
A Device Independent Graphics hnaging Model for Use with Raster Devices

J o h n W a r n o c k a n d D o u g l a s K. W y a t t

Xerox Palo Alto Research Centers
3333 Coyote Hill Road

Palo Alto, CA 94304

Abstract

In building graphic systems for use with raster devices, it is difficult
to develop an intuitive, device independent nmdel of the imaging
process, and to preserve that model over a variety of device
implementatio.ls. This paper describes an imaging model and an
associated implementation strategy that:

1. Integrates scanned images, text, and synthetically generated
graphics into a uniform device independent metaphor;

2. Isolates the device dependent portions of the implementation to a
small set of primitives, thereby minimizing the implementation cost
for additional devices;

3. Has been implemented for binary, grey-scale, and full color raster
display systems, and for high resolution black and white printers and
color raster printers.

Introduct ion

The work described in this paper is designed for a multi-application
programming environment where programmers use raster display
devices to provide the visual communication links between users and
systems. The displays are used for simple typescript-style text
applications as well as for more involved applications requiring
drawings, scanned images, and other complex combinations of
graphics and text: a music composition system, a general window
management package for a programming environment, a high quality
document design system, a VLSI design system, and a graphics arts
design package.

In an environment that supports such diverse graphic user interfaces
on a variety of display devices, it is desirable to maintain a flexible
unified graphics imaging model and an associated programming
interface, independent of display devices, with which all the
application programs can work.

This paper describes an imaging model and its programming
interfaces, discusses the advantages in using such a model, and
outlines a basic implementation strategy.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 A C M 0 - 8 9 7 9 1 - 0 7 6 - 1 / 8 2 / 0 0 7 / 0 3 1 3 $ 0 0 . 7 5

Raster Devices

The class of raster devices encompasses a wide range of displays,
plotters, and printers. These include full color (24 bit per pixel)
displays, grey level displays, simple low resolution binary (1 bit per
pixel) displays, electrostatic plotters, high resolution film recorders,
and laser printers. Raster devices, because of their potential ability
to display a rich set of images, serve as a useful class over which to
define a device independent programming abstraction.

Broadening the class of raster devices to include other kinds o f
graphic devices ~vector drawing displays, pen plotters, or storage tube
displays) can lead to problems in defining the imaging abstractions.
Either the image types become restricted or the imaging metaphors
become strained and unnatural. For example, the implementation o f
solid areas on some vector drawing devices is impractical. Restricting
the set of devices to raster devices allows the imaging metaphor to
remain simple, consistent, and efficient.

Device Independence

Device independence, in the context of using raster devices, can be
defined in several ways depending on the level of abstraction desired.

One definition dictates that the imaging model provides an
abstraction o f how an image ideally looks on a perfect medium; this
model abstracts the appearance of the image. The implementation
for each specific display must mimic the appearance of an ideal
image to the best of its ability. This kind of device independence
attempts to maintain global image properties in spite of wide
variations in display type. For example, a device that can show grey
values might render the appearance of color values by substituting
appropriate grey values. A binary device might render colors with
stipple patterns that give a visual impression of grey values.

Other kinds of device independent abstractions can be less strict.
Image representations may not model image appearance but instead
describe some form of information content. In this case, the
implementation of a given device is only required to convey certain
information content of the application, and may not be constrained
in any way to the appearance of the image. For example, a black
and white device implementation might choose to display colors with
iconic labels rather than intensity levels. With this kind of
abstraction, few constraints are put onto particular device
implementations. One consequence of this latter kind o f abstraction
is that the programmer cannot have precise expectations of how a
device implementation will attempt to represent images.

Device independence benefits the implementors of a graphics system
as well as its clients, since the bulk of the system can be shared
across all devices. Only a small portion of the code need be
concerned with a specific device type. If the interface to this device-
specific code is well designed, implementing a new device type
requires minimal programming, effort.

313

Computer Graphics Volume 16, Number 3 July 1982

f

Figure 1: The imaging model.

The Imaging Modei
The imaging model described here is designed for applications
related to the typesetting and graphics arts industry, where image
appearance is vital. For this reason the model abstracts the
geometric and color properties of an image. In taking this approach,
the imaging model makes two value judgements: first, that global
image fidelity is important: second, that it is valuable for the
application to be able to rely on a device implementation to render
images as accurately as possible. It should be noted at the outset
that for a number of applications this choice may be inappropriate.

The imaging model specifies how geometric shapes and colors are
combined. It follows a metaphor that loosely corresponds to the
procedure used by a silk-screen printer: pushing colored ink through
a stencil onto paper. The left side of Figure 1 illustrates this
operation. The ink, above, is solid gray; the screen, in the middle,
has an a-shaped opening; on the paper, below, the result is an a-
shaped patch of gray ink. The artist can build a complex image by
repeating this basic operation with different combinations of screens
and inks. Ink laid down later may obscure ink laid down earlier.

The programming interface presents a similar model. The
programmer calls a series of procedures to define a stencil, and other
procedures to define a source. Each primitive display procedure
produces on the display the effect of pushing a given source through
a given stencil. The programmer can build a complex image by
calling a sequence of display primitives with different combinations
of stencils and sources.

Stencils may be represented in two forms: shapes and masks. A
shape consists of a collection of closed piecewise analytic curves
(straight lines and parametric cubics); these curves represent the
outlines of holes in the stencil. A mask consists of a binary two
dimensional array; "ones" in the array represent holes in the stencil,
There is no special representation for text. Characters are just letter-
shaped stencils, which can be represented either as closed analytic
outlines or as masks.

Sources (inks) may be represented either as single colors or as multi-
colored two dimensional sampled images. When the source is multi-
colored, the imaging model is much more powerful than any
analogous silk-screening operation. Picture a slide projector shining
a general colored image through a stencil onto the paper. The fight
side of Figure 1 shows the result of pushing a multi-colored source
through a stencil.

Other properties of the imaging model lack good analogies in the
silk-screening metaphor. The first of these is an additional level of
stencil called a clipping region. The purpose of the clipping region is
to restrict the area where ink is displayed regardless of what other
shapes or masks are used. When a clipping region is specified, then
only ink falling inside that region is displayed. Figure 2 illustrates
the effect of a clipping region.

Also unlike anything in the silkscreening process are the model's
general mapping facilities. Under control of the application, stencils
and sources may be mapped independently through any linear
transformation prior to display. Imagine rotating the stencil~ or
stretching a rubber stencil to expand or skew it; at the same time,
imagine rotating the slide projector, or pulling it back to enlarge the
image. The mapping facility gives the application program a great
deal of flexibility in the composition of images.

Figure 2: A clipping region.

314

Additional operators generate shapes that correspond to drawn lines
and curves. These operators take trajectories (piecewise analytic
segments, open or closed) and brush information (just another shape)
and generate closed shapes that correspond to lines and curves drawn
with the given brush. The resulting lines and curves then act like
any other stencils, and may have inks pushed throu~a them.

This model does not address issues concerning the display of
projected three dimensional objects, or issues dealing with complex
conformal mappings. It is assumed that these kinds o f objects, if
desired, are transformed into appropriate two dimensional imaging
constructs prior to display.

Treating source images in this way gives a pleasing symmetry to the
implementation as well. The interface to a raster input source
provides the source's boundary in the source coordinate system, and
provides a mapping from the source coordinate system to the virtual
coordinate system. The interface to a raster output device provides a
mapping from the virtual coordinate system to the device coordinate
system, and provides the device's boundary in the device coordinate
system. Given these interfaces, the implementation has all the
information it needs to map coordinates directly from source to
destination, and to compute the intersection of their boundaries.

The following description of an implementation of the imaging
model will illustrate how all the above concepts hang together.

Interfaces and Implementation

The following description centers on the interfaces which define the
boundaries between program components. A carefully designed
interface effectively decouples its clients from the internal details of
its implementors by defining a set of available operations. Each client
retains a pointer to the state information needed by the implementer,
but uses only the interface-defined operations to manipulate that
state. The implementation outlined here relies heavily on this notion
of an interface to achieve device independence.

The programmer who wants to display or print pictures is a client of
the application interface. The operations defined in this interface
allow the application programmer to construct images by combining
various sources and stencils. This is the interface that presents the
imaging model described above. Equally important, however, are the
internal interfaces which separate the device-independent components
of the implementation, from the device-dependent components.

These interfaces isolate most of the implementation from the peculiar
characteristics of different display devices and image sources.

Coordinate Systems

One of the key ideas in making applications independent of devices
is defining coordinate systems and isolating them from each other.
Because pixel addressing conventions vary across different raster
devices, it is particularly important to isolate the device coordinate
system (IX:S) from the application program view of the system. To
achieve this isolation, the imaging model defines an intermediate
coordinate system called the virtual coordinate system (vcs). This
common coordinate system serves as the meeting ground for device
implementations and user applications. The system implementor
writing the device dependent code for a particular display is
concerned only with the mapping between the vcs and the Des.
The application programmer using the imaging operators is
concerned only with building images relative to the virtual coordinate
system.

Another aspect of coordinate systems often overlooked in building
raster display sytems is the isolation o f the source coordinate system
(SCS) in which sampled image sources are defined. Sampled images
are, in some sense, dual to display devices. They provide a raster
input form for images in the same way that devices provide a raster
output form for images. The application program should be no
more concerned with scanning properties or coordinate system
particulars o f source images than with scanning properties or
coordinate sytems of display devices; it should deal with images in
the virtual coordinate system.

To accomplish this, the imaging model adopts conventions for source
independence analogous to its conventions for device independence.
Knowing these conventions, the application can predict how images
or masks will be mapped into the virtual coordinate system.
Therefore, the application can manipulate and transform the image
geometrically without regard to the scanning or resolution properties
of the image or mask.

Application Interface

Each application using the imaging model may invoke a collection o f
imaging operators through the application interface. These operators
define mappings, clipping regions, shapes, colors, masks and image
sources, and cause shapes to be displayed. Because of the many
differences in languages and operating systems, only an indication of
the framework of operators is given here. Additions are needed to
fill in the details for a specific programming environment.

The state information associated with an application is called the
display context. As an application uses the display, the imaging
operators use and modify the information in the display context.
This information includes:

1. An interface to a device.

2. The current position (cpx, cpy) in the device coordinate
system.

3. The transformation matrix T that maps application defined
shapes into the device coordinate system.

4. The clipping region (ce).

The notation used to indicate the procedure interface is of the form:

P roced u reName: PROCEDURE [p 1 : PTypel , p2: PType2, ...]
RETURNS [r1: RTypel , r2: RType2, ...];

Here it is assumed that each procedure takes input parameters
(named p7, p2) of various types, and returns results (named r l ,
r2) of various types. Some of the type names should be obvious
(e.g., Real for floating point numbers); othel~ (e.g., Trajectory) are
left undefined. For these undefined types, it is assumed that the
implementation will define an appropriate data structure. The
particulars of the data structures chosen are not important to this
discussion, and need not be known by the application using the
interface.

The Device and Image types hold state information for particular
display devices and image sources. The interfaces to devices and
images will be described below. Note, however, that the application
can treat them entirely as "black boxes"; it need not know even their
interface definitions.

New X X X Device: PROCEDURE [<optional parameters>]
RETURNS [Device];

A procedure of this form is provided by each device implementation.

NewXXXlmage: PROCEDURE [<optional parameters>]
RETURNS [Image];

A procedure of this form is provided by each scanned image type.

NewDisplayContext: PROCEDURE [device: Device]
RETURNS [de: DisplayContext];

Initializes a display context. The transformation Tis initialized to the VCS-to-
DCS mapping provided by the device. The clipping region CR is initialized to
be the boundary of the device. The current position (cpx.cpy) is set to 0,0.

315

GetCu rrentPosition: PROCEDURE [dc: DisplayContext]
RETURNS [x,y: Real];

Returns x,y such that (x~y)T = (cpx.cpy).

SetCu rrentPosition: PROCEDURE [de: DisplayContext,
x,y: Real];

Sets (cpx, cpy) to (x,y)T.

NewTrajectory: PROCEDURE [x,y: Real]
RETURNS [t: Trajectory];

Returns a new trajectory. Every trajectory has a first position (FP) and a last
position (LP): for a new trajectory, both FP and LP are set to (x.y).

LineTo: PROCEDURE [t: Trajectory, x,y: Real]
RETURNS [U: Trajectory] ;

Returns a trajectory u that includes, in addition to t, the line segment from t's
LP to (x,y). The LP ofo is (x,y).

Cu rveTo: PROCEDURE [t: Trajectory, x 1,y1,x2,y2,x3,y3: Real]
RETURNS [U: Trajectory] ;

Returns a trajectory u that includes, in addition to t. a cubic curve segment
from t's LP to (x3,g3). The curve segment is defined by its four Bezier control
points: t's LP. (x 1,yl), (x2,y2), and (x3,y3). The LP ofu is (x3,y3).

Close: PROCEDURE [t: Trajectory]
RETURNS [U: Trajectory] ;

Returns a trajectory u that includes, in addition to t, the line segment from t's
LP to t's PP. The FP and LP ofu are equal.

Rectangle: PROCEDURE [xl ,yl ,xu,yu: Real]
RETURNS [t: Trajectory] ;

A convenience function, equivalent to:

t *- NowTrajectory[xl,yl];
t *- LineTo[t,xu,yl];
t ~- LineTo[t,xu,yu];
t ~ LineTo[t,x/,yu];
t *" Close[t];

NewShape: PROCEDURE RETURNS[S; Shape];

Returns an empty shape list.

AddToShape: PROCEDURE [S: Shape, t: Trajectory]
RETURNS [r: Shape];

Returns a Shape r that contains, in addition to the trajectories of s, the
trajectory t.

MakeLineShape: PROCEDURE [brush: Shape, t: Tra jectory]
RETURNS Is: Shape];

The locus ofeach point interior to the brush is computed as the origin of the
brush shape is moved along the trajectory. The union of all these loci form a
set of solid areas. The boundaries of these areas make up a shape. It is this
shape that is returned by MakeLineShaoe. Note: the above definition is just
that, and does not describe how line shapes might really be computed.

MakeColorSou tee: PROCEDURE [hue,sat ,br ightness: Real]
RETURNS [S.' Source];

Supplies a Source data structure representing solid ink of the specified color.

MakelmageSou rce: PROCEDURE [image: Image]
RETURNS [S: Source];

Supplies a Source data structure representing the specified sampled image.

DrawShape: PROCEDURE [dc: DisplayContext,
shape: Shape, source: Source];

Maps the shape and source through the transformation T, clips the shape
against the CR, and displays the shape with the given source as the ink~

DrawMask: PROCEDURE [de: DisplayContext,
mask: Image, source: Source];

Maps the mask, its boundary and the source through the transformation T.
clips the boundary against the CR. and displays the resulting clipped mask
with the given source as the ink.

SetClipShape: PROCEDURE [de: DisplayContext,
shape: Shape];

Maps the shape through the transfoimation T, clips the shape against the CR,
and installs the shape as the new clipping region.

Translate: PROCEDURE [dc: OisplayContext, x,y: Real];

Builds a transformation matrix M that will translate (0,0) onto (x,y), and sets
T, in the display context, to MT.

Rotate: PROCEDURE [de: DisplayContext, angle: Real];

Builds a rotation matrix M that will rotate (l,0) onto (cos(ang/e),sin(angle)),
and sets T, in the display context, to M T

Scale: PROCEDURE [de: DisplayContext, sx,sy: Real];

Builds a transformation matrix M that will scale (1,1) onto (sx,sy). and sets T,
in the display context, to MT

Concatenate: PROCEDURE [dc: DisplayContext, m: Matrix];

Sets T, in the display context, to m T

GetMatrix: PROCEDURE [dc: DisplayContext]
RETURNS [t: Matr ix];

Returns the matrix t such that i f M is the matrix that transforms VCS to DCS,
then t = TM "1.

Be c a use c h a r a c t e r s o f fon t s are t r e a t ed l ike a n y o t h e r s h a p e s in th i s

i m a g i n g m o d e l , r ou t i ne s to d i sp l ay text d o n o t p r o p e r l y b e l o n g in t h e
a b o v e set o f p r i m i t i v e ope ra to r s . H o w e v e r , s ince a p p l i c a t i o n s o f t e n
use tex t a n d c ha r a c t e r s ex tens ive ly , c o n v e n i e n c e r o u t i n e s c a n b e

p r o v i d e d to m a k e the d i sp l a y o f t ex t s i m p l e . A typ ica l se t w o u l d

i nc lude :

MakeFont: PROCEDURE [] RETURNS [f: Fontld];

DisplayChar: PROCEDURE [c: Character , f: Fontld];

DisplayText: PROCEDURE [s: String, f: Fontld];

GetCharMetrics: PROCEDURE [C: Character, f: Font ld]
RETURNS [<whatever metrics a font provides>];

Device Independent Procedures

T h e rou t ine s tha t i m p l e m e n t t he i m a g i n g m o d e l d e p e n d on a l a r g e
n u m b e r o f i dea s a n d a l g o r i t h m s . I t is n o t p rac t i ca l to d e s c r i b e t h e s e
in deta i l .] n s t e a d the few cr i t ical o b s e r v a t i o n s a n d a l g o r i t h m s
neces sa ry to g e t t he cen t r a l ideas o f t he i m p l e m e n t a t i o n a r e
d i scussed .

T o bes t u n d e r s t a n d h o w t h e s e ideas w o r k toge the r , o n e n e e d s to
u n d e r s t a n d severa l f u n d a m e n t a l o p e r a t i o n s f o u n d in the D r a w S h a p e ,
DrawMask a n d SetCl ipShape p r o c e d u r e s .

316

Shape Mapping

Given a shape (set of closed trajectories) and a transformation matrix
M, we will say that the shape is mapped using M when all points and
cubics that comprise each of the shape's trajectories are transformed
using hi.

Shape Clipping

An approximated reduced shape will be called clipped if each of its
convex polygons has been clipped against the set o f the convex
polygons that make up a clipping region.

Figure 3: Shape mapping. Figure 5: Shape clipping.

Shape Approxhnation

Given a shape (set of closed trajectories) in the DCS we will say that
the shape is approximated when all cubics, in each of the shape's
trajectories, are replaced by piecewise linear approximations. Since
the shape is in the DCS, it is possible to make piecewise linear
approximations as a function of device resolution.

An approximated shape exists as a collection of polygons, which may
be mutually intersecting, self intersecting and concave.

Shape Reduction

An approximated shape is reduced when the polygons that make up
the shape are converted into a collection of disjoint, convex polygons
which tile the interior of the shape. The locus of the shape's interior
is determined by applying a wrap number convention. There are a
number of known filing algorithms [1,2,3].

The above concepts are used freely in the process of displaying a
shape. Of equal importance is the description of the basic operation
that is carried out by the device dependent part o f the system.

Internal Interfaces

Just as the application program is a client of the application
interface, the device-independent portion of the system is a client of
the device and source interfaces.

Information available at the device interface includes:

1. The transformation matrix that maps the virtual coordinate
system to the device coordinate system.

2. The shape (in the device coordinate system) that bounds the
display area.

3. A vector of procedures that implement the ~can conversion
primitiveS. These are device-specific procedures; their calling
sequences do not vary from device type to device type, but the
way they perform their function may vary dramatically across
device types.

The source interface is used both for scanned image sources and for
masks. Information available at the source interface includes:

1. The transformation matrix that maps the image or mask
coordinate system to the virtual coordinate system.

2. The shape (in the source coordinate system) that bounds the
image or mask area.

3. A vector of procedures that implement the source accessing
primitives. These are source-specific procedures.

Figure 4: Shape reduction.

317

The operations defined by these interfaces are called as required by
the device independent portions of the system. Some examples of
their use are illustrated below.

Device Dependent Procedures

Scan Conversion

Strictly speaking, a given device implementation need supply only
one procedure, Disp layConvexPolygon. This procedure
implements the most general case of scan conversion that the device
must handle: pushing a general mapped scanned image, as a source,
through a mapped mask, The arguments taken by the procedure
are;

1. A convex polygon. This polygon represents either part o f a
shape (if no mask is given), or the boundary of a mask (if a
mask is given).

2. A source, which is either a constant value, or:
a. A mapping S from the source's scs to the DCS, and
b. A pointer to the source sample array.

3. An optional mask which includes:
a. A mapping M from the mask's SCS to the rxc's, and
b. A pointer to the mask sample array.

The operation carded out by this procedure is:

For each pixel position (x,y) in the interior of the convex polygon in
DCS, compute (Xs.Ys) = (x,y)S "l, and (Xm,Ym) = (x,y)M "1. If the
value in the mask array at (Xm,Ym) =1, then interpret the source
value at (xs, ys) for the device type and display an appropriate value
at (x,y). Note: in practice, instead of mapping each point in DES
through two inverse mappings (computationally expensive),
incremental mapping techniques are used; in this way each mapping
is replaced with two add operations. This is discussed later in the
section on optimizations.

In most implementations of a given device, special cases that are
expected to occur frequently can be provided as subcases of the
above. Two common special cases are listed below.

1. Disp layRectangularMask. This procedure is a special
case of the above where: the polygon is rectangular in the DCS,
the source is a constant color, and the mapping from the SCS to
DCS contains only a translation component. This procedure is
typically used for the display of most characters.

2. Disp laySimplePolygon. This procedure is a special case
of DisplayConvexPolygon where the source is constant, and
there is no mask. Most line drawings and simple filled shapes
use this procedure.

It can be seen how the aboye device independent and device
dependent notions are brought together by examining the processing
steps associated with the DrawShape, DrawMask and SetClipShape
procedures.

DrawShape (source is a constant color)

1. Map the input shape into the Des using T (the
transformation from the display context).

2. Approximate the resulting shape, reduce it, and clip it to CR
(the clipping region from the display context).

3. Pass each resulting convex polygon to the
DisplayConvexPolygon procedure (found in the device
interface in the display contex0, along with the constant color
value.

DrawShape (source is a scanned image)

1. Concatenate the SCS-to-vcs transfomaation Q (from the
scanned image interface) with the VCS-to-DCS transformation T
(from the. display contex0 to form the SC'S-to-DCS transformation
s (s = gT).

2. Map the shape that bounds the scanned image (from the
scanned image interface) into the DCS, using S.

3. Approximate the resulting shape, reduce it, and clip it to CR.

4. Use the resulting set of convex polygons to define a new
clipping region, cg:

5. Map the input shape (the argument to DrawShape) into the
DCS, using T.

6. Approximate the resulting shape, reduce it, and clip it to CR:
At this point, the resulting convex polygons represent the
intersection of the mapped boundary of the image and the
mapped input shape.

7. Pass each convex polygon to the DisplayConvexPolygon
routine, along with transformation S and a pointer to the image
samples.

DrawMask (source is a constant color)

1. Concatenate the sos-to-yes transformation R (from the mask
interface) with the VCS,to-DCS transformation T to form the SC-'S-
to-DeS transformation M (M = RT).

2. Map the bounding shape of the mask into the DCS, using M.

3. Approximate the resulting shape, reduce it, and clip it to CR.

4. Pass each resulting convex polygon to the device's
DisplayConvexPolygon procedure, along with the constant
color value, transformation M, and a pointer to the mask
samples.

DrawMask (source is a scanned image)

1. Concatenate the scs-to-vCs transformation Q (from the
scanned image interface) with the vcs-to-I)CS transformation T
to form the SCS-to-DCS transformation S (S = QT). This
mapping transforms coordinates from the scanned image to the
device.

2. Map the bounding shape of the image into the DCS, using 5'.

3. Approximate the resulting shape, reduce it, and clip it to CR.

4. Use the resulting set of convex polygons to define a new
clipping region, CR'.

5. Concatenate the SCS-to-vcs transformation R (from the mask
interface) with the VCS-to-DCS transformation T to form the SCS-
tO-DCS transformation M (M = RT) This mapping transforms
coordinates from the mask to the device.

6. Map the bounding shape of the mask into the I~:S, using M.

7. Approximate the resulting shape, reduce it, and clip it to CR:

8. Pass each resulting convex polygon to the device's
DisplayConvexPolygon procedure, along with transformations S
and M and pointers to the image and mask samples.

SetClipShape

1. Map the input shape into the DCS, using T.

2. Approximate the resulting shape, reduce it, and clip it to cg.

3. Install the resulting set of convex, non-intersecting polygons
as the new CR in the display context.

Note that the DisplayConvexPolygon routine never needs to do any
boundary checking. When a scanned image or mask is present, the
shape to be scan convened always represents an interior portion of
the image or mask. Also, the clipping region in the display context
always lies inside the device boundary.

318

Optimizations
Although the above algorithms may involve extensive computation,
certain simple expected cases can be made to short circuit most o f
the above machinery without losing any of the generality. Three of
these short cuts will now be described.

The display of characters

In situations where high performance is required, character fonts are
designed to work with a given display type, i.e., a character is
defined to be a mask whose resolution and scanning characteristics
are the same as the device's. Also the bounding shape of a character
mask is a rectangle. Under these circumstances, the mapping taking
the mask in scs to vcs, when concatenated with the device's
mapping from vcs to DeS, will be the identity mapping (with,
perhaps, an application-introduced translation component). Since
this is the case, the bounding rectangle of the mask will map into a
rectangle in the DCS. If in addition the source color is solid black
and the bounding rectangle is not clipped, the scan conversion
process reduces to the one-to-one transfer of pixels in one rectangle
to pixels in another. To avoid checking for the identity
transformation for each character, the combined transformation from
sos to vc s to Des can be noted as an identity in the display context.
If no operations that change transformations (other than translation)
take place between the display of succesive characters, then no
transformation checking need be done.

If any of the above conditions is not true, then the optimization fails
and the more general machinery will display the character.

Transforming sources and masks

The rotation, scaling and sampling of sources and masks can be
computationally expensive. To reduce this computation the following
steps are taken (the discussion centers on the handling of sources,
but the same discussion applies to masks).

Scan conversion, in the device coordinate system (DCS), is carried out
pixel-by-pixel along successive scan lines. If the unit vector (1,0)
representing the delta vector between successive pixels in a scan line
is mapped through S "1 (the mapping from the device coordinate
system to the source coordinate system), then the delta vector ds
between required sample positions in the source is obtained.
Successive sample positions in the source that correspond to the
successive pixels along the scan line can be incrementally computed
by mapping the beginning of the scan line in the DCS through S "1,
and incrementally adding ds to obtain the position of the next sample
to be used in the scan line. This optimization replaces a general point
transformation with two additions.

Bounding boxes

An additional artifact, a bounding rectangle associated with a shape,
can be introduced after mapping into the DCS. Bounding rectangles
can be used to short cut the amount of computing done by the shape
reduction and clipping machinery: i.e., if a bounding rectangle is
exterior to the set of clipping regions, then the associated shape need
not be processed further. On the other hand, if a bounding rectangle
is totally within the clipping region, then the shape need not be
clipped since it is totally within the region.

Conclusion
A consistent, simple, device independent imaging model, and an
implementation of the model, provide powerful tools to the
application programmer. The model presented in this paper,
presents a general interface that has been useful over a wide range of
applications and devices. Users have commented positively on the
simplicity of the model and its ease of use.

The aspects o f this model that have been most successful are the
following.

Treating text characters like other graphic objects, and not as low-
level, device dependent primitives has been a big win. High level
font dependent abstractions are kept in the application programs and
not in the low-level device driving programs. Furthermore, because
of optimization of special cases, no significant performance loss
results from this generality.

The generalized clipping facility is valuable. There are simple
interactive metaphors and complex images that are difficult to build
without the clipping facilities. In addition to the application
advantages, the clipping facilities are used extensively in the
implementation to avoid bounds testing in the low-level routines.

With this model an application does not know the particulars o f t h e
device, or even whether the device is shared. High level display
management facilities can allocate a portion o f the screen, set the
clipping region to that portion, and pass the display context,
representing the entire "device," to a subapplication. This aspect o f
device independence simplifies systems integration activities.

Acknowledgements
Many people have contributed ideas relating to the imaging model
and its implementation. In particular, we would like to thank Martin
Newell, Warren Teitelman, and Bob Sproull for their valuable
contributions and suggestions.

Bibliography

[1] Garey, M. R., D. S. Johnson, F. P. Preparata, and R. E. Tarjan.
"Triangulating a Simple Polygon." Information Processing Letters 7.
4 (1978): 175-179.

[2] Lee, D. T., and F. P. Preparata. "Location of a Point in a Planar
Subdivision and its Applications." SIAM J. Comput. 6, 3 (1977): 594-
606.

[3] Newell, M. E., and C. H. Sequin. "The Inside Story on Self-
intersecting Polygons." Lambda 1, 2 (1980): 20-24.

[4] Newman, W. M., and R. F. Sproull. Principles of Interactive
Computer Graphics. Second Edition. New York: McGraw-Hill, 1979.

[5] Sutherland, 1. E., and G. W. Hodgman. "Reentrant Polygon
Clipping." CACM, 17(1):32, January 1974.

319

