
Getting started with...

Berkeley Software for UNIX† on the VAX‡
(The third Berkeley Software Distribution)

A package of software forUNIX developed at the Computer Science Division of the University of
California at Berkeley is installed on our system. This package includes a new version of the operating sys-
tem kernel which supports a virtual memory, demand-paged environment. While the kernel change should
be transparent to most programs, there are some things you should know if you plan to run large programs
to optimize their performance in a virtual memory environment. There are also a number of other new pro-
grams which are now installed on our machine; the more important of these are described below.

Documentation

The new software is described in two new volumes of documentation. The first is a new version of
volume 1 of theUNIX programmers manual which has integrated manual pages for the distributed software
and incorporates changes to the system made while introducing the virtual memory facility. The second
volume of documentation is numbered volume 2c, of which this paper is a section. This volume contains
papers about programs which are in the distribution package.

Where are the programs?

Most new programs from Berkeley reside in the directory/usr/ucb. A major exception is the C shell,
csh,which lives in/bin. We will later describe how you can arrange for the programs in the distribution to
be part of your normal working environment.

Making use of the Virtual Memory

With a virtual memory system, it is no longer necessary for running programs to be fully resident in
memory. Programs need have only a subset of their address space resident in memory, and pages which are
not resident in memory will befaulted into memory if they are needed. This allows programs larger than
memory to run, but also places a penalty on programs which do not exhibitlocality. It is important to struc-
ture large programs so that at any one time they are referring to as small a number of pages as possible.

If you are going to create very large programs, then you should know about a new demand load for-
mat. This format causes large programs to begin execution more rapidly, without loading in all the pages of
the program before execution begins. It is most suitable for programs which are large (say > 50K bytes of
program and initialized data), and especially when a program has a large number of facilities, not all of
which are used in any one run. To create an executable file with this format, you use the−z loader direc-
tive; thus you can say ‘‘cc −z ...’’ or ‘‘f77 −z ...’’. Thefile command will show such files to be ‘‘demand
paged pure executable’’ files. See the manual page forld in section 1 anda.out in section 5 of volume 1 of
the manual for more information.

If you have or are writing a large program which creates new processes as children, then you should
know aboutvfork system call. Thefork system call creates a new process by copying the data space of the
parent process to create a child process. In a virtual environment this is very expensive.Vfork allows cre-
ation of a new process without copying the parent’s address space by letting the parent execute in the
child’s system context. The parent can set up the input/output for the child and then return to its own con-
text after a call toexecor _exit. If you use the standard I/O routinesystem()to execute commands from
within your programs, thenvfork will be used automatically. If you have been callingfork yourself, you
should read the manual page forvfork and use it when you can.

†UNIX is a trademark of Bell Laboratories.

‡VAX is a trademark of Digital Equipment Corporation.



-2-

In order that efficient random access be permitted in a portable way to large data files, a pair of new
system calls has been added:vread and vwrite. These calls resemble the normalUNIX read and write
calls, but are potentially much more efficient for sparse and random access to large data files.Vread does
not cause all the data which is virtually read to be immediately transferred to your address space. Rather,
the data can be fetched as required by references, at the systems discretion. At the point of thevread, the
system merely computes the disk block numbers of the corresponding pages and stores these in the page
tables. Faulting in a page from the file system is thus no more expensive than faulting in a page from the
paging device. In both cases all the mapping information is immediately available or can be easily com-
puted from incore information.Vwrite works withvread to allow efficient updating of large data which is
only partially accessed, by rewriting to the file only those pages which have been modified.

Downward compatibility to non-virtual systems is achieved by the fact thatread andwrite calls have
the same semantics asvread andvwrite calls; only the efficiency is different. If you have programs which
access large files, and do so sparsely, read the manual pages forvread andvwrite in section 2 of volume 1
of the manual.

File System blocksize changes

The size of blocks in the file system has been changed to improve the throughput of the disks. The
constant ‘‘512’’ is not the ‘‘best’’ size to use when reading/writing the disk; rather you should use ‘‘BUF-
SIZ’’ blocks as defined in the include file <stdio.h>. Because this constant has been changedall old .o files
must be removed and then recreated.They will not load successfully, since the distributed library rou-
tines assume that BUFSIZ is 1024 (its current value at our installation). Old executable images may be pre-
served by running the command

1kfix file

on each such file. Note that this only works for ‘‘a.out’’ type files, not ‘‘.o’s.’’ It is recommended that all
old programs be recompiled to take advantage of the larger disk block size.

New Languages for the VAX

There are now available interpreters forAPL and Pascal for theVAX , and aLISP system supporting a
dialect ofLISP compatible with a large subset ofMACLISP. TheAPL interpreter is the11 version, moved to
theVAX , and now has a large workspace capability (but has not been extensively used.) The Pascal system
has been used extensively for instruction and research and is the same system which was available on the
PDP-11. The only limitations of the Pascal system are a maximum of 32K bytes per stack frame (due to
the implementation of the interpreter), and 64K bytes per variable allocated withnew. Essentially arbitrary
sized programs can be run with the system, which supports a very standard Pascal with no language exten-
sions. The Pascal system features very good error diagnostics, and includes a source level execution profil-
ing facility.†

TheLISP system, ‘‘Franz Lisp’’, was developed at Berkeley as part of a project to move theMIT MAC-

SYMA system from thePDP-10to theVAX . A compiler liszt for Franz Lisp, written at Bell Laboratories, is
also included with the system.

For more information aboutAPL refer to its manual page in volume 1 of the manual. The Pascal sys-
tem consists of the programspi, px, pix, pxp, pxref, andpic, all of which are documented in section 1 of
volume 1 of the manual. There is also a paper introducing the system in volume 2c. TheLISP system is
described inThe Franz Lisp Manualin volume 2c of the manual.

A display editor − vi

The system includes the latest version of the display editorvi which runs on a large number of intelli-
gent and unintelligent display terminals. This editor runs using a terminal description data base and a
library of routines for writing terminal independent programs which is also supplied. The editor has a
mnemonic command set which is easy to learn and remember, and deals with the hierarchical structure of
documents in a natural way. Editor users are protected against loss of work if the system crashes, and

† A compiler for Pascal based on this system is currently being developed, but is not part of this distribution.



-3-

against casual mistakes by a generalundo facility as well as visual feedback. The editor is quite usable
ev en on low speed lines and dumb terminals.

For users who prefer line oriented editing, theex command enters the same editor, but in a line ori-
ented editing mode. For beginners who have nev er used a line editor before, there is a version of the editor
known aseditwhich has a well-written tutorial introducing it.

For more information aboutedit seeEdit: a Tutorial in volume 2c of the manual. The line editor fea-
tures are described in theEx Reference Manualwhich is in volume 2c of the manual. Also in volume 2c
areAn Introduction to Display Editing with Viand avi reference card.

Command and mail processing programs

There is also a new command processorcshwhich caters to interactive users by providing a history
list of recent commands, which can be easily repeated. The shell also has a powerful macro-like aliasing
facility which can be used to tailor a friendly command environment.Csh is implemented so that both it
and the standard shell/bin/sh can be run on the same system.

The Introduction to the C shellintroduces the shell. If you have used the standard shell, then you
should especially read about thehistoryandaliasmechanisms of the shell.

In order that the manual distributed with the tape correspond to the commands which are available to
you, the default execution search path is

PATH=:/usr/ucb:/bin:/usr/bin

in the language of/bin/sh or

setenv PATH :/usr/ucb:/bin:/usr/bin:
set path=(. /usr/ucb /bin /usr/bin)

in the language of/bin/csh.

For sending and receiving mail, a new interactive mail processing command provides a hospitable
environment, supporting items such as subject and carbon copy fields, and allowing creation of distribution
lists. This command also has a mail reading mode which makes it convenient to deal with large volumes of
mail. See the manual page formail in section 1, volume 1 of the manual, and theMail reference Manualin
volume 2c of the manual for more details.

Better debugger support

A version of the symbolic debuggersdb is provided which now can debug FORTRAN 77 programs.
The assembler has been rewritten and the C compiler modified to reduce greatly the overhead of using the
symbolic debugger, making it much more feasible for heavy use. If you are interested, then you should
read the new document forsdb,provided in volume 2c.

Other software

Other new programs include programs to simulate the phototypesetter on 200 bpi plotters, a common
system messages facility, routines for data compression, a modified version of the standard I/O library per-
mitting simultaneous reads and writes, a network for connecting heterogeneous UNIX systems at low cost
(1 tty port per connection per machine and no system changes), and a new, flexible macro package for
n/troff −me. New commandwhatis andaproposcan be used to identify programs and to locate commands
based on keywords. Try

cd /usr/ucb
whatis *

and to find out about Pascal:

apropos pascal



-4-

Monitoring the new system

If you want to see what is happening in the new system, you can use the newvmstat command,
described in section 1 of the manual, which shows the current virtual load on the system. The system
recomputes the information printed byvmstat ev ery five seconds, so a ‘‘vmstat 5’’ is a good command to
try.

To see what processes are active virtual processes, you can do

ps av

The command

ps v

will print only the active processes which you are running.


