off it. Neither FORTRAN nor COBOL lets
you write structured code. True, FORTRAN with RAT
FOR (excellently described in Kernigan and Plauger's
book Software Tools, Addison-Wesley, 1976) overcomes
some of the limits; but to use RATFOR requires another
compilation stage, so that it can take over an hour to find
and correct a trivial error in a fairly simple program. The
Software Tools approach to programming is excellent,
and I strongly recommend the book; but in my judgment
the deficiencies of FORTRAN with RA TFOR are simply
overwhelming, and I cannot recommend using them.

Then there's Pascal, which very well may be the wave
of the future. Pascal began unfortunately: the first wide
spread implementation of Pascal for microcomputers was
from the University of California, San Diego, and it just
didn't work for most users. The hooks into the disk
operating system were clumsy, and it was very slow.

Then came some other versions of Pascal, and they too
had horrible problems; you had to be really sophisticated
to use them. Bugs appeared, and, unless you knew an
awful lot, you couldn't tell whether you'd made a pro
gram error or the compiler was at fault. Implementing
early Pascals required a constant and fairly complex
dialogue between user and publisher.

As a result, a lot of us lost interest in Pascal. The
language looked great in theory, but if you couldn't run
it, that hardly mattered.

There are now a lot of Pascals; Pascal for the Apple,
Pascal for the TRS-80, Pascal for CP/M; Pascal that

pseudocompiles to an INT file the way CBASIC does
(Pascal users call the INT file "p-code"); Pascal that truly
compiles into machine language for 8080, Z80, 8086, etc.
All these look good, and people I respect tell me they run;
but since I haven't implemented any of them yet, I can't
report on them. I can say that Pascal has many enthusi
asts, and might well be the standard language of the
future. Then there's Ada, a Pascal-like language heavily
supported by the DOD (Department of Defense), which
will certainly be around for many years. If I were prepar
ing for a secure career in programming, I'd learn Pascal
instantly and keep very close tabs on the progress of Ada.

In the next couple of months, we're adding a Pascal ex
pert to the staff here, and I'll devote a whole column to
Pascal! Ada; for now, I must simply pass them over.

Pascal has enthusiasts. So does C, a programming
language developed at Bell Telephone Laboratories. The
best (and indeed nearly the only) manual on C is Kern
ighan and Ritchie's, The C Programming Language
(Prentice-Hall, 1978). This is an excellently written book
which anyone at all interested in the C language simply
must read. It succeeds in communicating a lot of enthusi
asm for C. There are lots of examples of real programs
that work. Kernighan, incidentally, is the same Brian
Kernighan who coauthored Software Tools.

C is nothing like BASIC. There are far fewer com
mands, for one thing. On the other hand, there are a
number of conventions. For example, the BASIC state
ments:

FOR I = 0 TO N - 1
NEXT I

would appear in Cas:

for (i = 0; i < N; i + +)

which looks complex, but is, with a bit of experience,
quite readable. The i + + means that i is first to be tested
against N, then incremented; the expression could have
been written with + + i, which would require that i be in
cremented before the test against N.

Despite (perhaps because of) the numerous time-saving
conventions such as + + i, C can be learned by a BASIC
user in a couple of weeks. Real facility requires practice;
more practice than BASIC, precisely because there are
many fewer limits in C. Programming with elegance and
style takes work-but in C such programs are possible,
while BASIC simply won't let you write elegant code.

I have two C compilers for microcomputers. I'm told
there's also an interactive tiny-c, which I have not seen
running, but which is said to be a good teaching aid,
although severely limited in capability. [Editor's note:
See "A User's Look at Tiny-c," by Christopher 0 Kern,
December 1979 BYTE, page 196 R55]

Of my two C compilers, only one is suitable for those
not already familiar with the C language. This is BDS C,
available from Lifeboat Associates for $125. BDS C
comes with a copy of Kernighan and Ritchie's book and
quite extensive documentation on the BDS (BD Software)
implementation.

The BDS compiler uses two passes. One might at first
think that a disadvantage because of the time required,
but in fact it is not: the first pass is done very fast, and
checks for trivial errors, such as missing semicolons,

228 December 19BO © BYTE Publications Inc

comments improperly delimited, unmatched parentheses
and brackets (C loves brackets, braces, and parentheses),
and the like. The second pass goes a bit slower but is still
much faster than the CBASIC compiler.

Like BASCOM, compiled C code must be put through
a linker, and like Microsoft's, the BDS documentation
tells you precisely how to do this. When it's all finished,
you have a CP 1M command file; and the resulting code is
very fast. I've not yet been able to benchmark BDS C
against a similar BASCOM program, because when you
translate from BASIC to C you actually restructure the
program; but I have two Othello games, one in C and the
other compiled by BASCOM, and they seem to run at
about the same speed . The C program, however, is about
8 K bytes compiled; the BASIC program, performing the
same searches and playing at the same level, compiled to
over 20 K bytes. Other programs doing similar jobs also
run in comparable times, and with about the same dif
ferences in program size.

Disk operations in BDS C are fairly simple if you
understand CP 1M, not so simple if you don't-and
CP 1M's documentation is so notoriously unclear that
you'll have to work for a couple of days understanding
CP 1M before you can write decent disk I/O (input! out
put) operations for BDS C. It is worth sharpening up
your understanding of CP 1M, though, because BDS C
lets you do everything CP 1M will: get the names and
sizes of files currently on disk, make backups, rename
and delete, etc, and it's no more difficult to understand
than the FIELD statements in Microsoft BASIC or the
dreaded FORMAT statement in FORTRAN.

String operations in C are more difficult than in
BASIC. Actually, they aren't; ie: it's possible to write, in
C, all the string functions of BASIC (such as LEFT$, etc),
then call them as needed; and once you have written
them, you can use them in any program that needs them
-and leave them out if not wanted. And, in fact, that il
lustrates one of the fundamental differences between
BASIC and C: the BASIC language provides a number of
functions which you must have present whether you need
them or not, and which must be used exactly the way
BASIC wants them used. C, on the other hand, allows
you to leave out functions you don't want, and rewrite
those you keep to suit your precise requirements.

There is, however, one very severe limit to BDS C: it
does not support floating-point data types. One can use
floating-point variables, because BDS supplies a number
of functions that can be called to do floating-point
arithmetic; but the result is clumsy. If you want to learn
the C language, and write games, calendar programs, and
almost anything that doesn't involve crunching a lot of
numbers, BDS C is highly recommended; however, it
isn't suitable for writing an accounting or financial
package.

The other C compiler for microcomputers is the White
smiths C Compiler, which is available from Lifeboat
Associates for $630. This is a full implementation of the
standard C described by Kernighan and Ritchie, and is
highly regarded by many professionals who work with
large machines like DEC's (Digital Equipment Corpora
tion) PDP-l1. In fact, Whitesmiths C was written for
large machines, and it is only an accident that it could be
scaled down for microcomputers. The president of
Whitesmiths Ltd is P J Plauger, a fellow science fiction
writer, and more important, coauthor of Software Tools.

Although the Whitesmiths Compiler is an excellent
professional tool, I cannot recommend it to anyone who
doesn't intend to program in C in a big way-and even
then I'd recommend buying the BDS C compiler as well .
Whitesmiths C compiles, eventually, to true machine
code; but it does so by going through an intermediate
assembly language called A-Natural. It's slow, and since
there's no first pass to find trivial errors, the White smiths
compiler can grind away for half an hour before report
ing a misplaced semicolon. It is certainly not what I'd
choose to learn the language with-but I would get it if I
were going to market programs written in C.

Ubiquitous Microsoft doesn't market a C compiler, but
it does have a LISP interpreter. The Microsoft muLISP-79
is well done, if you like the LISP language. You may not
care for the language, but those who like it like it a lot.
LISP stands for list processing, and it makes creating
highly complex linked lists very easy.

LISP is, however, a peculiar language. It was written in
the 1950s by Dr John McCarthy, now Director of the
Stanford Artificial Intelligence Laboratories (SAIL), and
it's extensively used at Stanford and MIT (where Mc
Carthy wrote it) .

LISP does bit-by-bit arithmetic, meaning that there is
no theoretical limit to the precision you can obtain; if you
want an exact numerical expansion of; say, 2 to the 55th
power, or 87 factorial, you can get it from LISP, and with
only about three lines of code for a program-and you'll
get the answer faster than you think. LISP is one of the
fastest languages I know of, often approaching assembly
language programs in speed of operation.

LISP programs are very tight; it's almost impossible to
write unstructured code in LISP. It's also very nearly im
possible to understand a LISP program, even if you wrote
it; at least that's been my experience. You can strain like a
gearbox and produce code that runs, and which you
understand just at that moment; but hours later it's gib
berish. The only thing less comprehensible than a LISP
program is one in APL-APL doesn't even use normal
letters, but instead requires a special keyboard that can
generate strangely bent arrows and other weird symbols.
Both LISP and APL programmers delight in writing a
whole page of instructions into one line (and you can do
it, too, because both languages allow functions to call
themselves). They also like to baffle fellow professionals
by showing a line of code and challenging anyone to say
what it does.

It's very hard to comment a LISP program-but that's
all right, because it isn't traditional for LISP program
mers to comment their programs anyway.

In other words, I am not a wild enthusiast for LISP as a
"standard" microcomputer language. It's true that one or
another LISP variant is used by just about everyone in
the artificial intelligence field; for certain purposes there's
nothing better. But for general-purpose programming,
LISP and APL are, in my judgment, simply too obscure;

The Microsoft muLISP-79 was written by The Soft
Warehouse in Hawaii; I got mine directly from the
authors and haven't seen the Microsoft versions (for
CP/M and the TRS-80), although they were supposed to
be sent weeks ago. I am told that Microsoft has rewritten
some of the documentation, which could only improve it.
The problem with documenting LISP is that the language
is fairly obscure; you need not only a user's manual, but
an introduction to LISP itself, which is far more than the

230 December 1980 © BYTE Publicati ons Inc

muLISP-79 manual claims to be.
The best way to learn LISP is to attend Stanford or

MIT and get tutorial instruction from someone already
proficient. The next best way is to get access to the MIT
Macsyma Consortium computer and run the TEACH
LISP programs. There are also a couple of MIT docu
ments which are pretty good introductions. I wish I knew
of a good commercial textbook, but I don't. If you want
to learn LISP, you've no choice but to play about with it;
since muLISP-79 is interactive, that's not so hard to do,
and there are some decent examples in the documents
suppied. If you like playing with powerful languages,
muLISP-79 is recommended-but don't blame me if you
don't use it very often after the first wave of enthusiasm.

Which concludes my overview of languages. I haven't
mentioned STOIC and FORTH, because they're really a
kind of assembler language using the programmer as a
parser; they make programming a bit easier, but you've
got to be into assembler work before you can use them,
and this is, after all, the User's Column.

Drawing Conclusions
So what's the best language to learn? I don't know. I

like C. I also like what I've seen of Pascal, assuming the
current crop will really run on microcomputers. And de
spite my misgivings, I still find myself using BASIC-
80/BASCOM, particularly for quick and dirty jobs.

It seems certain-to me at least-that Pascal is going to
be around a long time, especially what with all that DOD
support for the Ada variant. Now that there seem to be
some decent Pascal compilers available for microcom
puters, we're going to see a lot of software written in
Pascal, and those who want to modify their software will
have to be familiar with the language.

But there may not be a real conflict between Pascal and
C. Both are vastly different from BASIC; different in con
ception, in terminology, but more important, in the
"philosophy" or style of programming employing them .
Learning either will help break the BASIC nabit of slop
py program structure; and having done that, you 'll have
little trouble learning the other, or indeed any other
well-structured language.

And that can't hurt users or programmers.

Adventure and Other Games
Now, what about computer games? Well, when micro

computers first came out, games were the rage. It wasn't
so much fun to play the games, which tended to be rather
dull (you wouldn't play much tic-tac-toe with a human
opponent); the fun was in writing the programs and see
ing just how smart you could make the machine. With
the possible exception of Star Trek, nobody spent much
time with the games once they were written and
perfected.

That's no longer true. Nowadays you can buy com
puter games that are fun to play. For example, at both the
West Coast Computer Faire and the National Computer
Conference, the most popular exhibit was Atari's . Not
that so many were wild about the Atari computers, or the
educational games, or that sort of thing, but boy did they
stand in line to play Star Raiders, a real-time game in
which you are a pilot of an X-wing fighter, or perhaps it's
a Colonial Viper, and you go zipping about through
space destroying villains and saving civilizations

There are lots of real-time games showing up for

WE
DELIVERI
Osborne Gusi ness

Soft'MJre

Before you buy the programs that your company is going to
depend on for its accounting, ask the following questions:

Do I get the source (Don't settle for less.
code? You cannot make the

smallest change without it.)
Is It well documented? (The Osborne documen

tation is the best.)
Is It fully supported? (If not, why not? What are

they afraid of?)

The Osborne system is the industry standard accounting
package , with literally thousands of users. We offer an en
hanced version of that package that will run on most systems
without recompiling .

CRT INDEPENDENCE. The original programs were
designed to run on a Hazeltine terminal. To use a different
CRT, you had to modify and test two modules - and recom~
pile every program! With the Vandata package, you simply
pick your CRT from a menu and run.

FILE/DRIVE MAP. The original package had all data files
on the same drive as the programs. Ours allows you to
dynamically specify the drive assigned to each file . In fact, you
can change the drive assignments whenever you wish , to ac
commodate expanded file sizes or new hardware - all
without recompiling I .

INTEGRATION. The original AR and AP systems had to
be changed and recompiled to feed journal entries to GL. Our
instal lation program eliminates this hassle. It simply asks you if
you want the systems integrated , and what your special ac
count numbers are'.

SPEED. The original programs used a binary search to ac
cess the GL account file . We use an enhanced technique that
greatly cuts down on disk accesses , thus speeding up account
lookups Significantly in the GL, AR and AP systems.

BUGS. We have corrected a number of bugs in the original
programs. If you find a bug in our programs, we'll fi x it - and
send you a $20 reward! Our users are sent bug fixes in source
form.

MORE! We have made many minor enhancements , and
fixed many minor problems. We are committed to the ongoing
support of our package. Van data has been an independent
software supplier for over seven years. Quality and support are
our way of doing business.

General Ledger with Cash Journal $95
Accounts Receivable $95
Accounts Payable $95
Payroll with Cost Accounting $95

• All Four Packages (GL, AR, AP, PRl $295

Magic Wand (Super Word Processor! I) . $345
Pearl Level III (best prog. tool available) $645
CBASIC-2 $110
TR&8CJ® MOD II CP/M'" 2.2 (Pickles & Trout) $185
H89/Z89 CP/M'" 2.2 (Magnolia inc. h/w mod) $295

Formats: Std. B". 5" NorthStar DO. TRS-BO MOD" tm. H89/ZB9. Manuals for
Gl. ARIA?, and PR are not included in price - add $20 per manual desired
(ARIA? are in one manual). CP/Mi!l and CBASIC-2 required to run accounting
software. Users must sign licensing agreement. Dealer inquiries invited.

To order call: (206) 542·8370
or write: VANDATA

17541 Stone Avenue North
Seattle, WA 98133

VISA/Me Welcome - CP/M~ is a registered trademark of Digi tal Research.
TRS-80® is a registered trademark 01 Radio Shack, Inc.

232 December 19BO © BYTE Publica tions Inc Circle 154 on inquiry card.

microcomputers. Alien Invader, Space War, and a whole
family of games formerly available only in arcades can be
your very own.

There's also an entirely different class of game avail
able . Adventure is here.

The game of Adventure was first written in FOR1'RAN
by Larry Crowther and Don Woods. It bore some slight
resemblance to Hunt the Wumpus , in that the game con
sisted of wandering through unknown territories and en
countering various hazards . Unlike Wumpus, though,
the Adventure map is fixed. The game always begins at a
well house, and you may continue to explore until you
are kill~d. Actually, it doesn' t end even then: the com
puter will resurrect you if you like.

You move about in Adventure by telling the computer
where you want to go. The object of the game is to find
treasures and bring them to the well house. On the way
you encounter various obstacles and monsters, such as a
large green snake, a dragon, and a ferocious bear chained
to the wall. (The problem is that the bear's silver chain is
a treasure .) You also find various objects: a rod, a bird
cage, and other such things, some of which may be useful
in solving puzzles that lead to treasure .

The game quickly became a cult object among pro
grammers. Computer-installation supervisors estimated
that when Adventure arrived, two weeks' work would be
lost due to the staff bootlegging time to run the game.
Various fixes were tried, including restricting the times at
which Adventure could be accessed, but nothing really
worked except letting the disease run its course; when all
the programmers had solved the game, then and only
then did they get back to work. Until then, they were
driven to it as if hypnotized. To make it worse, it was
customary not to tell anyone how to solve the game,
although strange and misleading hints were allowed.

Adventure now exists for various microcomputers.
The game itself is public domain (although programs to
implement it are not), so there are many versions offered.
I have one for 8-inch floppy-disk CP 1M systems sold by
Workman and Associates (POB 482, Pasadena CA
91102, $23.95 postpaid) and another for the Radio Shack
TRS-80 Level II (Model 1) by Microsoft, $24.95, and
available from most dealers. Both run quite fast-faster,
in fact , than the FORTRAN versions did on a DEC
PDP-lO. Both require 32 K bytes of memory and a single
disk drive, and both are full implementations of the
original Crowther and Woods Adventure, including the
"Save" feature that allows you to store an incomplete
game so that you don't have to start over every time.

The Workman version recognizes a number of com
mands that were not in the original Adventure, but the
puzzles and their solutions remain unchanged.

In addition, both the Workman and the Microsoft ver
sions store most of the game information on disk, and
every time you give a command they have to go to the
disk to get the response . There's no help for that, of
course; the Adventure data base requires over 50 K bytes
of ASCII (American Standard Code for Information
Interchange) characters. Thus the disk gets a good work
out. This presents no problem with the Workman and
Associates CP 1M version, because any good CP 1M copy
routine will allow you to make a backup; but the Micro
soft TRS-80 Adventure has been carefully rigged to make
backup copies nearly impossible. I say nearly; within

Circle 155 on inquiry card

Circle 156 on inquiry card.

CATCH THE 5-100 INC. BUS!

OUR
LIST SPECIAL

PRICE CASH
EACH PRICE

TARBELL DOUBLE DENSITY
DISK CONTROLLER - A & T 495 .00 399.00

S.D. SYSTEMS VERSAFLOPPY II - KIT 350.00 299.00
GODBOUT CPU-Z - A & T 295.00 249 .00
MULLEN EXTENDER CARD

W/PROBE - KIT 59 .00 49.00
POTOMAC MICRO MAGIC

MODEM - A & T 399 .00 341 .00
3M " SCOTCH" 8"

740-0 DISKETIES - 10 50.00 30.00
CROMEMCO 32K BYTESAVER - A & T 295.00 249 .00
CCS 64K DYNAMIC RAM - A & T 700 .00 549 .00

Subject to Available Quantities • Prices Quoted Include Cash Discounts .
Shipping & Insurance Extra.

We carry all major lines such as
S.D. Systems. Cromemco. IIhaca Intersystems. North Star.

Sanyo. ECT. TEl. Godbout. Thinker Toys. SSM.
For a special cash price. telephone us.

S-H][] .. 'ne.
7 White Place, Clark, N.J. 07066

201-382-1318
Hours: Mon. - Fri. - 10 a.m. to 6 p.m.

THIS YEAR
CP/1iDS

COMPLETE INTEGRATED
ACCOUNTING SOFTWARE

MASTER TAX-Professional tax preparation program. Prepares sched
ules A, B, C, D, E, F, G, R/ RP, SE, TC, ES and forms 2106, 2119, 2210,
3468,3903, 2441,4625,4726,4797,4972,5695 and 6251 . Printing can be
on readily available, pre-printed continuous fomns, on overlays, or on com
puter generated, IRS approved forms. Maintains client history files and is
interactive with CPAids GENERAL LEDGER II (see below) $995/$30
Annual Update Fee . $350

GENERAL LEDGER 11- Designed for CPA's.
Stores complete 12 month detailed history of
transactions. Generates financial statements,
depreciation, loan amortizations, journals,
trial balances, statements of changes in finan
cial position, and compilation letters. Includes
payroll system with automatic posting to gen
eral ledger. Prints payroll register, W2's and
payroll checks $450/$30

Runs with widely accepted CP/ M operating
system

Distributed by

Lifeboat Associates
1651 Third Avenue. New York. N.Y. 10028
o (212) 860·0300 0 Telex: 220501

234 December]980 © BYTE Publica lions Inc

either TRSDOS or Apparat's NEWDOS it is impossible,
but since I have the Omikron CP 1M Mapper installed on
my TRS-80, I can make backups of anything, using a
CP 1M sector-by-sector copy routine.

(As an aside: I've been informed that both Parasitic
Engineering and Field Engineering Consultants Ltd also
make memory mappers that will allow you to run CP 1M
on the TRS-80 Modell. I've had no chance to test either
of them. My Omikron Mapper continues to work flaw
lessly, by the way.)

I often wonder about companies that deliberately try
to keep you from copying software-especially when it's
supposed to run on something as inherently flaky as a
TRS-80 5-inch disk. Experienced users never run their
primary source disks; making a backup is just common
sense, even if you have excellent hardware like Percom or
Matchless disk drives. (I've tested both on my TRS-80,
and I'm quite happy with them.) Moreover, making it
hard to copy a disk is often like waving a red flag at a bull
-there are plenty of sophisticated users who will con
sider it a challenge, and, having with great effort found a
way to make copies, will feel ethically justified in distrib
uting them to all their friends.

In any event, the Workman and Microsoft Adventure
implementations have provided many hours of trouble
free enjoyment, and I recommend them highly.

Just after the Adventure craze hit, there were rumors of
another game, Zork, which is to Adventure as Adventure
is to Wumpus. Zork was developed at the Massachusetts
Institute of Technology by "the Four Implementors": Tim
Anderson, Marc Blank, Bruce Daniels, and David Leb
ling. The game was written in MOL (or "Muddle"), a
LISP-like language, and featured an enormous
underground dungeon, dozens of clever puzzles, and a
highly intelligent command parser that understands
much that Adventure finds incomprehensible. Although
Zork never quite caught on the way Adventure did, it
became widespread-and where it did appear, it cost
more time than ever Adventure had, because it was both
more difficult and more interesting.

Implementors Lebling and Blank have devised a micro
computer implementation of Zork in two parts. Zork:
The Great Underground Empire, Part I is being sold for
the Apple II and the TRS-80 on 5-inch floppy disk by Per
sonal Software, 1330 Bordeaux Dr, Sunnyvale CA 94086,
at a price of $39.95. [Editor's note: Part II is still under
development, but Part I alone constitutes a complete
game that can be played through to a satisfactory
ending R55] Like the Microsoft Adventure, Zork re
quires constant access to the disk but cannot be copied by
normal means. I've been just a little afraid of running the
primary disk, so I haven't checked out everything;
besides, the kids are still mapping Adventure. I've played
with this Zork enough to know that I like it (and I wasted
incredible amounts of time playing the original Zork on a
PDP-IO).

Adventure and Zork became popular during the D & D
(Dungeons and Dragons) craze-a madness which shows
little sign of peaking out even yet. It was inevitable that
other D & D games would come forth, and sure enough,
Automated Simulations Inc (ASI), POB 4232, Mountain
View CA 94040, has come out with a whole series, from
the introductory Datestones to the full four-level
dungeon in Temple of Aphsai. These games are sold in

both tape cassette and disk versions, and they range in
price from $14.95 for Mor/oc 's Tower on cassette to
$26.95 for the disk version of Temple of Apshai. ASI
guarantees these games to be interesting, and I don't
think they refund much money. They've been very
poplllar around here.

There are versions for TRS-80, PET, and Apple com
puters; the Apple versions make extensive use of Apple's
excellent graphics, so that monsters like Ant-man and the
Wolf look pretty good . Unfortunately, the TRS-80
doesn't have such nice graphics, and the characters and
monsters look like blobs. Unlike Zork and Adventure,
these games are played in real time, and, instead of a
room description, the computer draws a map, placing
monsters and treasures in it where appropriate. They're
very playable games, guaranteed to waste more time than
you really expected to put into them.

The real time wasters for me, though, have been
Automated Simulation's space war games, Starfleet
Orion (two players) and Invasion Orion (one player
agains t the computer) . These games allow a number of
different scenarios; ten or so are supplied (along with a
pleasantly written background and story data including
characterizations), but the user can make up his own, so
that in effect either of these games has an infinite number
of variants. The rulebooks also give a number of stan
dard warship types, but once again the user can design
his own, from torpedo boats to dreadnoughts to armored
planets. There are Tractor and Pressor beams, something
much like a phaser, torpedoes and missiles, and quite a
lot of the flavor of a space battle.

t~
Tiny-C Two - The Compiler
tlny-c two® is ten times faster than tlny-c one® . It has many
extra features, including long (32) bit integers, lots of new
operators , and redirectable and direct access input/output.
This version of tiny-c is viable for professional work, either
systems programming or business applications. It comes with
a UNIX® style command interpreter called the "tiny·shell"® .
With the tiny-shell , every compiled tiny-c program becomes a
new shell command. Tiny-shell commands can have
arguments , and dash(-) options , just as real UNIX shell
commands do. The < and> input/output redirection operators
are supported. There are over fifty standard library functions,
and this set is readily extended . The input/output functions are
UNIX style , including fopen , fprintf, etc. Both ascii and raw
(binary) input/output are supported . And the entire package is
portable. Bringing it up on a new processor or new operating
system should take a few days or a few weeks at the most.
And as usual with tiny-c products, all the source code is
included.

tlny-c two $250 Manual Only .. $50
tlny-c one $100 Manual Only .. $50

VisalMastercharge Welcome

5. DtlNld Formats: Std . 8", 5 " NorthStar DO,
. TRS-80 MOD II® & H89/Z89.

.. . ~ To order call : (206)542-8370
__ . ~ or write : VANDATA

\, :, f "-~ \ \ 17541 Stone Avenue North
\1 :1))\.~ Seattle, WA 98133
d!....; G,:/ D IRS·SO is a registered trademark of Radio Shack, Inc. UNIX is a

registered trademark or Bell Laboratories, Inc. tiny-c and
tiny-shell are trademarks of tiny-c associates .

236 December 1980 © BYTE Publications Inc Circle 158 on Inquiry card.

I'd like the single-player version somewhat better if it
were faster; in my favorite scenario, Damocles, it can
take several minutes for the computer to plan out its
move, and worse, you can't just go away, because the
battle results are presented dynamically and can't be
recalled once shown.

The Orion games are quite realistic. Classical prin
ciples of fleet warfare work, and strategy and tactics are
more important than luck. Since players can modify the
ships at will, it's possible to tailor the games to a balance
of power so that an experienced player (or the computer
in the single-player version) doesn't routinely stomp a
newcomer, and the game can be changed again as the
players gain experience.

All of the Automated Simulations games are imple
mented in BASIC. They can be copied, listed, and even
modified . In theory, one ought to be able to compile In
vasion Orion with Microsoft's TRS-80 version of
BASCOM and thus speed it up. Obviously, you will have
to modify the games a bit; in particular, you will have to
lengthen the loops that govern how long displays stay
visible . I'm anxious to try this, but so far th~ TRS-80
BASCOM hasn't arrived, so I can't say for certain that it
will work.

Needless to say, I enjoy all the Automated Simulations
games, and recommend them highly. And, needless to
say, I enjoy the C language and BASIC-80, etc, etc. So
what does it all mean? Well, it means that I have to get
the kids away from the TRS-80 and have some computer
fun of my own, here at Chaos Manor.

See text box on page 238

COLOR
SOFTWARE

COLORFUL PROGRAMS FOR THE
APPLE II, ATARI 16K, TI 99/4

3-D STARTREK: Discover new planets, fight Klingons in 3-dimensional
galaxy. Hi·resolution display of galaxy.

$15 on cassette
ROAD RACE: Race around 2.25 mile course. Hi· res display shows view
from race cars. 1 or 2 players.

$15 on cassette
Apple" or AtBri only

DRY WELL: Strategy game of oil exploration. Discover pattern of
deposits and maximize profits .

$15 on cassette
Apple requires ROM Applesoft

NUCLEAR REACTOR: Simulation of a nuclear power plant.
$15 on cassette

MAJOR LEAGUE BASEBALL: Manage Major League teams and make all
lineup, batting, pitching and running decisions.

$25 on disk
Apple " only. Requires ROM Applesoft, 48 K RAM

BLACKJACK: Popular card game for 1 to 3 players.
$15 on cassette

AtBri or TI 99/4 only

Apple II programs available on disk for $2.50 per order more.

COLOR SOFTWARE
5410 w. 20th St . • Indianapolis, IN 46224

Circle 159 on Inquiry card.

Circle 161 on Inquiry card.

INNOVATION PLUS FROH PROVAR INC.

Two new boards from PRQVAR INC. : RICE (Rml in circuit emulator) and HID
(Miscellaneous input/output). Plus a fast MULTI-USER CP/ M*.

The RICE board can emulate up to 4 EPRmlS type 2708 , 127 1 6 or 12732. The
RICE board uses your 5 -1 00 RAM for emulation which can he addressed on
any lK. 2K or 4K boundary depending on the t ype of EPROM being emulated.
Other features include:

IEEE 5-100 compatible including extended addressing
Terminated address lines on external EPROMS
Places external processor i n a r eset for normal 5-100 operation
Keeps the 5 - 100 processor in a hold during emu l ation

RICE comes completely assemb led and test e d with four 36 inch 24 pin dip
cables for only $189.95

The -MIa board has just what the name implies, miscellaneous input/output.
First is a 32 character B bit FIFO buffer perfect for a keyboard input
(Great for Wordstad . Plus a 16 channel 8 bit AID converter with 80 us
convert ion time. There are also two 8 bit bi-directional I/O ports. And
last is T.los new programable sound generation chip SN76489N. The MID is
also IEEE compatible. Supplied with all n ecessa ry cables and connectors
and a SPACE INVADERS program written in Pascal. Fully assembled and tested
the MID is $299.95, also available without the FIFO, Sound and AID .

MULTI-USER CP/M* can support up to 4 seperate u sers with very fast 180 us
overhead between use r s. Dissimilar tasks may be performed on different
tenninals . The operating system can a lso support up to 4 different
printers. However, if only one printer is attached to the sys t em a print e r
lock out is provided. System requirements are CP/H L.4, bank select memory
and an interrupt board Co gene r ate a RST 6 every 16-20 ms. MULTI-USER
CP/M* is sold in 8080 machine code supplied in source on an 8 inch single
density diskette for only $1 50.00.

PRaVAR INC.
6217 KENNEDY AVE .

HAMMOND, IND. 46323
312 -374-7335

CP/M is a trademark of Digital Research

MICROSTAT
NOW AVAILABLE FOR CP/M*
MICROSTAT. the most powerful statistics package available
for microcomputers. is completely file-oriented with a power
ful Data Management Subsystem (OMS) that allows you to
edit. delete. augment. sort. rank-order. lag and transform (11
transformations. including linear. exponential and log) existing
data into new data. After a file is created with OMS. Microstat
provides statistical analysis in the following general areas:
Descriptive Statistics (mean. sample. and population S.D ..
variance. etc.). Frequency Distributions (grouped or individ
ual). Hypothesis Testing (mean or proportion). Correlation and
Regression Analysis (with support statistics). Non-parametric
Tests (Kolmogorov-Smirnov. Wilcoxon. etc.). Probability Dis
tributions (8 of them). Crosstabs and Chi-square. ANOVA (one
and two way). Factorials. Combinations and Permutations. plus
other unique and useful features.

MICRDSTAT requires 48K, Microsoft Basic·80 with CP/M
and is sent on a single·density 8" Disk. It is also available on
5" diskettes for North Star DOS and Basic (32K and two
drives recommended), specify which when ordering. The
price for Microstat is $250.00. The user's manual is $15.00
and includes sample data and printouts. We have other
business and educational software. call or write:

•
ECOSOFT

P.O . Box 68602
Indianapolis. IN 46268

(317) 283-8883

• CP / M is a registered trade mark of Digital Research.

238 December 1980 © BYTE Publications Inc Circle 162 on inquiry card .

Items Reviewed
Microsoft
10800 NE 8th, Suite 819
Bellevue WA 98004

muLISP-79
BASIC-80
BASCOM

CP/ M 8-inch disk system
CP/ M

BASIC
Compiler

Adventure
CP/M, ISIS-II, TRSDOS
TRS-80 Model I Level II
32 K disk

Lifeboat Associates
1651 Third Ave
New York NY 10028

BDS C Compiler
Whitesmiths C

Compiler
CBASIC2

Workman Associates
POB 482
Pasadena CA 91102

CP/M

CP/ M
CP/ M

Adventure 8-inch disk CP/M 32 K
8080 or Z80

Automated Simulations Inc
POB 4232
Mountain View CA 94040

$200
$350

$395
$24.95

$125

$630
$120

$23 .95

(Following are available in disk or cassette versions)
The Temple of TRS-80 , PET, Apple $24 .95

Apshai
The Tower of

Morloc
Starfleet Orion
Invasion Orion

TRS-80, PET, Apple

TRS-80, PET, Apple
TRS-80 , PET, Apple

Personal Software
1330 Bordeaux Dr
Sunnyvale CA 94086

Zork: The
Great Under
ground Empire ,
Part I

Books

TRS-80 or Apple disk

Kernighan, Brian Wand Dennis M Ritchie.
The C Programming Language.

$14.95

$19.95
$19.95

$39.95

Englewood Cliffs NJ: Prentice-Hall Software Series ,
Prentice-Hall, 1978, $13.95

Kernighan, Brian Wand P J Plauger.
Software Tools.
Reading MA: Addison-Wesley Publishing Company,
1976, $11.95

	Cover
	Index
	Editorial
	Letters
	Multimachine Games
	Ciarcia's Circuit Cellar: Computerized Testing
	Review: Dungeon Campaign
	Review: A Stellar Trek
	Review: Morloc's Tower
	Review: Odyssey, the Compleat Apventure
	Technical Forum: The Twelve Computerized Days of Christmas
	Graphic Color Slides Part 2
	Review: Sargon II
	Micrograph Part 2: Video-Display Processor
	A Simplified Theory of Video Graphics Part 2
	On the Road to Adventure
	Zork and the Future of Computerized Fantasy Simulations
	Character Variation in Role-Playing Games
	Pirate's Adventure
	BYTELINES
	The User's Column: BASIC, Computer Languages,and Computer Adventures
	A Pocket Computer? Sizing up the HP-41C
	Product Review: Microsoft Adventure
	Lost Dutchman's Gold
	Product Review: Computer Bismarck
	Programming Quickies: Monster Combat
	BYTE's Bugs
	BYTE's Bits
	CLubs and Newsletters
	Event Queue
	Ask BYTE
	Books Received
	Software Received
	Whats New
	Unclassified Ads

