Editorial

Of IBM, Operating Systems, and Rosetta Stones

by Chris Morgan, Editor in Chief

The story behind the creation of the IBM Personal Computer is as interesting as the machine itself. In this issue Gregg Williams discusses in great detail IBM's most recent offering to the microcomputer field (see "A Closer Look at the IBM Personal Computer," page 36). In this editorial I'll tell you the story of its development, talk about the machine's operating system, and discuss the possibility of establishing a standard for operating systems.

Breaking the Speed Barrier

As IBM watchers know, it usually takes about five years from the time a project at IBM is conceived to the first shipments of the completed product. This is typical for complex computer projects at large companies. Amazingly, the total time for the IBM Personal Computer project was about 13 months. How did this happen?

One answer is that IBM limited the number of in-house innovations. Instead it used existing hardware and software components from outside vendors—a departure for the normally vertically integrated giant. Imagine how bizarre an Intel-manufactured processor would have seemed in an IBM product of, say, five years ago.

Another factor in IBM's speed is that the company gave its design team a wide latitude and a great deal of autonomy. The rest of the company left the designers, based in Boca Raton, Florida, alone to do their job, although IBM's quality-assurance group did keep a close eye on the software chosen for the machine.

One of the most interesting aspects of the Personal Computer is that its design team included many computer hobbyists and "hackers"—people who owned and were familiar with existing microcomputers. And the IBM machine reflects their experience. I'm glad they avoided many design mistakes of the past. The keyboard alone is one of the best I've seen, though I wish the shift keys were more conventionally positioned. (Oh well.)

Operating Systems

IBM has decided to let the marketplace determine which of its three operating systems will become dominant (if any). Thus, you can get UCSD Pascal, CP/M-86, or the IBM Personal Computer operating system from Microsoft. You can have all three if you want; it's a nice choice.

I'm particularly excited about Microsoft's approach to the IBM Personal Computer. As you may know, Microsoft recently introduced Xenix, its superset of Unix, Western Electric's popular multiuser operating system for small- and medium-sized computers. It turns out that Xenix is at the top of a pyramid of upward-compatible operating systems to be made available by
Professional Pascal

This fourth generation version of our reliable, Z-80 native code compiler adds the two features professionals ask for:

- **SWAT™**—an interactive symbolic Pascal debugger that allows easy error detection.
- **Overlays**—that allow larger programs to run in limited memory.

A compiler for Professional programmers

Pascal/Z is a true Pascal. It closely follows the Jensen and Wirth standard with a minimum of extensions designed to aid the serious program developer in producing extremely compact, bug-free code that runs FAST.

Pascal/Z generates Z-80 native code that is ROMable and Re-entrant. Permits separate compilation, direct file access, external routines and includes a relocating macro assembler and Microsoft compatible linker.

And code written for Pascal/Z is fully compatible with I-PAS 8000, our new native code Pascal compiler for Z-8000, to guarantee graceful migration to 16 bit operation.

Get “The FACTS about Pascal”

Confused about which Pascal to buy? Pseudo-code ... Native code ... M, MT or Z? Compare the unbiased benchmarks in our new booklet. Don't buy a Pascal compiler until you've read it.

Call us for a free copy:
800-847-2088 (outside NY)
or 607-257-0190

And ask your local full-service computer dealer about our Pascal/Z demo package.

Editorial

Microsoft. At the bottom is the IBM DOS (called MSDOS by Microsoft). In the middle will be XEDOS, a new operating system written in the C language for the 68000, Z-8000, 8086, and LSI-11 processors. XEDOS will contain Xenix-like features and will be essentially a single-user version of Xenix.

XEDOS and Xenix are processor-independent. Because the different versions of XEDOS are written in C with a minimal amount of native assembly-language code, programs written for one 16-bit processor can be readily transferred to another. Microsoft demonstrated this capability, at the recent COMDEX show in Las Vegas, by exchanging unmodified code between four machines: a 68000, a Z-8000, an 8086, and a PDP-11.

Standards, Anyone?

Unix has become well entrenched in the nation's colleges and universities due to Western Electric's extensive, inexpensive licensing of the system. As a result, many of today's graduating computer scientists are familiar with it. (See “The Unix Operating System and the Xenix Standard Operating Environment” by Robert Greenberg, June 1981 BYTE, page 248.)

Microsoft's proposed family of operating systems will also incorporate a significant feature—a graphics device driver that uses AT&T's proposed videotex graphics standard called PLP (Presentation Level Protocol). It's a minimal standard, admittedly (it's hardly high-resolution graphics), but think what it would mean if all 16-bit operating systems could support PLP. At last we'd have a least common denominator for graphics. And keep in mind that the creative use of graphics will be a vital part of the future of our field.

Digital Research, for its part, is promoting its latest efforts, CP/M-86 and its multiuser, multitasking version, MP/M-86, as candidates for the standard 16-bit operating systems of the future. (See “CP/M: A Family of 8- and 16-Bit Operating Systems,” by Gary Kildall in June 1981 BYTE, page 216.) More than twenty OEMs (original equipment manufacturers) have made commitments to use the two operating systems. Both the IBM Personal Computer and the IBM Displaywriter use CP/M-86. MP/M-86 will soon be available for the IBM Personal Computer. One good feature of MP/M-86 is its foreground/background structure, which, for example, lets the user access the editor while compiling a program.

Of more importance than CP/M-86 is MP/M-2, Digital Research's new multiuser operating system. It will be a real contender against Microsoft's operating system. It includes file locking and record locking, 32-megabyte file capacity, and other sophisticated features. Significantly, the company also currently supports Unix through C BASIC and Pascal. Digital's official stand is that it is not "philosophically opposed" to the Unix concept, thus holding open the possibility for a future operating system standard.
MODEMS
All Modems connect to any
RS232 Computer or Terminal!

1200 Baud and 300 Baud-Bell 212A
Style, Penril 300/1200 $799
Originate/answer/auto-answer. Full duplex.
RS232. Phone line connection via standard
phone jack. 1 yr. warranty.
Auto-dial option $350

300 Baud. Phone Link $129
Originate/answer/auto-answer. Phone line
connection via standard jack. 212A.
Half/dual duplex. Self test. RS232. Light displays
for On Carrier, Test, Send & Receive Data. 1 yr.
wararranty.

300 Baud, USR-330D $249
Originate/answer/auto-answer. Phone line con­
nection via standard jack. 1 yr. warranty.

300 Baud, USR-330A $299
Same as USR-330D Plus Auto-Dial Call for
quote and technical information on higher speed
modems and multiplexers.

30/60 CPS. GE Terminet 2030 $999
110/300/60/1200 Baud. User selectable lines per
inch and chars. per inch. True descenders and
underlining. Up to 217 cols per line. Top of form,
vert. and hor. tabs. Friction feed std. tractor feed
opt. Answerback. 1 yr. warranty on parts.
Nationwide servicing. Extremely compact 15 in.
paper. Only 22 lbs. SUPERIOR TO DEC LA34AA
at lower cost!

120/150 CPS. GE Terminet 2120 $1,799
Housed in same compact package as the 2030
with all the features of the 2030 PLUS 150 char
per sec. print rate.

Slash Your Connect Time and Printer Delay Time
Text Editor For GE2030 & 2120 ... $799
Includes 32K buffer inside terminal for data
recept and transmission at up to 9600 baud.
Also Available. Receive only.Printer only ver­
sions of GE2030 & 2120

Letter Quality. NEC 7720
KSR with keyboard $2,695
55 CPS. RS232 and Centronics parallel. Inter­
changeable print thimbles for a wide variety of
perfect. letter quality output.

Teletype 43 KSR with RS 232
cable $1,149

DEC LA34AA $1,099

ADS Viewpoint $619
Detachable keyboard. Numeric keypad. Tilt­
able screen. Cursor control keys. Function keys.
Auto-repeat on all keys. 110 to 19,200 baud.
Transparent mode. Printer Port. Compact, 20
lbs. Visual attributes.

DEC VT101—NEW from DEC $1,299
Identical to standard VT100. Detachable
keyboard. Separate numeric keypad. Bidirec­
tional smooth scrolling. Split screen. Key click.
80 cols or 132 cols per line.

DEC VT131—NEW from DEC $1,699
Same as VT101 plus advanced video option
for enhanced screen programming and printer port.

Perkin-Elmer 550B $728

Perkin-Elmer 1251 $1,599

Teletype 950 $999

CRTs
OKIDATA Microline SE 120 CPS.
80/132 Columns per line $619
User selectable char. Sizes. Top-of-form bi­
directional. Short line seeking print techniques
for greater throughput. RS232 & Centronics
parallel interfaces.

Letter Quality. NEC 7710 RO $2,395
Same features as the 7720KSR listed above but
without keyboard.

Editorial
The Battle
Who’s going to win the 16-bit operating system
sweepstakes? My guess is that there’ll be no clear winner
for several years; maybe never. Competing software and
languages tend to coexist in our field, and this situation
is no exception. IBM has set the tone by making both
CP/M-86 and MSDOS available for its machine. Yet
when I look at the mistakes made in the 8-bit world, I
hope a standard will emerge.

A New “Rosetta Stone”
In 1799 the Rosetta stone was discovered in Egypt. It
contained the same message inscribed in three different
languages: Greek, Demotic, and Egyptian hieroglyphics.
Using the familiar texts of the Greek and Demotic, scien­
tists were able to painstakingly translate Egyptian
hieroglyphics for the first time—a triumph of scholarship
that would have been virtually impossible without the
decoding stone.

But translating is a slow, arduous job. Creative soft­
ware designers waste a lot of time customizing their pro­
grams for different machines. Today, we need an entire
set of “Rosetta stones,” translating tools to disseminate
software for all of the popular machines. But these tools
have become more like a set of millstones around our
necks.

We need a new approach to operating systems to cure
the ills that still beset us from the footloose days of 8-bit
machines. A standard 16-bit operating system is still the
best way out of the linguistic woods.