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Abstract  

In building graphic systems for use with raster devices, it is difficult 
to develop an intuitive, device independent nmdel of the imaging 
process, and to preserve that model over a variety of device 
implementatio.ls. This paper describes an imaging model and an 
associated implementation strategy that: 

1. Integrates scanned images, text, and synthetically generated 
graphics into a uniform device independent metaphor; 

2. Isolates the device dependent portions of the implementation to a 
small set of primitives, thereby minimizing the implementation cost 
for additional devices; 

3. Has been implemented for binary, grey-scale, and full color raster 
display systems, and for high resolution black and white printers and 
color raster printers. 

Introduct ion  

The work described in this paper is designed for a multi-application 
programming environment where programmers use raster display 
devices to provide the visual communication links between users and 
systems. The displays are used for simple typescript-style text 
applications as well as for more involved applications requiring 
drawings, scanned images, and other complex combinations of  
graphics and text: a music composition system, a general window 
management package for a programming environment, a high quality 
document design system, a VLSI design system, and a graphics arts 
design package. 

In an environment that supports such diverse graphic user interfaces 
on a variety of  display devices, it is desirable to maintain a flexible 
unified graphics imaging model and an associated programming 
interface, independent of  display devices, with which all the 
application programs can work. 

This paper describes an imaging model and its programming 
interfaces, discusses the advantages in using such a model, and 
outlines a basic implementation strategy. 
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Raster Devices 

The class of  raster devices encompasses a wide range of  displays, 
plotters, and printers. These include full color (24 bit per pixel) 
displays, grey level displays, simple low resolution binary (1 bit per 
pixel) displays, electrostatic plotters, high resolution film recorders, 
and laser printers. Raster devices, because of  their potential ability 
to display a rich set of  images, serve as a useful class over which to 
define a device independent programming abstraction. 

Broadening the class of  raster devices to include other kinds o f  
graphic devices ~vector drawing displays, pen plotters, or storage tube 
displays) can lead to problems in defining the imaging abstractions. 
Either the image types become restricted or the imaging metaphors 
become strained and unnatural. For example, the implementation o f  
solid areas on some vector drawing devices is impractical. Restricting 
the set of  devices to raster devices allows the imaging metaphor to 
remain simple, consistent, and efficient. 

Device Independence 

Device independence, in the context of  using raster devices, can be 
defined in several ways depending on the level of  abstraction desired. 

One definition dictates that the imaging model provides an 
abstraction o f  how an image ideally looks on a perfect medium; this 
model abstracts the appearance of  the image. The implementation 
for each specific display must mimic the appearance of  an ideal 
image to the best of  its ability. This kind of device independence 
attempts to maintain global image properties in spite of  wide 
variations in display type. For example, a device that can show grey 
values might render the appearance of  color values by substituting 
appropriate grey values. A binary device might render colors with 
stipple patterns that give a visual impression of  grey values. 

Other kinds of device independent abstractions can be less strict. 
Image representations may not model image appearance but instead 
describe some form of  information content. In this case, the 
implementation of  a given device is only required to convey certain 
information content of  the application, and may not be constrained 
in any way to the appearance of  the image. For example, a black 
and white device implementation might choose to display colors with 
iconic labels rather than intensity levels. With this kind of  
abstraction, few constraints are put  onto particular device 
implementations. One consequence of  this latter kind o f  abstraction 
is that the programmer cannot have precise expectations of  how a 
device implementation will attempt to represent images. 

Device independence benefits the implementors of  a graphics system 
as well as its clients, since the bulk of the system can be shared 
across all devices. Only a small portion of the code need be 
concerned with a specific device type. If the interface to this device- 
specific code is well designed, implementing a new device type 
requires minimal programming, effort. 

313 



Computer Graphics Volume 16, Number 3 July 1982 

f 

Figure 1: The imaging model. 

The Imaging Modei 
The imaging model described here is designed for applications 
related to the typesetting and graphics arts industry, where image 
appearance is vital. For this reason the model abstracts the 
geometric and color properties of  an image. In taking this approach, 
the imaging model makes two value judgements: first, that global 
image fidelity is important: second, that it is valuable for the 
application to be able to rely on a device implementation to render 
images as accurately as possible. It should be noted at the outset 
that for a number of  applications this choice may be inappropriate. 

The imaging model specifies how geometric shapes and colors are 
combined. It follows a metaphor that loosely corresponds to the 
procedure used by a silk-screen printer: pushing colored ink through 
a stencil onto paper. The left side of Figure 1 illustrates this 
operation. The ink, above, is solid gray; the screen, in the middle, 
has an a-shaped opening; on the paper, below, the result is an a- 
shaped patch of gray ink. The artist can build a complex image by 
repeating this basic operation with different combinations of screens 
and inks. Ink laid down later may obscure ink laid down earlier. 

The programming interface presents a similar model. The 
programmer calls a series of  procedures to define a stencil, and other 
procedures to define a source. Each primitive display procedure 
produces on the display the effect of  pushing a given source through 
a given stencil. The programmer can build a complex image by 
calling a sequence of display primitives with different combinations 
of stencils and sources. 

Stencils may be represented in two forms: shapes and masks. A 
shape consists of  a collection of closed piecewise analytic curves 
(straight lines and parametric cubics); these curves represent the 
outlines of  holes in the stencil. A mask consists of  a binary two 
dimensional array; "ones" in the array represent holes in the stencil, 
There is no special representation for text. Characters are just letter- 
shaped stencils, which can be represented either as closed analytic 
outlines or as masks. 

Sources (inks) may be represented either as single colors or as multi- 
colored two dimensional sampled images. When the source is multi- 
colored, the imaging model is much more powerful than any 
analogous silk-screening operation. Picture a slide projector shining 
a general colored image through a stencil onto the paper. The fight 
side of  Figure 1 shows the result of pushing a multi-colored source 
through a stencil. 

Other properties of  the imaging model lack good analogies in the 
silk-screening metaphor. The first of  these is an additional level of  
stencil called a clipping region. The purpose of the clipping region is 
to restrict the area where ink is displayed regardless of  what other 
shapes or masks are used. When a clipping region is specified, then 
only ink falling inside that region is displayed. Figure 2 illustrates 
the effect of  a clipping region. 

Also unlike anything in the silkscreening process are the model's 
general mapping facilities. Under control of  the application, stencils 
and sources may be mapped independently through any linear 
transformation prior to display. Imagine rotating the stencil~ or 
stretching a rubber stencil to expand or skew it; at the same time, 
imagine rotating the slide projector, or pulling it back to enlarge the 
image. The mapping facility gives the application program a great 
deal of  flexibility in the composition of  images. 

Figure 2: A clipping region. 
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Additional operators generate shapes that correspond to drawn lines 
and curves. These operators take trajectories (piecewise analytic 
segments, open or closed) and brush information (just another shape) 
and generate closed shapes that correspond to lines and curves drawn 
with the given brush. The resulting lines and curves then act like 
any other stencils, and may have inks pushed throu~a them. 

This model does not address issues concerning the display of  
projected three dimensional objects, or issues dealing with complex 
conformal mappings. It is assumed that these kinds o f  objects, if 
desired, are transformed into appropriate two dimensional imaging 
constructs prior to display. 

Treating source images in this way gives a pleasing symmetry to the 
implementation as well. The interface to a raster input source 
provides the source's boundary in the source coordinate system, and 
provides a mapping from the source coordinate system to the virtual 
coordinate system. The interface to a raster output device provides a 
mapping from the virtual coordinate system to the device coordinate 
system, and provides the device's boundary in the device coordinate 
system. Given these interfaces, the implementation has all the 
information it needs to map coordinates directly from source to 
destination, and to compute the intersection of  their boundaries. 

The following description of an implementation of  the imaging 
model will illustrate how all the above concepts hang together. 

Interfaces and Implementation 

The following description centers on the interfaces which define the 
boundaries between program components. A carefully designed 
interface effectively decouples its clients from the internal details of  
its implementors by defining a set of  available operations. Each client 
retains a pointer to the state information needed by the implementer, 
but uses only the interface-defined operations to manipulate that 
state. The implementation outlined here relies heavily on this notion 
of an interface to achieve device independence. 

The programmer who wants to display or print pictures is a client of  
the application interface. The operations defined in this interface 
allow the application programmer to construct images by combining 
various sources and stencils. This is the interface that presents the 
imaging model described above. Equally important, however, are the 
internal interfaces which separate the device-independent components 
of  the implementation, from the device-dependent components. 

These interfaces isolate most of  the implementation from the peculiar 
characteristics of  different display devices and image sources. 

Coordinate Systems 

One of the key ideas in making applications independent of  devices 
is defining coordinate systems and isolating them from each other. 
Because pixel addressing conventions vary across different raster 
devices, it is particularly important to isolate the device coordinate 
system (IX:S) from the application program view of the system. To 
achieve this isolation, the imaging model defines an intermediate 
coordinate system called the virtual coordinate system (vcs). This 
common coordinate system serves as the meeting ground for device 
implementations and user applications. The system implementor 
writing the device dependent code for a particular display is 
concerned only with the mapping between the vcs  and the Des. 
The application programmer using the imaging operators is 
concerned only with building images relative to the virtual coordinate 
system. 

Another aspect of  coordinate systems often overlooked in building 
raster display sytems is the isolation o f  the source coordinate system 
(SCS) in which sampled image sources are defined. Sampled images 
are, in some sense, dual to display devices. They provide a raster 
input form for images in the same way that devices provide a raster 
output form for images. The application program should be no 
more concerned with scanning  properties or coordinate system 
particulars o f  source images than with scanning properties or 
coordinate sytems of  display devices; it should deal with images in 
the virtual coordinate system. 

To accomplish this, the imaging model adopts conventions for source 
independence analogous to its conventions for device independence. 
Knowing these conventions, the application can predict how images 
or masks will be mapped into the virtual coordinate system. 
Therefore, the application can manipulate and transform the image 
geometrically without regard to the scanning or resolution properties 
of  the image or mask. 

Application Interface 

Each application using the imaging model may invoke a collection o f  
imaging operators through the application interface. These operators 
define mappings, clipping regions, shapes, colors, masks and image 
sources, and cause shapes to be displayed. Because of the many 
differences in languages and operating systems, only an indication of  
the framework of  operators is given here. Additions are needed to 
fill in the details for a specific programming environment. 

The state information associated with an application is called the 
display context. As an application uses the display, the imaging 
operators use and modify the information in the display context. 
This information includes: 

1. An interface to a device. 

2. The current position (cpx, cpy) in the device coordinate 
system. 

3. The transformation matrix T that maps application defined 
shapes into the device coordinate system. 

4. The clipping region (ce). 

The notation used to indicate the procedure interface is of  the form: 

P roced u reName:  PROCEDURE [p 1 : PTypel ,  p2: PType2, ...] 
RETURNS [r1: RTypel ,  r2: RType2, ...]; 

Here it is assumed that each procedure takes input parameters 
(named p7, p2 . . . .  ) of  various types, and returns results (named r l ,  
r2 . . . .  ) of  various types. Some of  the type names should be obvious 
(e.g., Real for floating point numbers); othel~ (e.g., Trajectory) are 
left undefined. For these undefined types, it is assumed that the 
implementation will define an appropriate data structure. The 
particulars of  the data structures chosen are not important to this 
discussion, and need not be known by the application using the 
interface. 

The Device and Image types hold state information for particular 
display devices and image sources. The interfaces to devices and 
images will be described below. Note, however, that the application 
can treat them entirely as "black boxes"; it need not know even their 
interface definitions. 

New X X X Device: PROCEDURE [<optional parameters>] 
RETURNS [Device]; 

A procedure of this form is provided by each device implementation. 

NewXXXlmage: PROCEDURE [<optional parameters>] 
RETURNS [Image]; 

A procedure of this form is provided by each scanned image type. 

NewDisplayContext: PROCEDURE [device: Device] 
RETURNS [de: DisplayContext]; 

Initializes a display context. The transformation Tis initialized to the VCS-to- 
DCS mapping provided by the device. The clipping region CR is initialized to 
be the boundary of the device. The current position (cpx.cpy) is set to 0,0. 
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GetCu rrentPosition: PROCEDURE [dc:  DisplayContext ]  
RETURNS [x,y: Real]; 

Returns x,y such that (x~y)T = (cpx.cpy). 

SetCu rrentPosition: PROCEDURE [de: DisplayContext,  
x,y: Real]; 

Sets (cpx, cpy) to (x,y)T. 

NewTrajectory:  PROCEDURE [x,y: Real]  
RETURNS [t: Trajectory];  

Returns a new trajectory. Every trajectory has a first position (FP) and a last 
position (LP): for a new trajectory, both FP and LP are set to (x.y). 

LineTo: PROCEDURE [t: Trajectory,  x,y: Real] 
RETURNS [U: Trajectory] ;  

Returns a trajectory u that includes, in addition to t, the line segment from t's 
LP to (x,y). The LP ofo  is (x,y). 

Cu rveTo:  PROCEDURE [t: Trajectory,  x 1,y1,x2,y2,x3,y3: Real] 
RETURNS [U: Trajectory] ;  

Returns a trajectory u that includes, in addition to t. a cubic curve segment 
from t's LP to (x3,g3). The curve segment is defined by its four Bezier control 
points: t's LP. (x 1,yl ), (x2,y2), and (x3,y3). The LP ofu is (x3,y3). 

Close: PROCEDURE [t: Trajectory]  
RETURNS [U: Trajectory] ;  

Returns a trajectory u that includes, in addition to t, the line segment from t's 
LP to t's PP. The FP and LP ofu  are equal. 

Rectangle: PROCEDURE [xl ,yl ,xu,yu: Real] 
RETURNS [t: Trajectory] ;  

A convenience function, equivalent to: 

t *- NowTrajectory[xl,yl]; 
t *- LineTo[t,xu,yl]; 
t ~- LineTo[t,xu,yu]; 
t ~ LineTo[t,x/,yu]; 
t *" Close[t]; 

NewShape: PROCEDURE RETURNS[S; Shape];  

Returns an empty shape list. 

AddToShape: PROCEDURE [S: Shape, t: Trajectory]  
RETURNS [r: Shape]; 

Returns a Shape r that contains, in addition to the trajectories of s, the 
trajectory t. 

MakeLineShape: PROCEDURE [brush:  Shape, t: Tra jectory]  
RETURNS Is: Shape]; 

The locus ofeach point interior to the brush is computed as the origin of the 
brush shape is moved along the trajectory. The union of all these loci form a 
set of solid areas. The boundaries of these areas make up a shape. It is this 
shape that is returned by MakeLineShaoe. Note: the above definition is just 
that, and does not describe how line shapes might really be computed. 

MakeColorSou tee:  PROCEDURE [hue,sat ,br ightness:  Real] 
RETURNS [S.' Source];  

Supplies a Source data structure representing solid ink of the specified color. 

MakelmageSou rce: PROCEDURE [ image:  Image] 
RETURNS [S: Source];  

Supplies a Source data structure representing the specified sampled image. 

DrawShape: PROCEDURE [dc:  DisplayContext,  
shape: Shape, source:  Source];  

Maps the shape and source through the transformation T, clips the shape 
against the CR, and displays the shape with the given source as the ink~ 

DrawMask: PROCEDURE [de: DisplayContext,  
mask: Image, source:  Source];  

Maps the mask, its boundary and the source through the transformation T. 
clips the boundary against the CR. and displays the resulting clipped mask 
with the given source as the ink. 

SetClipShape: PROCEDURE [de: DisplayContext,  
shape: Shape]; 

Maps the shape through the transfoimation T, clips the shape against the CR, 
and installs the shape as the new clipping region. 

Translate: PROCEDURE [dc: OisplayContext,  x,y: Real]; 

Builds a transformation matrix M that will translate (0,0) onto (x,y), and sets 
T, in the display context, to MT. 

Rotate: PROCEDURE [de: DisplayContext,  angle: Real]; 

Builds a rotation matrix M that will rotate (l,0) onto (cos(ang/e),sin(angle)), 
and sets T, in the display context, to M T  

Scale: PROCEDURE [de: DisplayContext,  sx,sy: Real]; 

Builds a transformation matrix M that will scale (1,1) onto (sx,sy). and sets T, 
in the display context, to MT 

Concatenate: PROCEDURE [dc:  DisplayContext,  m: Matrix]; 

Sets T, in the display context, to m T 

GetMatrix: PROCEDURE [dc: DisplayContext ]  
RETURNS [t: Matr ix];  

Returns the matrix t such that i f M  is the matrix that transforms VCS to DCS, 
then t = TM "1. 

Be c a use  c h a r a c t e r s  o f  fon t s  are  t r e a t ed  l ike  a n y  o t h e r  s h a p e s  in  th i s  

i m a g i n g  m o d e l ,  r ou t i ne s  to d i sp l ay  text  d o  n o t  p r o p e r l y  b e l o n g  in t h e  
a b o v e  set  o f  p r i m i t i v e  ope ra to r s .  H o w e v e r ,  s ince  a p p l i c a t i o n s  o f t e n  
use  tex t  a n d  c ha r a c t e r s  ex tens ive ly ,  c o n v e n i e n c e  r o u t i n e s  c a n  b e  

p r o v i d e d  to m a k e  the  d i sp l a y  o f  t ex t  s i m p l e .  A typ ica l  se t  w o u l d  

i nc lude :  

MakeFont: PROCEDURE [<font name>] RETURNS [f: Fontld];  

DisplayChar: PROCEDURE [c: Character ,  f: Fontld];  

DisplayText: PROCEDURE [s: String, f: Fontld]; 

GetCharMetrics: PROCEDURE [C: Character,  f: Font ld]  
RETURNS [<whatever metrics a font provides>]; 

Device Independent Procedures 

T h e  rou t ine s  tha t  i m p l e m e n t  t he  i m a g i n g  m o d e l  d e p e n d  on  a l a r g e  
n u m b e r  o f  i dea s  a n d  a l g o r i t h m s .  I t  is n o t  p rac t i ca l  to d e s c r i b e  t h e s e  
in deta i l .  ] n s t e a d  the  few cr i t ical  o b s e r v a t i o n s  a n d  a l g o r i t h m s  
neces sa ry  to g e t  t he  cen t r a l  ideas  o f  t he  i m p l e m e n t a t i o n  a r e  
d i scussed .  

T o  bes t  u n d e r s t a n d  h o w  t h e s e  ideas  w o r k  toge the r ,  o n e  n e e d s  to 
u n d e r s t a n d  severa l  f u n d a m e n t a l  o p e r a t i o n s  f o u n d  in the  D r a w S h a p e ,  
DrawMask a n d  SetCl ipShape p r o c e d u r e s .  
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Shape Mapping 

Given a shape (set of  closed trajectories) and a transformation matrix 
M, we will say that the shape is mapped using M when all points and 
cubics that comprise each of  the shape's trajectories are transformed 
using hi. 

Shape Clipping 

An approximated reduced shape will be called clipped if  each of  its 
convex polygons has been clipped against the set o f  the convex 
polygons that make up a clipping region. 

Figure 3: Shape mapping. Figure 5: Shape clipping. 

Shape Approxhnation 

Given a shape (set of  closed trajectories) in the DCS we will say that 
the shape is approximated when all cubics, in each of  the shape's 
trajectories, are replaced by piecewise linear approximations. Since 
the shape is in the DCS, it is possible to make piecewise linear 
approximations as a function of device resolution. 

An approximated shape exists as a collection of  polygons, which may 
be mutually intersecting, self intersecting and concave. 

Shape Reduction 

An approximated shape is reduced when the polygons that make up 
the shape are converted into a collection of  disjoint, convex polygons 
which tile the interior of  the shape. The locus of the shape's interior 
is determined by applying a wrap number convention. There are a 
number of  known filing algorithms [1,2,3]. 

The above concepts are used freely in the process of  displaying a 
shape. Of  equal importance is the description of the basic operation 
that is carried out by the device dependent part o f  the system. 

Internal Interfaces 

Just as the application program is a client of  the application 
interface, the device-independent portion of  the system is a client of  
the device and source interfaces. 

Information available at the device interface includes: 

1. The transformation matrix that maps the virtual coordinate 
system to the device coordinate system. 

2. The shape (in the device coordinate system) that bounds the 
display area. 

3. A vector of  procedures that implement the ~can conversion 
primitiveS. These are device-specific procedures; their calling 
sequences do not vary from device type to device type, but the 
way they perform their function may vary dramatically across 
device types. 

The source interface is used both for scanned image sources and for 
masks. Information available at the source interface includes: 

1. The transformation matrix that maps the image or mask 
coordinate system to the virtual coordinate system. 

2. The shape (in the source coordinate system) that bounds the 
image or mask area. 

3. A vector of  procedures that implement the source accessing 
primitives. These are source-specific procedures. 

Figure 4: Shape reduction. 
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The operations defined by these interfaces are called as required by 
the device independent portions of the system. Some examples of  
their use are illustrated below. 

Device Dependent Procedures 

Scan Conversion 

Strictly speaking, a given device implementation need supply only 
one procedure, Disp layConvexPolygon.  This procedure 
implements the most general case of scan conversion that the device 
must handle: pushing a general mapped scanned image, as a source, 
through a mapped mask, The arguments taken by the procedure 
are; 

1. A convex polygon. This polygon represents either part o f  a 
shape (if no mask is given), or the boundary of  a mask (if a 
mask is given). 

2. A source, which is either a constant value, or: 
a. A mapping S from the source's scs  to the DCS, and 
b. A pointer to the source sample array. 

3. An optional mask which includes: 
a. A mapping M from the mask's SCS to the rxc's, and 
b. A pointer to the mask sample array. 

The operation carded out by this procedure is: 

For each pixel position (x,y) in the interior of  the convex polygon in 
DCS, compute (Xs.Ys) = (x,y)S "l, and (Xm,Ym) = (x,y)M "1. If the 
value in the mask array at (Xm,Ym) =1, then interpret the source 
value at (xs, ys) for the device type and display an appropriate value 
at (x,y). Note: in practice, instead of  mapping each point in DES 
through two inverse mappings (computationally expensive), 
incremental mapping techniques are used; in this way each mapping 
is replaced with two add operations. This is discussed later in the 
section on optimizations. 

In most implementations of  a given device, special cases that are 
expected to occur frequently can be provided as subcases of  the 
above. Two common special cases are listed below. 

1. Disp layRectangularMask.  This procedure is a special 
case of the above where: the polygon is rectangular in the DCS, 
the source is a constant color, and the mapping from the SCS to 
DCS contains only a translation component. This procedure is 
typically used for the display of  most characters. 

2. Disp laySimplePolygon.  This procedure is a special case 
of DisplayConvexPolygon where the source is constant, and 
there is no mask. Most line drawings and simple filled shapes 
use this procedure. 

It can be seen how the aboye device independent and device 
dependent notions are brought together by examining the processing 
steps associated with the DrawShape, DrawMask and SetClipShape 
procedures. 

DrawShape (source is a constant color) 

1. Map the input shape into the Des using T (the 
transformation from the display context). 

2. Approximate the resulting shape, reduce it, and clip it to CR 
(the clipping region from the display context). 

3. Pass each resulting convex polygon to the 
DisplayConvexPolygon procedure (found in the device 
interface in the display contex0, along with the constant color 
value. 

DrawShape (source is a scanned image) 

1. Concatenate the SCS-to-vcs transfomaation Q (from the 
scanned image interface) with the VCS-to-DCS transformation T 
(from the. display contex0 to form the SC'S-to-DCS transformation 
s ( s  = gT). 

2. Map the shape that bounds the scanned image (from the 
scanned image interface) into the DCS, using S. 

3. Approximate the resulting shape, reduce it, and clip it to CR. 

4. Use the resulting set of convex polygons to define a new 
clipping region, cg:  

5. Map the input shape (the argument to DrawShape) into the 
DCS, using T. 

6. Approximate the resulting shape, reduce it, and clip it to CR: 
At this point, the resulting convex polygons represent the 
intersection of  the mapped boundary of  the image and the 
mapped input shape. 

7. Pass each convex polygon to the DisplayConvexPolygon 
routine, along with transformation S and a pointer to the image 
samples. 

DrawMask (source is a constant color) 

1. Concatenate the sos-to-yes transformation R (from the mask 
interface) with the VCS,to-DCS transformation T to form the SC-'S- 
to-DeS transformation M (M = RT). 

2. Map the bounding shape of  the mask into the DCS, using M. 

3. Approximate the resulting shape, reduce it, and clip it to CR. 

4. Pass each resulting convex polygon to the device's 
DisplayConvexPolygon procedure, along with the constant 
color value, transformation M, and a pointer to the mask 
samples. 

DrawMask (source is a scanned image) 

1. Concatenate the scs-to-vCs transformation Q (from the 
scanned image interface) with the vcs-to-I)CS transformation T 
to form the SCS-to-DCS transformation S (S = QT). This 
mapping transforms coordinates from the scanned image to the 
device. 

2. Map the bounding shape of  the image into the DCS, using 5'. 

3. Approximate the resulting shape, reduce it, and clip it to CR. 

4. Use the resulting set of  convex polygons to define a new 
clipping region, CR'. 

5. Concatenate the SCS-to-vcs transformation R (from the mask 
interface) with the VCS-to-DCS transformation T to form the SCS- 
tO-DCS transformation M (M = RT) This mapping transforms 
coordinates from the mask to the device. 

6. Map the bounding shape of  the mask into the I~:S, using M. 

7. Approximate the resulting shape, reduce it, and clip it to CR: 

8. Pass each resulting convex polygon to the device's 
DisplayConvexPolygon procedure, along with transformations S 
and M and pointers to the image and mask samples. 

SetClipShape 

1. Map the input shape into the DCS, using T. 

2. Approximate the resulting shape, reduce it, and clip it to cg. 

3. Install the resulting set of convex, non-intersecting polygons 
as the new CR in the display context. 

Note that the DisplayConvexPolygon routine never needs to do any 
boundary checking. When a scanned image or mask is present, the 
shape to be scan convened always represents an interior portion of  
the image or mask. Also, the clipping region in the display context 
always lies inside the device boundary. 
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Optimizations 
Although the above algorithms may involve extensive computation, 
certain simple expected cases can be made to short circuit most o f  
the above machinery without losing any of the generality. Three of  
these short cuts will now be described. 

The display of  characters 

In situations where high performance is required, character fonts are 
designed to work with a given display type, i.e., a character is 
defined to be a mask whose resolution and scanning characteristics 
are the same as the device's. Also the bounding shape of a character 
mask is a rectangle. Under these circumstances, the mapping taking 
the mask in scs  to vcs,  when concatenated with the device's 
mapping from vcs  to DeS, will be the identity mapping (with, 
perhaps, an application-introduced translation component). Since 
this is the case, the bounding rectangle of  the mask will map into a 
rectangle in the DCS. If in addition the source color is solid black 
and the bounding rectangle is not clipped, the scan conversion 
process reduces to the one-to-one transfer of  pixels in one rectangle 
to pixels in another. To avoid checking for the identity 
transformation for each character, the combined transformation from 
sos  to vc s  to Des can be noted as an identity in the display context. 
If no operations that change transformations (other than translation) 
take place between the display of succesive characters, then no 
transformation checking need be done. 

If any of  the above conditions is not true, then the optimization fails 
and the more general machinery will display the character. 

Transforming sources and masks 

The rotation, scaling and sampling of  sources and masks can be 
computationally expensive. To reduce this computation the following 
steps are taken (the discussion centers on the handling of  sources, 
but the same discussion applies to masks). 

Scan conversion, in the device coordinate system (DCS), is carried out  
pixel-by-pixel along successive scan lines. If the unit vector (1,0) 
representing the delta vector between successive pixels in a scan line 
is mapped through S "1 (the mapping from the device coordinate 
system to the source coordinate system), then the delta vector ds 
between required sample positions in the source is obtained. 
Successive sample positions in the source that correspond to the 
successive pixels along the scan line can be incrementally computed 
by mapping the beginning of the scan line in the DCS through S "1, 
and incrementally adding ds to obtain the position of  the next sample 
to be used in the scan line. This optimization replaces a general point 
transformation with two additions. 

Bounding boxes 

An additional artifact, a bounding rectangle associated with a shape, 
can be introduced after mapping into the DCS. Bounding rectangles 
can be used to short cut the amount  of  computing done by the shape 
reduction and clipping machinery: i.e., if a bounding rectangle is 
exterior to the set of  clipping regions, then the associated shape need 
not be processed further. On the other hand, if a bounding rectangle 
is totally within the clipping region, then the shape need not be 
clipped since it is totally within the region. 

Conclusion 
A consistent, simple, device independent imaging model, and an 
implementation of the model, provide powerful tools to the 
application programmer. The model presented in this paper, 
presents a general interface that has been useful over a wide range of  
applications and devices. Users have commented positively on the 
simplicity of  the model and its ease of  use. 

The aspects o f  this model that have been most successful are the 
following. 

Treating text characters like other graphic objects, and not as low- 
level, device dependent primitives has been a big win. High level 
font dependent abstractions are kept in the application programs and 
not in the low-level device driving programs. Furthermore, because 
of optimization of  special cases, no significant performance loss 
results from this generality. 

The generalized clipping facility is valuable. There are simple 
interactive metaphors and complex images that are difficult to build 
without the clipping facilities. In addition to the application 
advantages, the clipping facilities are used extensively in the 
implementation to avoid bounds testing in the low-level routines. 

With this model an application does not know the particulars o f  t h e  
device, or even whether the device is shared. High level display 
management facilities can allocate a portion o f  the screen, set the 
clipping region to that portion, and pass the display context, 
representing the entire "device," to a subapplication. This aspect o f  
device independence simplifies systems integration activities. 
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