
Data Structures Added in the
Berkeley Virtual Memory Extensions to the

UNIX† Operating System‡

Özalp Babao˜glu

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

This document describes the major new data structures that have been introduced to
the Version 7 UNIX system to support demand paging on the VAX*-11/780. The reader
should be basically familiar with the VAX architecture, as described in the VAX-11/780
Hardware Handbook.

When relevant, along with the data structures, we present related system constants
and macro definitions, and some indications of how the data is used by the system algo-
rithms. We also describe the extensions/deletions that have been made to some of the
existing data structures. Full description of the paging system algorithms, however, is not
given here.

2 January 1980

† UNIX is a Trademark of Bell Laboratories

‡ Work supported by the National Science Foundation under grants MCS 7807291, MCS 7824618, MCS
7407644-A03 and by an IBM Graduate Fellowship to the second author.

* VAX is a trademark of Digital Equipment Corporation.

Data Structures Added in the
Berkeley Virtual Memory Extensions to the

UNIX† Operating System‡

Özalp Babao˜glu

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

Introduction

The paging subsystem of the virtual memory extension to the system maintains four new, basic data
structures: the (system and process) page tables,the kernel map,the core mapand the disk map.This doc-
ument consists of a description of each of these data structures in turn.

PA GE TABLES

The format of the process page tables are defined in the system header file pte.h.† The basic form of
the Page Table Entry (PTE) is dictated by the VAX-11/780 architecture. Both the first level page table, known
as Sysmap,and the second level per-process page tables consist of arrays of this structure. The paging sys-
tem makes use of several bit fields which have no meaning to the hardware. The individual fields are:

pg−prot The ProtectionBits. Define the access mode of the corresponding page. Modes used
by the paging system include PG−NOACC for invalid entries, PG−KR for the text of
the kernel, PG−KW for the kernel data space, PG−URKR for text portions of user pro-
cesses, PG−URKW for text portions of user processes during modification (old form
exec, and ptrace) of text images, and PG−UW for normal user data pages.

pg−m The Modify Bit. Set by hardware as a result of a write access to the page. Examined
and altered by the paging subsystem to find out if a page is dirty and has to be written
back to disk before the page frame can be released.

pg−swapm Indicates whether the page has been initialized, but never written to the swapping area.
This bit is necessary because pg−m is normally or’ed with pg−vreadm to see if the
page has ever been modified, and thus pg−m is unavailable to force a swap in this case.

pg−vreadm Indicates whether the page has been modified since it was last initialized. (Initializa-
tion occurs during stack growth, growth due to break system calls, and as a result of
execand vread system calls.) For use by the vwrite system call, which looks at the
inclusive-or of this and the pg−m bit. A vwrite also clears this bit.

† UNIX is a Trademark of Bell Laboratories

‡ Work supported by the National Science Foundation under grants MCS 7807291, MCS 7824618, MCS
7407644-A03 and by an IBM Graduate Fellowship to the second author.

* VAX is a trademark of Digital Equipment Corporation.

† Copies of the system definitions (header) files related to the paging subsystem appear at the end of this docu-
ment.

-2-

pg−fod The Fill on DemandBit. Set only when the valid bit (described below) is reset, indicat-
ing that the page has not yet been initialized. When referenced, the page will either be
zero filled, or filled with a block from the file system based on other fields described
next.

pg−fileno Meaningful only when the pg−fod bit is set. If the pg−fileno field has value
PG−FZERO, then a reference to such a page results in the allocation and clearing of a
page frame rather than a disk transfer. When stack or data segment growth occurs, the
page table entries are initialized to fill on demand pages with PG−FZERO in their
pg−fileno fields. The page is otherwise filled in from the file system, either from the
inode associated with the currently executing process (if pg−fileno is PG−FTEXT), or
from a file.

pg−blkno Gives the block number, in a file system determined by the value of the pg−filenofield,
from which the page is to be initialized. Note that this is the logical block number in
the file system, not in the mapped object. Thus no mapping is required at page fault
time to locate the actual disk block; the system simply uses the pg−filenofield to locate
an inode and uses the i−devfield of that inode in a call to a device strategy routine. The
size of this field (20 bits) limits the maximum size of a filesystem to 2↑20 blocks (1M
block).

pg−v The Valid bit. Set only when the pg−fod bit is reset. Indicates that the mapping estab-
lished in the PTE is valid and can be used by the hardware for address translation.
Access to the PTE when this bit is reset causes an Address Translation Not Validfault
and triggers the paging mechanism. If both the valid and fill on demand bits are reset,
but the pg−pfnum field is non-zero, then the page is still in memory and can be
reclaimed either from the loop or the free list without an I/O operation by simply revali-
dating the page, after possibly removing it from the free list. If the pg−fod bit is not set,
and the pg−pfnumfield is zero, then the page has to be retrieved from disk. Note that
resetting the valid bit for pages which are still resident allows for software detection
and recording of references to pages, simulating a referencebit, which the VAX hard-
ware does not provide.

pg−pfnum The Pa g e Fr ame Number.Meaningful only when the pg−fod bit is reset. If the page
frame is valid, then this gives the physical page frame number that the virtual page is
currently mapped to. If no physical page frame is currently allocated this field is zero
(except in page table entries in Sysmap,where unused entries are not always cleared.)

System Page Tables

The first level page table Sysmapconsists of a physically contiguous array of PTEs defined by the
processor registers SBR (System Base Register), and SLR (System Length Register). SLR is loaded with
the constant Syssizeat system initialization and remains fixed thereafter.

The first four pages of the Sysmapmap the kernel virtual memory from addresses 0x80000000 to the
end of kernel data space onto the first pages of physical memory. Four pages is enough to map a kernel
supporting a full load of memory on a VAX-11/780. Immediately after the pages which map the kernel text
and data are the entries which map the user structure of the current running process (the u. area.) The u.
area is currently six pages long, with the first two of these pages mapping the userstructure itself, and the
other four pages mapping the per-process kernel stack.† The position of the u. in Sysmapdetermines that it
will live, in this system, at 0x80040000.

After the map entries reserved for the u. area are 16 words of system map reserved for utility usage.
The copysegroutine uses one of these (CMAP2) while making a copy of one data page to map the destina-
tion page frame. This is necessary because at the point of copying (during the fork system call) the parent

† Currently all six pages are allocated physical memory; it is planned that in the future, the third of these six
pages will be made a read-only copy of zeropage.Since the stack is observed rarely to enter the third page this
will leave a full page for unanticipated worst-case stack growth, and give a clean termination condition should
the stack ever accidentally grow beyond three pages.

-3-

process is running, while the destination page is not in the parents address space, but rather destined for the
childs address space. Since the parent may fault on the source page during the copy, the contents of this
map are saved in the software extension to the pcb during context switch. Other utilities are used by
clearsegto map pages to be cleared in implementing zero fill on demand pages, and by the mem.cdriver to
map pages in /dev/memwhen accessing physical memory.

The Sysmapcontinues with sets of entries for the UBA control and map registers, the physical device
memory of a UNIBUS adaptor, and the control and map registers of upto three MASSBUSS adaptors.
Each of these consists of 16 page table entries, mapping 8K bytes.

Next, there are a set of map entries for manipulating u. structures other than the one of the current
running process. For instance, the page out demon, which runs as process 2, needs access to the diskmap
information of a process whose page is being written to the disk. To get access to this, it uses six entries in
the Sysmap,known as Pushmap,to map this u. into kernel virtual memory at a virtual address given by
pushutl. There are several other map/utl pairs: Swapmapand swaputl, Xswapmapand xswaputl,
Xswap2mapand xswap2utl, Forkmapand forkutl, Vfmapand vfutl. These are used in swapping and forking
new processes.

The final portion of the Sysmapconsists of a map/utl like pair Usrptmap/usrptwhich is a resource
allocated to hold the first level page tables of all currently core-resident processes. This is a very important
structure and will be described after we describe the basic structure of the page tables of a process.

Per-process page tables

Each process possesses three logical page tables: one to map each of the text, data and stack seg-
ments. Large portions of the system refer to page table entries in each of these segments by an index, with
the first page of each segment being numbered 0.

For the VAX-11/780 version of the system, these page tables are implemented by two physically dis-
tinct page tables, the P0 Page Table,mapping the text and data segments, and the P1 Page Table,mapping
the stack segment. Within the P0 region, the text segment is mapped starting at virtual address 0 with the
data segment following on the first page boundary after it.* The stack segment, on the other hand, starts at
the bottom of the P1 region and grows toward smaller virtual addresses. The constant USRSTACK corre-
sponds to the address of the byte one beyond the user stack. The process page tables are contiguous in ker-
nel virtual memory (KVM) and are situated with the P0 table followed by the P1 table such that the top of
the first and the bottom of the second are aligned at page boundaries. Note that this results in a gap
between the two page tables whose size does not normally exceed one page.

The size of the process’ page tables (P0 + gap + P1) in pages is contained in the software extension
to the pcb located at the top of the process’ u. area (in u−pcb.pcb−szpt). This number is also duplicated in
the proc structure field p−szpt.

Given x as the virtual size of a process, ctopt(x) results in the minimum number of pages of page
tables required to map it. A process accesses its page tables through the descriptors P0BR, P0LR, P1BR,
and P1LR. The per-process copies of these processor registers are contained in the pcb and are loaded and
saved at process context switch time. A copy of the P0 region base register is contained in the proc struc-
ture field p−p0br.

Given the above description of the process layout in virtual memory, a pointer to a process and a page
table entry, the isa?ptemacros result in true if the PTE is within the respective segment of process p:

isaspte(p, pte) stack segment?
isatpte(p, pte) text segment?
isadpte(p, pte) data segment?

Conversion between segment page numbers and pointers to page table entries can be achieved by the fol-
lowing macros, where p is the process of interest, and i is the virtual page number within the segment (a

*Later versions of the system for the VAX-11/780 may align the data starting at a 64K byte boundary, i.e. each
of the text, data and stack segments will use an integral number of first level (Sysmap) entries. There would
then be a minimum of one page of page tables for each segment, and sharing of text page table pages will be
made simple using the ability of the first level entries to point to common page table pages.

-4-

non-negative integer). These are used in dealing with the core mapwhere the page numbers are kept in this
form for compactness.

tptopte(p, i) text page number to pte
dptopte(p, i) data page number to pte
sptopte(p, i) stack page number to pte

The VAX hardware also supports a virtual page frame number. These begin at 0 for the first page of
the P0 region and increase through the text and data regions. For the stack region they begin at the frame
before btop(USRSTACK)and decrease. Note that the first stack page has a large (but positive) virtual page
frame number.

Page frame numbers in the system are very machine dependent, and are referred to as ‘‘v’’s. The
function vtopte(p, v) will take a v for a given process p and give back a pointer to the corresponding page
table entry. The function ptetov(p, pte)performs the inverse operation. To decide which segment a pte is
in, and to thereafter convert from pte’s to segment indices and back, the following macros can be used:

isatsv(p, v) is v in the text segment of process p?
isadsv(p, v) is v in the data segment of process p?
isassv(p, v) is v in the stack segment of process p?
vtotp(p, v) segment page number of page v, which is in text
vtodp(p, v) segment page number of page v, which is in data
vtosp(p, v) segment page number of page v, which is in stack
tptov(p, i) v of i’th text page
dptov(p, i) v of i’th data page
sptov(p, i) v of i’th stack page
ptetotp(p, pte) pte to a text segment page number
ptetodp(p, pte) pte to a data segment page number
ptetosp(p, pte) pte to a stack segment page number
tptopte(p, i) pte pointer for i’th text page
dptopte(p, i) pte pointer for i’th data page
sptopte(p, i) pte pointer for i’th stack page

The functions vtopteand ptetovhave trivial definitions in terms of these macros.

Page table entries as integers

In a few places in the kernel, it is convenient to deal with page table entry fields en masse.In this
case we cast pointers to page table entries to be pointers to integers and deal with the bits of the page table
entry in parallel. Thus

struct pte *pte;

*(int *)pte = PG−UW;

clears a page table entry to have only an access field allowing user writes, by referencing it as an integer.
When accessing the page table entry in this way, we use the manifest constant declarations in the pte.hfile
which give us the appropriate bits.

THE KERNEL MAP

Defined in map.h. The kernel map is used to manage the portion of kernel virtual memory (KVM)
allocated to mapping page tables of those processes that are currently loaded. On the VAX-11/780 this
involves managing page table entries in the first level page table, in the Usrptmap/usrptportion of the
Sysmap.The size of the KVM devoted to mapping resident process page tables is set by USRPTSIZE in
number of Sysmap entries. Note that this allows the mapping of a maximum of 64K * USRPTSIZE bytes
of resident user virtual address space. The maximum can be achieved only if there is no fragmentation in

-5-

the allocation.

KVM required to map the page tables of a process that is being swapped in is allocated according to
a first fit policy through a call to the standard system resource allocator malloc. Once a process is swapped
in, its page tables remain stationary in KVM unless the process grows such that it requires additional pages
of page tables. At that time, the process’ page tables are moved to a new region of KVM that is large
enough to contain them. Upon swap out, the process deallocates KVM required to map its page tables
through a call to the standard resource release routine mfree.†

There are two macros which can be used for conversion between Usrptmapindices and kernel virtual
addresses.

kmxtob(a) converts Usrptmapindex to virtual address
btokmx(b) converts virtual address to Usrptmapindex

CORE MAP

The core map structure is defined in cmap.h. Each entry of core map contains eight bytes of infor-
mation consisting of the following fields:

c−next Index to the next entry in the free list. The size of this field (14 bits) limits the number
of page frames that can exist in the main memory to 16K (8M bytes).

c−prev Index to the previous entry in the free list.

c−page Virtual page number within the respective segment (text, data or stack). The size of this
field (17 bits) limits the virtual size of a process segment to 128K pages (i.e., 64M
bytes).

c−ndx Index of the proc structure that owns this page frame. In the case of shared text, the
index is that of the corresponding text structure. The size of this field (10 bits) limits
the number of slots in the proc and textstructures to 1024.

c−intrans The intransit bit. Important only for shared text segment pages, but set for private data
pages for purposes of post-mortem analysis. Indicates that a page-in operation for the
corresponding page has already been initiated by another process. Causes the faulting
process to enter a wait state until awakened by the process that initiated the transfer.
(This is logically part of the c−flag field, and is separate because of alignment consider-
ations in the coremap.)

c−flag 8 bits of flags.

The meanings of the flags are:

MWANT The page frame has a process sleeping on it. The process to free it should perform a
wakeup on the page.

MLOCK Lock bit. The page frame is involved in raw I/O or page I/O and consequently unavail-
able for replacement.

MFREE Free list bit. The page frame is currently in the free list.

MGONE Indicates that the virtual page corresponding to this page frame has vanished due to
either having been deallocated (contraction of the data segment) or swapped out. The
page will eventually be freed by the process which is holding it, usually the page-out
demon.

MSYS System page bit. The page frame has been allocated to a user process’ u. area or page
tables and therefore unavailable for replacement.

MSTACK Page frame belongs to a stack segment.

† Due to the way in which mallocworks, the KVM mapped by the first entry in Usrptmap(index 0) is not used.

-6-

MDAT A Page frame belongs to a data segment.

MTEXT Page frame belongs to a shared text segment.

The core map is the central data base for the paging subsystem. It consists of an array of these struc-
tures, one entry for each page frame in the main memory excluding those allocated to kernel text and data.

The memory free list, managed by memall and memfree is created by doubly linking entries in core
map. The reverse link is provided to speed up page reclaims from the free list which have to perform an
unlink operation.

There are a pair of macros for converting between core map indices and page frame numbers, since
no core map entries exist for the system.

cmtopg(x) converts core map index x to a page frame number
pgtocm(x) converts a page frame number to a core map index

The macros for manipulating segment page numbers, which we described in the section on page tables
above, are very useful when dealing with the core map.

DISK MAP

Defined in dmap.h. The disk map is a per-process data structure that is kept in the process u. area.
The fields are:

dm−size The amount of disk space allocated that is actually used by the segment.

dm−alloc The amount of physical disk space that is allocated to the segment.

dm−dmap An array of disk block numbers marking the beginning of disk areas that constitute the
segment disk image.

The four instances of the disk map allow the mapping of process virtual addresses to disk addresses
for the parent data, parent stack, child data, and child stack segments. The two child maps are used during
the fork system call serving to make both the parent and the child disk images accessible simultaneously.†

Each entry in the disk map array contains a disk block number (relative to the beginning of the swap
area) that marks the beginning of a disk area mapping the corresponding segment of virtual space. The ini-
tial creation of the segment results in DMMIN blocks (512 bytes each) pointed to by the first disk map
entry to be allocated. These disk blocks map precisely to the first DMMIN virtual pages of the correspond-
ing segment. Subsequent growth of the segment beyond this size results in the allocation of 2*DMMIN
blocks mapping segment virtual page numbers DMMIN through 3*DMMIN-1. This doubling process con-
tinues until the segment reaches a size such that the next disk area allocated has size DMMAX blocks.
Beyond this point, the segment receives DMMAX additional blocks should it require them. Limiting the
exponential growth at this size is in an effort to reduce severe disk fragmentation that would otherwise
result for very large segments.

Note that increasing entries in the array map increasing segment virtual page numbers. However, in
the case of the stack segment, this actually means mapping decreasingprocess virtual page numbers. Also
note that since a shared text segment is static in size, its disk image is allocated in one contiguous block that
is described by the text structure fields x−daddrand x−size.

The maximum size (in pages) that a segment can grow is determined by MAXTSIZ, MAXDSIZ, or
MAXSSIZ for text, data, or stack segment respectively. Since the procedures that deal with the disk map
panic on segment length overrun, setting the maximum size of a segment to a value greater than that can be
mapped by it’s disk map can lead to a system failure. To avoid such a situation, the disk map parameters
should be set so that possible segment overgrowth will be detected at an earlier time in life of a process by
chksize. Note that the maximum segment size that can be mapped by disk map can be increased through
raising any one or more of the constants NDMIN, DMMAX, and NDMAP.

† These could actually be located on the kernel stack, rather than in the u. area.

-7-

INSTRUMENTATION RELATED STRUCTURES

Currently, the system maintains counters for various paging related events that are accumulated and
av eraged at discrete points in time. The basic structure as defined in vm.hhas the following fields:

v−swpin Process swap ins.

v−swpout Process swap outs.

v−pswpin Pages swapped in.

v−pswpout Pages swapped out.

v−pgin Page faults requiring disk I/O.

v−pgout Dirty page writes.

v−intrans Page faults on shared text segment pages that were found to be intransit.

v−pgrec Page faults that were serviced by reclaiming the page from memory.

v−exfod Fill on demand from file system of executable pages (text or data from demand initial-
ized executables.)

v−zfod Fill on demand type page faults which filled zeros.

v−vrfod Fill on demand from file systems of pages mapped by vread.

v−nexfod Number of pages set up for fill on demand from executed files.

v−nzfod Number of pages set up for zero fill on demand.

v−vrfod Number of pages set up for fill on demand with vread.

v−pgfrec Pages reclaimed from the free list.

v−faults Address translation faults, any one of the above categories.

v−scan Page frames examined by the page demon.

v−re v Revolutions around the loop by the page demon.

v−dfree Pages freed by the page demon.

v−swtch Cpu context switches.

The three instances of this structure under the names of cnt, rate,and sumserve the following pur-
poses:

cnt Incremental counters for the above events.

rate The moving averages for the above events that are updated at various integral clock tick
periods. The relevant macro for this operation is av e(smooth, cnt, time)which aver-
ages the incremental count cnt into smoothwith aging factor time.

sum Accumulated totals for the above events since reboot.

EXISTING DAT A STRUCTURES

Here we describe fields within existing data structures that have been newly introduced or have taken
a new meaning.

The Process Structure

p−slptime Clock ticks since last sleep.

p−szpt Number of pages of page table. This field is a copy of the pcb−szptfield in the pcb
structure.

p−tsize Te xt segment size in pages. This is a copy of the x−sizefield in the text structure.

p−dsize Data segment size in pages.

-8-

p−ssize Stack segment size in pages.

p−rssize The current private segment (data + stack) resident set sizefor the process. The resi-
dent set is defined as the set of pages owned by the process that are either valid or
reclaimable but not in the free list.

p−swrss The size of the resident set at time of last swap out.

p−p0br Pointer to the base of the P0 region page table. This is a copy of the pcb−p0br field in
the pcb structure.

p−xlink Pointer to another proc structure that is currently loaded and linked to the same text
segment. The head of this linked list of such processes is contained in the text structure
field x−caddr. Since the shared text portion of the process page tables are duplicated
for each resident process attached to the same text segment, modifications to any one
are reflected in all of them by sequentially updating the page table of each process that
is on this linked list.†

p−poip Count of number of page outs in progress on this process. If non-zero, prevents the
process from being swapped in.

p−faults Incremental number of page faults taken by the process that resulted in disk I/O.

p−av eflt Moving average of above field.

p−ndx Index of the process slot on behalf of which memory is to be allocated. During vfork,
the memory of a process will be given to a child, but the reverse entries in cmapmust
still point to the original process so that the reverse links will point there when the vfork
completes. This field thus indicates the original owner of the current process’ virtual
memory.

The new bits in the p−flag field are:

SSYS The swapper or the page demon process.

SLOCK Process being swapped out.

SSWAP Context to be restored from u−ssaveupon resume.

SPAGE Process in page wait state.

SKEEP Prevents process from being swapped out. Set during the reading of the text segment
from the inode during exec and process duplication in fork.

SDLYU Delayed unlock of pages. Causes the pages of the process that are faulted in to remain
locked, thus ineligible for replacement, until explicitly unlocked by the process.

SWEXIT Process working on exit.

SVFORK Indicates that this process is the child in a vfork context; i.e. that the virtual memory
being used by this process actually belongs to another process.

SVFDONE A handshaking flag for vfork.

SNOVM The parent of a vfork. The process has no virtual memory during this time. While this
bit is set, the p−xlink field points to the process to which the memory was given.

The Text Structure

The new fields in the text structure are:

x−caddr Points to the head of the linked list of proc structures of processes that are currently
loaded and attached to this text segment.

x−rssize The resident set size for this text segment.

x−swrss The resident set size for this text segment at the time of last swap out.

x−poip Count of number of page outs in progress on this text segment. If non-zero, prevents
the process from being swapped in.

† Used slightly differently when otherwise unused during vfork,see SNOVM below.

-9-

The User Area Structure

The per-process user area contains the u. structure as well as the kernel stack. It is mapped to a fixed
kernel virtual address (starting at 0x80040000) at process context switch. The user area is swapped in and
out of disk as a separate entity and is pointed to by the proc structure field p−swaddrwhen not resident.
The number of pages allocated for the process’ user area and kernel stack is six pages (UPAGES), thus the
base of the kernel stack for a process is 0x80040c00.

The new fields that have been added to the u. structure are the following:

u−pcb.pcb−cmap2
Contains the copy of Sysmap entry CMAP2 at context switch time. This kernel virtual
address space mapping is made part of the process context due to the operation of the
process duplication code that implements fork. Briefly, the process duplication is
accomplished by copying from parent process’ virtual address space to the child’s vir-
tual address space by mapping it to kernel virtual memory through CMAP2. Since this
can result in faulting in the parent’s address space, thus causing a block and context
switch, the mapping of the child memory in the kernel must be saved and restored
before the process can resume.

u−nswap Number of times the process has been swapped. Not yet maintained.

u−majorflt Number of faults taken by the process that resulted in disk I/O.

u−cnswap Number of times the children of this process have been swapped. Not yet maintained.

u−cmajorflt Number of faults taken by the children of this process that resulted in disk I/O. Not yet
maintained.

u−minorflt Number of faults taken by the process that were reclaims.

u−dmap The disk map for the data segment.

u−smap The disk map for the stack segment.

u−cdmap The disk map for the child’s data segment to be used during fork.

u−csmap The disk map for the child’s stack segment to be used during fork.

u−stklim Limit of maximum stack growth. To be varied through system calls. Currently not
implemented.

u−wantcore Flag to cause core dump even if the process is very large. Set by a system call. Cur-
rently not implemented.

u−vrpages An array with an element for each file descriptor. Giv es the number of fill on demand
page table entries which have this file as their pg−fileno. If the count is non-zero, then
the file cannot be closed, either by closeor implicitly by dup2.

The Inode Structure.

One field was added to the inode structure to support the vreadsystem call:

i−vfdcnt This counts the number of file descriptors (fd’s) that have pages mapping this file with
vread. If the count is non-zero, then the file cannot be truncated.

