
The UNIX Operating System
and the ' XENIX Standard
Operating Environment

Never has there been a greater de-
mand for software that is easy to use
and maintain, and independent of the
hardware on which it runs. As the
price of software rapidly outpaces
that of computers, the need to in-
crease software productivity and
reduce duplication of effort has
become paramount.

Microsof t's XENIX operating
system offers one solution to the soft-
ware crisis developing in the
microcomputer world. Unlike the
operating systems offered for &bit
machines, the XENIX system is a
powerful multiuser timesharing
system with hundreds of utilities and
is the basis for a highly productive
software development environment
and a general-purpose applications
system.

The XENU operating environment
combines two key elements: the
design of the widely acclaimed UNIX
operating system and the inclusion
of the major high-level languages that
are standard within the 8-bit
microcomputer world (see figure 1).
Microsoft's transport of the XENIX
system to major 16-bit micropro-
cessors has made it the first
hardware-independent operating
system.

The heart of the XENU system is
the UNIX operating system developed
at Bell Laboratories and licensed by
Western Electric. The UNIX system's
elegant design combines power, flex-

UNlX is a trademark of Bell Laboratories.
XENlX is a trademark of Microsoft.

248 June 1981 O B Y E Publications lnc

Robert B Greenbeg
XENDC Product Manager

Miaosoft
loa00 NE Eighth, Suite 819

Belleme W A 98004

ibility, and simplicity, and its vast
array of software utilities greatly in-
creases productivity. Thus, the UNIX
system is an ideal candidate to serve
as a solution to the software crisis.

Microsof t plans to make the XENIX
operating system (which is an
enhanced version of the UNIX
system) into a commercial standard.
And, in addition to supporting and
enhancing the operating system

The XENIX system Is
one approach to

solvlng the software
crlsls developlng In the
microcomputer world.

proper, Microsoft will adapt h i i -
level languages, such as its BASIC in-
terpreter and compiler, FORTRAN,
Pascal, and COBOL, and other soft-
ware tools, such as data-base man-
agement and communications soft-
ware, to run under the XENIX operat-
ing system.

To understand the elegance of the
basic UNIX design and the further
enhancements in the XENIX system,
we must take a closer look at the soft-
ware. In this article, I will describe
the main features in the UNIX
operating system, discuss some of its
strengths and weaknesses, and con-
clude with a discussion of the evolu-
tion of the XENIX operating environ-

ment from the UNIX operating
system, and how it can help solve
critical software issues. First, a histor-
ical overview.

Origins of the UND(0 s
The UNIX operating system was

originally developed at Bell Lab-
oratories by Ken Thompson, an
employee engaged in various pro-
gramming research projects. With ac-
cess to an abandoned DEC PDP-7
computer that had no software,
Thompson decided in 1969 to write a
set of programs that would aid him in
software research. Over a period of
several years, and with the help of
fellow researcher Dennis Ritchie, this
set of programs evolved into a full
operating system. By 1972, it was
recoded for the DEC PDP-11 com-
puter in a newly designed high-level
language, called C. The system
gained recognition within the Labs
and their parent company, Western
Electric.

Word of the quality of Thompson
and Ritchie's UNIX operating system I

spread rapidly. Universities, in par-
ticular, expressed interest in obtain-
ing UNIX, and in 1973, Western Elec- 1
tric agreed to distribute the system to
nonprofit organizations and prompt- i ly licensed several dozen educational . - ,u ,
institutions, including Columbia ' ;
University, the University of Alberta . - 3

(Canada), The Children's Museum
(Boston), Princeton University, and v -

Harvard University. By 1975, UNIX
had become sufficiently popular in

4F1
the academic world to justify the

XENlX OPERATING ENVIRONMENT

I I I I I

UNlX UNlX V 7 MICROSOFT MICROSOFT USER-
V 7 0s SOFTWARE SUPPORT LANGUAGES ~ ~ ~ ~ ! j , \ \ E ~

.

I 1 I I

Figure 1: Microsoft's ~ E N I X operating system. The five "layers" of the XENlX software structure are shown. XENIX, a superset o f
Bell Laboratories' UNlX operating system developed in the early 1970s, has a hierarchical structure. Each of the five layers depends on
the layers beneath it for its operation. The bottom two layers represent the latest version of UNIX (version 7). The remaining three
layers are the refinements that combine to make the XENlX system.

Circle 85 on lnauiw card.

DISCOUNT
Computers

from
HAWAII

$1 180.00"
i sk ::z:::l

Lang Sys.
l nteger Card $1 58.00*
Apple Soft Card $158.00*

Computer
Warehouse

P.O. Box 1777
Honolulu, HI 96806
(808) 523-1 552

creation of a UNIX users' organiza-
tion, later called USENIX.

The first public release of the UNIX
operating system, labeled version 5,
was an unpolished snapshot of a
research project that was still evolv-
ing. It was replaced in 1975 with ver-
sion 6, a system that is still operating
today at many sites. UNIX continued
to evolve, benefitting from the feed-
back it received from scores of inter-
nal and external test sites.

In January 1979, Western Electric
released version 7. By this time, hun-
dreds of man-years' effort has been
expended on UNWs design and soft-
ware utilities, with most of the system
coded in C. Research had proven that
UNIX was compatible with the con-
cepts of memory-limited computers,
machine transportability, networks,
and multiple-processor designs.

Unfortunately, there was no single
standard design for UNIX. Because
the operating system was simple and
easy to change, almost every site
altered it to meet their specific needs.
Harvard, the University of California
at Berkeley, and the RAND Corpora-
tion each offered a set of modifica-
tions. A number of incompatible ver-
sions of UNIX existed within Western
Electric.

In addition, there has been a legal
impediment to the UNIX system's
distribution. The system is available
essentially free-of-charge for educa-
tional institutions. Legally, however,
Western Electric cannot be in the soft-
ware business, so the commercial
world is offered the operating system
under noncompetitive terms: source
code as is and no warranty, support,
or maintenance-a steep fee for soft-
ware that was never intended to serve
commercial applications outside of
Western Electric.

It had become clear that the sup-
port of a commercial software com-
pany was essential if UNIX was to
become a software standard. In
August of 1980, Microsoft announced
that it would offer and support
XENIX, a commercial version of the
operating system, on 16-bit micro-
processors. Working closely with
Western Electric and a newly formed
commercial users' organization,
Microsoft intends to establish a stan-

252 J n e lam B BYTE Publieatians lnc

dard industry version of UNIX that
can provide a highly productive en-
vironment worthy of meeting the
challenges of software development
in the 1980s.

UND(Design Goals
Two aspects of UNIX's origin have

contributed to its design: (1) it was
created in a few man-years by two
people, and (2) the implementers
were also major users of the system.
The result is a polished, consistent,
coherent design. UNIX'achieves great
power and flexibility, including com-
patible interfacing between all its
features, without resorting to a large,
complex program. An experienced
system programmer can understand
the entire operating system in weeks,
rather than months.

The UNIX system's design goals
unite various features supported by
the UNIX sytem into a consistent and
simple whole. The first design goal is
to support a very basic level of func-
tionality within the operating system
itself, relying on normal user pro-
grams to provide sophistication. Such
features as line printer queuing,
login/logout, monitor commands,
and file access methods are im-
plemented as normal user programs
instead of operating-system func-
tions. This approach, which reduces
the overall complexity of the system,
has several advantages. Functions are
more modular, and therefore easier to
debug, features can be altered and
upgraded without stopping the
operating system, and alterations
made to one feature are less likely to
affect the rest of the system. Finally,
individual users may create personal
versions of certain features.

The second design goal is gen-
erality-that is, having a single
method serve a variety of related pur-
poses. For example, the same system
calls are used to read and write disk
files, devices, and interprocess
message buffers. Likewise, the same
naming, aliasing, and access protec-
tion mechanisms apply to data files,
directories, and devices. As a final
example, the same mechanism is used
to trap software interrupts, user abort
requests, and processor traps. The
benefits of generality extend well

Circle 1'8 on inquiry card. d

beyond the simplicity of design;
UNIX programming style is notably
flexible, extensible, easily learned,
and easily debugged.

The third goal is to accomplish
large tasks by combining several
small tasks whenever possible.
UNIX's filters are an excellent exam-
ple, A filter is a program that pro-
cesses a single stream of input to
generate one output stream. The
UNIX system has a large variety of
filters, including those that perform
multicolumn formatting, string
replacement, text processing, char-
acter translation, sorting, and
graphics interfacing. Programs that
generate output, such as the
assembler, do not include facilities for
listings; this task is accomplished by
feeding programs directly to the
various filters. This keeps the large
programs simple to use, lets a user
learn about each filter separately, and
allows for special combinations of
formatting without multiplying the
options that each program would
then have to support. It also leads to
a uniform appearance of formatted

output and the commands needed to
produce it, and yields all the benefits
of modular solutions to complex
problems.

The vast number of utilities pro-
vided with the system and the ease of
linking them together via pipes pro-
vide a surprising amount of func-
tionality. For example, to find out
how many people are currently using
the system, you need only feed the
output of the system "who" com-
mand to the utility that prints-the
number of lines in its input. Thus, the
command line:

who I wc -1

causes the output of the who com-
mand, which might look like:

arw console Jan 30 14:20
bobg ttY'oo Jan 30 01:W
henry ttyOl Jan 30 12:50
gordon tty03 Jan 29 10:OS

to be fed to the program "wc," for
"word count." The -1 option tells
wc, which normally prints the

number of characters, words, and
lines in a file, that we only want to see
the number of lines. Thus, this com-
posite command prints a number
which.is the number of users on the
system:

As a final step, we can create a file
called "users," which contains the
line:

who I wc -1

Typing "users" causes the command
interpreter (or shell) to execute that
line, and type the number of current
users. We have now created a new
system command.

A more dramatic example is shown
in the following sequence: take a pro-
gram that puts each text word in a file
(or files) onto a separate line. Con-
nect the output to a program that
sorts lines into alphabetical order.

Specializing in Quality Microcomputer Hardware
Industrial Educational Small Business Personal tr#TTM Card Cages, Power Supplies, Mainframes, CPU9s, Memory, 110, OEM Variations

7
25'4 June 1981 @ B Y E Publications lnc circle 129 on inquiry cara.

I ne output is a sorted list of all words
in the text file(s). This list is fed to the
program "uniq", which removes adja-
cent duplicate lines. The result is a
data stream that contains one line for
each different word in the original
file(s). This stream is in turn con-
nected to a program that reports dif-
ferences between two files (one file

being a list of 30,000 words from the "spell1', which contains the line: 7;
dictionary). Thus, typing the line:

prep $* I sort I uniq I comm 1'1

prep file I sort (uniq I comm wdlist /usr/dict /words L 1
1 ' .. ;- :,

. I
will result in a list of words present in you have created the cb&na;lh
"file" but not present in "wdlist". "spell". Note that the "$*" is replaced
Without writing a line of code, you by the command line interpreter with
have created a simple spelling pro- the arguments typed to the spell com-
gram! Now, by creating a file called mand. The UNIX sytem's command

Figure 2: Hierarchical structure of the names and conventions for getting to any reference point in a typical XENIX file structure. In
this example, it is assumed that the user is at reference point 5 (blue arrow). A list of instructions for getting to the various reference
points appears beneath the diagram. (The file and directory labels shown here are actual labet used in the author's system.) Toget to
file I , the user types "/USER/BOBG/WORK/B". XENIX then progresses down the tree from the root directory (at top) to the
branches USR, BOBG, WORK, and B, arriving at point I . Alternatively, the user can use the command ". ./BOBG/WORK/B",
where ".." refers to the parent node of the node currently in use. In XENIX, "." refers to the node itself.

. _.
' . * . ' . - - - , (. , i - ' . ' . . , . , :~ ,..:.

~ ; ~ ~ , . ~ ~ ~ .- . i p:& . ,.. . - . .&~?c~'~,?r .L~i .. !p -- - .- : :..;. - . . , - . .
. . ,L

256 June 1981.0 B Y E Publications Inc

interpreter, the shell, is a fully in-
teractive language in its own right.

UNDC Operating System Design
The UNIX design introduces few

new concepts because it borrows
heavily from the better aspects of
previously existing systems. UNIX
contains numerous features found in
the MULTICS and AOS operating
syterns, and the language C is mod-
eled after BCPL. However, the
coherence and simplicity with which
the chosen features interact result in
an unusually elegant design that has
great merit of its own.

The UNIX operating system sup-
ports a . multiuser, multitasking en-
vironment. Each user has full access
to the resources of the computer on a
timesharing basis. UNIX implements
scheduling and swapping algorithms
that allow the processor and memory
to service more tasks, seemingly
simultaneously, than would other-
wise be possible. UNE also includes
various protection schemes that pro-
tect each user from the others. This
functionality contrasts markedly with
the current microcomputer systems
that simplify hardware operation by
providing device drivers but make
little attempt to extend the computer's
utility.

The UNIX file system is a recursive
structure originating from a root
directory. The root directory con-
tains the names of files and subdirec-
tories; the subdirectories contain
names of other files and additional
subdirectories, etc. When a user logs
into the system, he is assigned a
specific subdirectory as his current
working directory. Full path names
for files consist of a possibly null se-
quence of subdirectories separated by
a slash, beginning with either the root
or the current working directory, and
followed by the file name. By conven-
tion, the file in each subdirectory
called ".." refers to the parent direc-
tory (see figure 2). Thus the user has a
concept of local and global files
neatly organized into directory
groupings.

File names refer to data files, the
directories themselves, character
devices such as user terminals, block
devices such as magnetic tape, file

systems mounted onto other disk
devices, and interprocess commun-
ications devices known as multi-
plexed pipes. Multiple names (called
aliases) can be assigned to any of
these objects. A set of information,
including owner and access permis-
sions, is stored with each object; the
directory entries only specify names
for the objects.

Programs communicate with their
environment with read and write calls
directed to a set of open files. Each
program starts with three open files:
standard input, standard output, and
error output. Normally, these files
are connected to the user's terminal,
but a powerful command-language
program, the shell, allows easy and
invisible reassignment of these chan-
nels. A program can also open any
other object (file, device, etc) named
in the file system to which it has ap-
propriate access permission. Using a
special call, a program can create

pipes, data channels that allow for
communication between the program
and any other programs connected to
an end of the pipe.
All I/O (input/output) operations

are performed as byte streams, with
all channels appearing to contain a
sequence of bytes until a globally de-
fined end-of-file condition is in-
dicated. Random access is also sup-
ported, using a call to reposition
within the stream. Neither record
sizes nor file types are imposed by the
operating system. The system handles
all interrupts and buffering, and each
I/O call is suspended until the re-
quested I/O operation can be com-
pleted. All devices, files, and pipes
are treated identically (with minor
exceptions), which greatly simplifies
I/O routines.

A program may initiate another
program by issuing a system call to
duplicate itself. The two programs
then operate independently, with

SYSTEM
lNlTlALlZATlON
LEVEL

XENlX 0
INTERACTIVE
SHELLS

OFFSPRING
PROCESSES

FILE FILE SHELL

Figure 3: Tree-structured process hierarchies in the XENlX system. Three users are cur-
rently on line. The term 'Shell" refers to that portion of the XENlX operating system
program that "surrounds" the operating system and allows it to communicate with the
outside world. User 1 is running a batch shell that is executing commands from a file.
User2 has suspended a BASIC session and entered a subshell to issue a command at the
system-monitor level, perhaps to send a message to another user. User 2 can then return
to BASIC and resume the session. User 3 has executed a command whose output is
piped through a second command,

-
esharing between them (see However, by simply adding an

figure 3). Typically, the parent pro- ampersand character to the command
cess waits for the completion of its line:
child, and the child process executes
another program in the file system by
issuing a system call. However, both
programs may continue execution in
parallel. To synchronize their opera-
tion, they can communicate via the
file system, pipes, or signals. Signals
are software asynchronous interrupts
that are issued by one program to
another to cause the second program
to interrupt its execution, process the

I
signal, and then resume normal
execution. Signals are also generated
by user interrupt requests and soft-
ware failures, such as divide-by-zero.

Thus, when a user compiles and
links a program test.c by typing:

you can instruct the shell not to sleep,
but rather to return immediately for
another command. You can then edit
your documenation or some further
program, while the first one is com-
piling. Note that typing:

> filename

causes the shell to run a copy ot itself
as a child. This child shell then
executes, one by one, the commands
in "filename." By simply adding the
"&" character to the following line:

> cc test.c > filename &

the shell runs the C compiler (cc) as a you now have the capabilities of a full
child process. After it has s p k e d batch system, for free, as a result of
the child process, the shell puts itself the UNIX system's flexibility.
to sleep. When the child process (the This section has presented a brief
C compiler) finishes, the shell overview of the UNIX system
awakens and issues another prompt. features. A more complete descrip-

tion is available in documents from
Microsoft, Western Electric, and a
number of universities. I will con-
clude this section with a discussion of
an excellent example of UNIX's
multitasking abilities.

Multitasking
The multitasking and interprocess

communication features of the UNIX
system provide power that is
unavailable in existing 8-bit computer
systems. RITA, a large interpreter
language for UNIX that I helped
create for the RAND Corporation,
provides an extensive example of the
utility of these features. The RITA in-
terpreter consists of over 100 K bytes
of instructions and more than 64 K
bytes of data-much larger than the
current limit on UNIX program size.
The solution was to split RITA into
three separate programs that com-
municate though the use of five pipes,
as illustrated in figure 4. Further-
more, separate programs are created
by the interpreter to edit programs,
read RITA news files, and perform
UNIX commands, such as obtaining

META TECHNOLOGIES
261 11 Brush Avenue. Euclid Ohio 44132

CALL TOLL FREE 1-800-321-3552 TO ORDER
IN OHIO. call (216) 289-7500 (COLLECT)

260 June 1981 O BYTE Publications Inc Circle 214 on inquiry card.

access to networks. Several files are
written for analysis by still other pro-
grams. All this multitasking takes
place invisibly: the user still thinks he
or she is running a single program.

A further benefit of multitasking
and device-independent I/O is an
unexpected feature of RITA'S three-
program arrangement. Normally, the
first program, UFE (user front end)
allows you to type and edit program
statements, which are then converted
to internal form by the second pro-
gram, the parser, which in turn stores
them in the third program, the
monitor, for evaluation. The UFE
also allows the statements to be

enterea trom a disk file; however, due
to the complex parser program,
loading a large file is too time con-
suming for many applications. A
slight alteration to the UFE, the pro-

, gram which creates the other two
programs and the five pipes, provides
the solution. The new UFE (now
called RC for RITA compiler), which
requires no changes to the parser or
monitor, funnels the output of the
parser, normally fed to a pipe, into a
disk file. Thus, RC produces "com-
piled files whose contents can be fed
directly into the monitor, bypassing

-.the parser, when later loaded by
RITA'S UFE.

An Assessment of UNIX
UNIX offers unparalleled power for

such a straightforward system. For
the programmer, the system is easy to
learn and offers immediate func-
tionality, even for beginners. For
more experienced users, the wealth of
software tools leads to a more pro-
ductive environment than less com-
plete systems.

In addition, the UNIX operating
system comes with hundreds of
utilities and software tools that make
it a complete software development
environment. There is software for
accounting, text editing, formatting
and typesetting, high-level languages,

- = PROCESS CREATION = PROCESS 0 = F I L E - = PfPE

I

I
MONITOR

AUXILIARY PROGRAMS

the UNIX system. The RITA interpreter consists of over 100 K bytes of instructions and more than 64 K bytes of data: much larger
than the current limits on UNIX program size. The solution to the problem is to split RITA into three separate programs that com-
municate through the use of five "pipes. " A different UFE (user front end) program, called the RITA compiler, can refunnel the out-
put of the parser, normally fed to the monitor, into a disk file. Thus, the RITA compiler produces "compiled" files whose contents
can be fed directly into the monitor, bypassing the parser, when later loaded by RITA's user front end. This approach allows the user
to load large files that might otherwise require too much time.

262 June 1981 O BYIT ~ublktions lnc

assembly support utilities, sorters and
index generators, communication
facilities, tools that create parsers and
lexical analyzers, graphics, games,
mathematical function libraries,
maintenance and performance
utilities, and a host of file
manipulators. Few needs cannot be
met through a combination of these
existing utilities.

' .a The flexibility of UNIX allows easy
alteration of its user interface.
Various installations have
demonstrated how easy it is to com-
pletely alter the appearance of UNIX
in order to serve a different class of

, users. That UNIX cannot be every-
thing to everyone is overshadowed
by the fact that, as it is truly general-
purpose, it can perform in almost any
environment.

UNIX, as supplied by Western Elec-
tric, is not without its weaknesses.
The general-purpose timesharing
design limits UNIX's efficiency in
real-time applications, such as pro-
cess control. Its standard interface is
highly terse, and though this is often
considered desirable by program-
mers, the untamed UNIX will frighten
almost everyone else. The origins of

'many of the command names are
obscure; examples include a tape
command "r" to write to a tape, com-
mand "cat" which types files, and
"awk, a program for finding pat-
terns in files. However, command
names can be easily changed by the
user.

UNIX has not been adapted for
commercial use, where the issues of
reliability, stability during hardware
errors, full per-user accounting,
reconfigurability for a large variety of
environments, and security take on
special importance. For example, less
expensive disk packs for larger disk
drives usually contain bad spots, and
UNIX does not automatically adjust
for them. In the environment for '4 which the UNIX system was devel-
oped, it was cheaper to buy perfect
packs than to write a "bad spot
avoidance" routine. These issues
must be addressed before LJNIX can
be considered a sturdy, robust, and

, commercial piece of software.

8; A crucial problem, and one not
> restricted to UNIX, is the lack of true
1,. J

applications software. Currently,
there are few good accounts payable,
invoicing, mailing list, income tax, or
data-base management packages.
UNIX provides an excellent software
production environment because of
its.wealth of software tools utilities,
but the system does not contain a
similar variety of application-
oriented software.

The XENIX System
Microsoft's XENIX operating

system represents an attempt to
preserve the strengths of the UNIX
design and also meet the needs of the
commercial microprocessor industry.
To achieve this goal, Microsoft used
the system as it was distributed by
Western Electric and then added
modifications, customizations, im-
provements, enhancements, support,
and additional software.

Modifications included those
necessary to transport the UNIX
system from the larger PDP-11 mini-
computer to the 16-bit micro-
processors. Currently scheduled
machines include the DEC LSI-11/23,
Zilog's 28001 and 28002, Intel's 8086
and 286, and Motorola's MC68000.
Numerous other processors are also
being considered, and Microsoft will
then customize the XENIX systems to
the specific hardware environments
of the various computer systems built
around these processors. The corn-.
pany is also working closely with a
number of hardware manufacturers
to design products that will be
capable of efficiently executing the
XENIX software.

Improvements will include elimina-
tion of known bugs and recoding of
certain routines to produce a smaller
and faster operating system. XENIX
will also incorporate hardware error
recovery strategies, automatic file
repair after crashes, power-fail and
parity-error detection, and similar
features, depending on the particular
hardware requirements of each
XENIX system.

The planned enhancements will
add a number of new features to
XENIX. These features include record
locking, shared data segments, syn-
chronous writing, and improved in-
terprocess communication-all of

which are designed to make XENIX
commercially viable and more com-
patible with the newer hardware tech-
nologies that involve distributed data
processing, networking, and
multiple-CPU approaches.

XENIX is a dynamic, evolving
system. In its first release, its code
was very close to the original UNIX
version 7 source. The improvements
and enhancements that I have men-
tioned are part of an evolving pro-
cess, and the exact selection and
specification of features will be
developed throughout the course of
1981. Updates to FEND(will result in
systems upwardly compatible from
its first release.

The adaptation of Microsoft's full
line of system software products to
XENIX will further strengthen
XENIX's role as a software standard.
These products, including the BASIC
interpreter and compiler, COBOL,
FORTRAN, and Pascal, have already
established themselves as standards
within the &bit market; they are also
compatible with corresponding ANSI
(American National Standards In-
stitute) standards. Standard high-
level languages will allow the rapid
introduction of existing application
software into the XENIX environ-
ment.

The XENIX system will offer an
ever-expanding variety of software,
including data-base management,
financial planning, communication,
and networking packages. Microsoft
is establishing a clearinghouse,
wherein quality software running
under XENIX may receive widespread
distribution, thereby reducing
duplication of effort. The combina-
tion of the UNIX operating system's
strengths and Microsoft's awareness
of the needs of the commercial
marketplace promises to make
XENIX a very powerful defense
against the looming software crisis.
By establishing a universal operating
environment, complete with software
tools to increase productivity, flexible
design to widen applicability, and
multiple microprocessor support to
improve availability, Microsof t
hopes that XENIX will become the
preferred choice for software produc-
tion and exchange..

	248.pdf
	250.pdf
	252.pdf
	254.pdf
	256.pdf
	258.pdf
	260.pdf
	262.pdf
	264.pdf

