

--general performance sfthemachine by
exercising d-numb6rof qpetations (e.g..

. . 'looping. searching, ete.). In both cases,
these timings are compared to results
on other machines. -.

Benchmarking an operating system is
much more complex than benchmark-.
ing a compiler. However, since UNIX
arid its language-compilers are written

PMOlOCRAP&D%Y PAUL AVlS

SOME BENCHMARK GUIDELINES
Let's develop some guidelines for
benchmarking operating systems in
general and apply them specifically to
UNIX. In order to benchmark any oper-
ating system, as many environmental
variables as possible should be elimi-
nated:

phy& and is a UNIX wms p r a g r a ~ - w i t h - - -5 --.*
ITT 2 b m in Raleigh: Heir mathor a f e I%@:,-- $
on UNIX microcom~uters soon& be pi&fqh&,+
6y Robert 1. Brady Co. His UNLX UWW2-'"-?
d m s is ... ucbvax!demax!ittw!ttt~aI!fii~t~nt. - z - ~
Machine-readable copies of the benchark su& _'LZ%
are available upon req& la the UUCP add@&?-- -?;
Benchmark raults from UNIX Rjstem Rot %Z& " ',

*, .- tioned in this article are welcome. ' . >- C
- --A - -

-= lCry
AUGUST. 1 9 ~ - B ' Y I ~ ~ -*- -- 6 . ,- - - < -- . ma - . - --:<.

Listing I : The UNIX pipe benchmark.
I *

UNiX Operating System Implementation Test # I

This program evaluates pipe efficiency and implementation.
Since pipes are commonly used in UNiX, pipe performance is often a
decisive factor in overall system performance, and says a lot about
the UNlX implementation. Here we test pipe implementation by.

* cramming 0.5 MB through a pipe as fast as possible.

Instructions:
* Compile by: cc -0 s -0 pipes pipes.c

The -0 option says to use the optimizer.
The s option says to strip the namelist from the

object flle after linking.
The -0 option says to place the object file in the file

I specified by the next argument.

Time by: lbinltime pipes

Results:
Since pipes usually use the disk as a buffer, real time is

* important. but can be misleading if the disk is very slow.
Of greater importance here is the 'system' time, as i t is
a direct measurement of kernel efficiency. The 'user' time
is of little importance.

'I

#define BLOCKS 1024

I * the buffer * I
char buffer15 121:

I* file descriptor for pipe ' I
int fidl21:

mainfl
{

I * want to test pipe implementation: not arithmetic 'I
register int i:

I * initialize the pipe ' I
pipelfid):

I* fork the child process ' I
if (fork0 1 {

I* parent process writes to pipe in 512 byte chunks ' I
for fi = 0: i < BLOCKS: i+ +)

if (writelfidlll, buffer. 512) < 01
I* if there is a problem, say so *I

printf("Error in writing: i=%$\n': i):
I* close the pipe when we're done 'I

if (closeffidlil) != 0)
printffmError in parent closing\n");

1
else {

I' close, since we aren't writing * I
if (close(fidlil) != 0)

printf("Error in child closing\n"):
/''child process reads the pipe until EOF *I

for (::I
if (readffidlol. buffer. 5121 == 0) {

break;

1
1

1

figuration are generally better to
begin with. If a compiler option for
object-code optimization is available,
it should be used. If the hardware
can support fast (register in the case
of C) variables. they should be used.
In the benchmarks discussed here.
all variables that can be of the
register type will be declared as

such. In reality, the number of
registers available for use by register
variables varies widely because of
hardware differences between micro-
processors. Remember, our goal
here is not to develop benchmarks
that determine which UNIX machine
is the best under a given set of re-
quirements but to develop a general

set of benchmarks to aid the con-
sumer in determining which hard-
warelsoftware implementation gives
the most performance for the
money.

The benchmarks should be exactly
the same on all machines tested and
portable enough to run on all the
machines. Scme may argue that if a
particular software option is avail-
able, it should be used as an op-
timization is used (a binary-tree
search function, for example). Keep
in mind that extensions are not op-
timizations. Although the distinction
can become cloudy, an extension is
probably not used as routinely as an
optimization.

Some of the benchmarks devel-
oped should be able to exercise
specific, known functions of operat-
ing-system and compiler implemen-
tation.

The benchmarks developed
should also contain tests of overall
performance by simulating typical
user activities. This should include
executing background processes
concurrently with foreground pro-
cesses (if possible) to see how the
system responds under a multitask-
ing load.

The benchmark timings should be
made using a consistent and accu-
rate method. A stopwatch just won't
do. Fortunately, UNIX has a standard
timing rmchanism that reports
elapsed (real) and processor times
used by a process. The processor
time is further divided into user and
system times.

User time is the amount of time the
process spent executing nonprivileged
instructions (e.g., arithmetic calculations,
sorting, searching, calling user-level
functions, etc.).

System time is the time the process
spent executing privileged (kernel) com-
mands (i.e.. system calls) plus some sys-
tem-level overhead (e.g, context switch-
ing between processes).

The elapsed time is just that. And it
is often not the sum of the user and sys-
tem times. The majority of the missing
time is spent waiting for 110 (inputlout-
put) operations to complete, waiting for
a signal from another process, sleeping.
or swapped out on disk while another
program is running. It is unfortunate
that in some implementations of UNIX
the elapsed time reported by this tim-
ing mechanism is given only to the sec-
ond. Thus, the sum of the system and
user times can on occasion be greater

4 B Y T E AUGUST 1984

Table 1: The results of UNlX benchmarks for some common microwmputers and minicomputers. The table is sorted on the fastest execu-
tion (real) time for the shell benchmark in listing 6a.

System

No. Machine Version

VAX- I 11780
Masscomp
Sun-211 20
VAX- I 117 50
PDP-l 1170
Altos 986
IBM PC XT
PDP-I 1/23
IBM PC XT %
SCI-1000
Omnibyte
TRS-80 16B
PDP-I 1/23
DEC Pro1350
Apple Lisa

4.1 BSD
Sys Ill+
4.2 BSD
4.1 BSD
2.8 BSD
XENlX
PUlX
VENlX
VENIXl86
sys Ill+
ldris *8:
XENlX
v7
VENlX
Sys Ill+

Time in Seconds

I. Pipe 2. System Call 3. Function Call
real user sys real user sys real

3.2 0.1 1.2 4.8 1.4 4.0 I .O
5.7 0.0 2.8 6.3 0.4 5.8 0.9
7.6 0.1 3.7 6.8 1.1 5.6 0.8
4.6 0.2 2.1 7.0 0.9 6.2 1.7
8.1 0.0 3.4 8.0 0.2 7.5 I .O
6.0 0.1 2.8 I 1 .O 0.8 10.3 0.4

16.6 0.1 7.6 39.8 2.9 35.6 4.7
30.0 0.1 9.5 24.0 3.2 20.4 3.3
18.0 0.1 7.3 20.5 2.3 17.8 2.8
9.3 0.0 3.1 26.2 0.7 24.2 1.2

32.0 0.1 30.4 21.3 2.5 18.4 1.7
8.0 0.1 3.4 15.0 1.5 12.7 1.4

23.0 0.1 10.7 36.5 0.9 33.7 3.6
33.3 5.8 26.5 3.5 26.0 0.5 13.8

8.1 0.0 3.0 10.5 0.2 9.1 1.3

System Time in Seconds

4. Sieve 5a. Disk Write 5b. Disk Read 6a. Shell 7. Loop
No. Machine Version real user sys r e a l real real user sys real user sys

VAX- I 11780
Masscomp
Sun-211 20
VAX-I 11750
PDP- 1 1170
Altos 986
IBM PC XT
PDP-I 1123
IBM PC XT %
SCI- 1000 -
Omnibyte
TRS-80 168
PDP-I 1123
DEC Pro13 50
Apple Lisa

4.1 BSD
Sys Ill+
4.2 BSD
4.1 BSD
2.8 BSD
XENlX
PCllX
VENlX
VENIXl86
Sys Ill+
ldris *8:
XENlX
v7
VENlX
Sys Ill+

+ Indicates UNlX System Ill plus some Berkeley enhancements.
The benchmark in listing I had to be modified slightly to run under ldris 2.1, perhaps explaining the large times that resulted.

$ ldris 2.1 is a Version 6-based UNlX system, and hence did not have the rand() system call. Thus, the benchmark could not be run.
- Unfortunately, this time was not available at the time of publication. -

The SCI-1000 benchmarked was a preproduction 80186 system with debugging code in the kernel and compiler.
% For some reason. the C compiler optimizer caused the operating system to crash. so these results are with nonoptimized benchmarks

System Configuration:

I - 4-megabyte RAM. two 256-megabyte disk drives
2 - 2-megabyte RAM, one 50-megabyte disk drive
3 - 2-megabyte RAM, one 42-megabyte disk drive
4 - 2-megabyte RAM. one 121-megabyte disk drive
5 - 1.5-megabyte RAM. 400 megabytes of disk drives
6 - I-megabyte RAM. one 4emegabyte disk drive
7 - 512K-byte RAM. one 10-megabyte disk drive
8 - 256K-byte RAM, two 5-megabyte .disk drives

9 - 5I2K-byte RAM, one 40-megabyte disk drive
10 - 640K-byte RAM, one 10-megabyte disk drive
I I - 384K-byte RAM, one 20-megabyte disk drive
I2 - 384K-byte RAM, one 15-megabyte disk drive
13 - 256K-byte RAM. two IO-megabyte disk drives
14 - 256K-byte RAM, one 5-megabyte disk drive
15 - I-megabyte RAM, one 5-megabyte disk drive

than the elapsed time.
This mechanism is the time com-

mand. which is invoked explicitly by

lbinltime filename

where filename is the program to be
timed. Under UNIX, filename can be
either an object file or a text file of shell
commands. Of course, s o m e . o v e r h e a d

is in the time command itself, since it
has to start filename executing, but it is
small and can be neglected because all
our benchmarks will be timed this way.
The results are compared to other UNlX
machines timed in the same manner.

THE UNlX BENCHMARK SUITE
How can we apply these guidelines to

the UNlX operating system and its most
important language, the C compiler?
What should we test? That question can
be answered by answering the question.
"What does UNlX do most often?"

UNlX has a number of unique and
powerful features that are used quite
heavily. If implemented efficiently, these

(continued on page 400)

BENCHMARKING

(continued from page 13 5)
features can make slow hardware seem
fast. If implemented poorly. they can
make even the most elegant hardware
seem archaic. UNIX benchmarks should
concentrate on some critical areas.

UNIX was developed on a small ma-
chine with limited memory and is disk
intensive by its very nature. Therefore,
we should test features of UNIX that use
the disk.

The user interface to the UNIX system
is called the shell (several common
varieties exist). Since all requests made
by the user are processed by the shell,
it should be tested extensively.

The UNIX pipe qualifies on all the
above criteria. A pipe is an 110 channel
that is written into by one program and
read by another. Pipes are used by a
number of UNIX utilities, the shell in
particular. Pipes are also often buffered
on disk. A UNIX benchmark using a
pipe is given in listing 1. The program
creates a child process to read the pipe
using the fork() system call and then
crams 0.5 megabyte through the pipe.
What do the results tell us? The two
times of interest are the system and
elapsed times. The system time, for all
practical purposes, is a measurement of
how long it took to set up and perform
the piping. It thus is a direct measure-
ment of pipe efficiency. The elapsed
time is of interest because it helps give
a good measurement of how slow the
disk is. Elapsed time minus system time
minus user time is essentially the disk-
overhead time.Since microcomputers
usually don't have the fastest disks, this
is an important measurement for them.
User time by itself is of little importance.

So you can get some idea of the time
required to execute this and other
benchmarks discussed in this article,
table I shows the timings for some com-
mon minicomputers and microcom-
puters running UNIX. These times are
average ~lrnes on an otherwise idle sys-
tem, as per the guidelines established
above.

In the pipe benchmark, we measured
the time it took to perform certain
system calls (fork(), read(), write(), etc.)
that were related to pipe implementa-
tion. The time to perform just one
system call can be divided into several
components:

1. The time required for the user-

program system-call library interface
to set up and execute a trap (an SVC
to IBM 370 users) to the kernel so
that privileged instructions can be
executed. When this happens, the
registers needed by the processor
(stack pointers, program counter,
etc.) to run the user program are
saved so that they can be restored
after the system call is complete.
2 . The time the processor is perform-
ing the desired function.
3. The time required for the user-
program registers to be restored and
control transferred so that the user
program can resume computation
with the result from the system call
in hand.
4. The time used when a context
switch between processes is
required.

It would be nice to measure 1, 3, and
4, since they can be considered the ma-
jority of the overhead in making a sys-
tem call. The program in listing 2 does
just that. It does nothing but repeatedly
(2 5.000 times) query the operating sys-
tem concerning ~ t s process identity with
the getpido system call. This informa-
tion is kept In an in-core process table,
so access is extremely fast and actual
computation very small, as long as no
other processes are competing for the
processor. (See the need for an idle
system?) Since we're interested in mea-
suring overhead, and the program
doesn't do much other than system
calls, the elapsed time is important here.
System time should be close to the
elapsed time, and user time should be
very small. Both are insignificant. Again,
the results of this benchmark are shown
in table 1.

Now that we've benchmarked system-
call overhead, the overhead involved in
an ordinary user function call and return
naturally follows. This benchmark may
initially seem superficial but consider
that it is compiler implementation that
to a large degree determines object-
code efficiency. and the same compiler
(C in our case) is probably used to com-
pile the operating-system kernel. If so.
~t should be considered when evaluating
the operating system. It should also be
noted that an inefficient compiler can
nullify any speed gained by structured-
programming techniques. Benchmark-
ing compilers is a topic by itself and will

be left alone here. Let's just measure
function-call overhead and consider it
representative of compiler efficiency.

It is possible to determine the over-
head involved in a function call in a
number of ways. The method used here
is believed to be more accurate than
others. Since our comparison is two-
way, two programs should be written:
one that uses a function to achieve a
goal and one that does not. The two
programs, however, should perform the
same task. After these programs are
run, the user-execution time from the
program not using the function is sub-
tracted from the user-execution time of
the program that does. This difference
is the function-call overhead involved.
This number can be divided by the
number of times the call was made to
arrive at a seconds-per-call overhead
value, which can be enlightening when
compared from system to system. An
example of how this is done is shown
in listing 3. Even though the program
could have been made simpler by not
passing a value to the function empty().
in real life all functions return at least
one value, whether examined or not.
and most functions pass at least one
value (which is overhead, really). Using
the C preprocessor, it is possible to
write two distinct programs in one text
file, depending on how the text file is
compiled. The program in listing 3 is
either compiled with -DEMPTY to
generate the empty function program
or with -DASSIGN to generate the pro-
gram that doesn't use a function but
achieves the same goal.

As mentioned above, the user time,
not the real time, is used in the calcula-
tion. This is because the real time is ac-
curate only to the second, whereas the
user time is accurate to the tenth. And,
since we're generating a nonrelative
numerical result, where virtually no
system time is used, the measurement
with the greater precision is needed.

Let's turn our attention to the C com-
piler. When most people think of com-
piler benchmarks. they think of the
Sieve of Eratosthenes, which tests com-
piler efficiency and processor through-
put quite well. It's an excellent test for
looping, testing, and incrementing. The
program in listing 4 is a slightly modified
copy of the Sieve presented in the
January 1983 BYTE (page 283). Since
we're not using a stopwatch, all unnec-

400 B Y T E AUGUST 1984

, Circle 267 on inquiry card.

BENCHMARKING

essary I10 has been removed. Also. by
the guidelines established above,
register declarations have been added.
The time to be interested in here is the
elapsed time. The user time should be
about the same as the elapsed time.
while the system time should be quite
small.

We briefly touched on disk perfor-
mance with the pipes test, but disk per-
formance deserves a more in-depth
evaluation. UNlX provides methods for
both sequential and random-access
files, and both should be tested. Listings
5a and 5b are benchmarks that test
random-access disk implementation.
The program in listing 5a creates. opens.
and writes a 2 56- by 512-byte file. The
number of blocks manipulated is spec-
ified by a #define statement and can
easily be changed if it is too large for
a small microcomputer implementation.
The program in listing 5b randomly
reads the file created in listing 5a and

removes it afterward.
While sequential access should be

tested, it is not presented here since
disk access is by and large random ac-
cess. It should be easy to derive a
sequential-access test from the random-
access program given in listings 5a and
5b. Since the file created by benchmark
5a is relatively large, it's doubtful that
it could be stored on one large, con-
tiguous chunk of disk. More than likely,
it will be segmented into several pieces,
depending upon how full the Filesystem
is. Most efficient UNlX (and UNIX-like)
implementations segment a physical
disk into more than one logical disk par-
tition. Each partition is called a filesys-
tern. When the filesystem is created, all
disk blocks are contiguous. As the file-
system is used more and more, it
becomes more splintered with many
small chunks of contiguous space.

Since we would like to run the bench-
(continued)

Listing 2: The systern-call benchmark.

I*
UNlX Operating System Implementation Test #2

* This program compounds the kernel overhead involved in executing
* a system call. Making a system call involves a 'trap' to kernel
* or supervisor mode, performing the desired function, and returning.
* Context switching is, when it occurs, also overhead. The getpido

system call is used because all i t does is look in an in-core table
* for the numeric process id.

* Instructions:
Compile by: cc -0 s -0 scall scallr

The -0 option says to use the optimizer.
The s option says to strip the namelist from the

obiect file after linking.
The -o option says to place the obiect file in the file

1 specified by the next argument.

Time by: lbinltime scall

Results:
Since we're testing system overhead. the elapsed time is of
interest here.

'I

#define TIMES 25000

mainll
{

I* take advantage of the hardware 'I
register int i:
for (i = 0: i < TIMES: i + +)

getpido;

MONITOR AND CONTROL
TEMPERATURES

MANAGE INDUSTRIAL
PROCESSES

MEASURE ENERGY
CONSUMPTION

CONTROL LAMPS AND
APPLIANCES

PROVIDE SECURITY
PROTECTION

PERFORM SCIENTIFIC DATA
COLLECTION

The ADC-1 serves as a r s l world
interface for any computer or
modem with a RS-232 serial port.
This sophisticated yet easy-to-operate
data acquisition and control system
includes:

16 Analog to Digital Inputs - 12 bits
provide O.lmV resolution over 5 0.4V.

4 Digital lnputsfor security and rotary
encoder sensors.

6 Switched Outputs for relays and low
voltage device control.

AC Line Carrier Transmitter - controls
32 BSR X-10 type remote modules.
Owner's Manual with detailed
programming examples.

Sensors available from Remote
Measurement Systems include: light,
temperature. humidity, wind, sound,
soil moisture, ultrasonic ranging,
energy consumption and security.

The ADC-I- an exceptional
purchase at $369.

AUGUS I T E 401

BENCHMARKING

unc
this

.. -.

in :
Sev
the

larks under normal (condi-
nns, benchmark 5 shou~u ue executed

3 filesystem that is used regularly.
era1 UNIX implementations place
directory ltmp in a filesystem of its
1, since ltmp is used frequently
ier normal conditions. In any case.
; benchmark should be run in an ac-

* Time

.. 9.

Listing 3: The user f~ benchmarh.

I *
U N l X Operating System Implementation Test #3

This program enables precise arithmetic calculations of user function
overhead by subtracting the execution user time when compiled without

* using a function from execution user time using a function.

Instructions:
Compile by: cc -0 -DEMFTY -s -0 fcalle fca1l.c

and
cc -0 -DASSICN -s -0 fcalla fca1l.c

The -0 option says to use the optimizer.
The -D option specifies C preprocessor action.
The 5 option says to strip the namelist from the

object file after linking.
The -0 option says to place the obiect file in the file

specified by the next argument.

by: ibinltime fcalle
and

Ibinltime fcalla

- I<esuIs:
Since the user time is more accurate than the real time.
and since system time effectively does not contribute to
the real time number, we can use the difference between
the user times in seconds as an accurate numerical account
of function call overhead.

*I

ddefine TIMES 50000

main0
I * The first way of doing things - use a function call ' I

#ifdef EMmY

{
register unsigned int i, j;
for (i=O: i < TIMES: i++l

j = empty(il:

I

I' the empty function * I
empty(k1
register unsigned int k:
{

return(k1:

1
#endif
#ifdef ASSIGN

I * The second way of doing things - without a function call ' I
{

register unsigned int i. j:
for li - 0: i < TIMES: i t +I

I
#endif

tive filesystem in order to give a more
realistic result as to what the.response
time under a real user load would be.
This benchmark, of course, is extreme-
ly disk dependent, but that's what we're
testing. As implied, the elapsed time is
important here because the time spent
waiting for 110 completion is not

charged to either user or system time.
One of the things programmers do

best is compile programs, and the com-
piler is a good operating-system exer-
ciser because of it. The command to
compile a C program under UNIX is cc.
This command is actually a small C pro-
gram that invokes the C preprocessor,
the compiler proper, the assembler, and
the linker in succession. To time the
compilation process, just place
Ibinltime in front of the cc command
line. Naturally, the C compiler is disk in-
tensive, and with today's fast micropro-
cessors, the disk is often the bottleneck
in compilation throughput.

Something needs to be saidabout the
size of the object files that the compiler
leaves us with. It can be found by direct
examination that the size of the object
files compiled on comparable micro-
computers can vary by an order of
magnitude. In early UNIX days, when
memory address space was limited, the
loader didn't include a lot of unused
code in the object file when it resolved
all function references. With today's
microcomputers having more memory
than minicomputers of a few years ago.
some implementations include unnec-
essary system-call hooks that are never
referenced in the program. A good way
to test this is to compile the following
program:

main O

which is the shortest C program pos-
sible. To tell how much memory the ob-
ject file will use when loaded into mem-
ory, look at the size of the object file
with the UNlX size command. Size
reports the size of the text, data, and
bss segments. The text segment is com-
posed of program instructions. The data
segment contains initialized program
data. The bss segment contains unini-
tialized program data. The total size is
usually given in both decimal andlor oc-
tal or hexadecimal. Another command
of interest is nm, which will list the sym-
bol table (NaMelist) of an object file.
Some of the library modules loaded will
be present in any program, and with
good reason (-exit, -environs
-cleanup, -main, and crt0.0, for ex-
ample). Some are pure excess (malloco,
isatty.0, write.0, and stty.0, for example)
and usually result from one library func-

BENCHMARKING

tion referencing another in a larger
module, creating a cascade effect. The
compactness of the c o d e generated
says something about the efficiency and
implementation of the compiler and
loader.

We've covered most of the more fre-
quently used aspects of UNlX in-
dividually u p t o now. Let's develop
s o m e tests for the UNlX system inter-
face, t h e shell. The best way t o test this
is by having a shell program d o what
users normally d o when they sit down
a t the keyboard.

A good general UNIX benchmark is
the shell script. o r program, in listing 6a.
This program, named tst.sh, invokes
several commonly used UNlX com-
mands and exercises disk access with
them. This program was originally writ-
ten for use in evaluating UNlX micro-
computers a t the '83 USENIX (an asso-
ciation of UNlX users) conference. In
retrospect, it should have contained
s o m e commands t o run concurrently in
the background, such a s t h e compila-
tion of o n e of the C benchmarks de-
scribed above. This benchmark makes
use of the shell's I10 redirection and in-
direction (indirection being the ability
t o take input from the current input
stream instead of a file) t o sort, save o n
disk, manipulate, and ultimately remove
from disk a list of English words. The
utilities used (sort, which sorts; o d .
which gives an octal listing; grep, which
d o e s pattern matching; tee, which
makes a disk copy of the input given it:
wc, which counts words, lines, and char-
acters: and rrn, which removes disk files)
a re all standard UNlX tools. The shell
variable $$ is the current numerical pro-
cess ID and is used t o make unique file-
names. The shell benchmark is run with
the command lbinltime lbinlsh tst.sh.
Execution times for even this simple
benchmark varied widely, a s shown in
table 1.

A few words should b e said about
determining how many users a small
multiuser system can support. With
small multiuser systems, accurately
simulating real user load is more impor-
tant than with large multiuser systems
because of the limited amount of mem-
ory, disk, and processor resources. You
can simulate a real user load in several
ways, but the only t rue way is t o have
someone a t another terminal executing
the s a m e program you a re a t the s a m e

time. Why can't a process running in the
background simulate a real user load?
Because background processes usual-
ly run with a lower priority. Additional-
ly, s o m e multiuser microcomputer im-
plenientations limit the amount of
memory an individual user can use a t
o n e time, even if n o other user is o n the
system! What's more, s o m e implemen-
tations impose a n incredibly small limit
o n the number of files you can have

o p e n o r the number of processes you
can have running at any o n e time, again
regardless of the number of other users
o r processes o n the system. Watch o u t
for these systems.

Since we're mainly concerned with
microcomputer implementations, where
there may o r may not b e additional ter-
minals,, and since we want portable
benchmarks that can b e run o n any

(continued)

Listing 4: The Sieve of Eratosthenes benchmarh.

I'
UNlX Operating System Implementation Test #4

* No benchmark suite would be complete without the ever-popular
sieve benchmark. It is a good test of compiler efficiency and
CPU throughput. Below is a sieve benchmark as presented in the
January 1983 issue of BYTE. with some minor changes: Register

* declarations have been added. and some unnecessary (from our
standpoint) printfl) statements removed.

Instructions:
Compile by: cc -0 5 -0 sieve sieve.c

The -0 option says to use the optimizer.
The -s option says to strip the namelist from the

object file after linking.
The -0 option says to place the obiect file in the file

specified by the next argument.

* Time by: lbinltime sieve

* Results:
In the past. the elapsed time has been used, since most
operating systems can measure real time. Actually, user
time is a better value.

*I

I * Eratosthenes Sieve Prime Number program in C ' I
#define TRUE I
#define FALSE 0
#define SIZE 8190

char flagslSlZE + 11:

main0 {
register int i, prime. k, count, iter:

I* printf("l0 iterations\n"): 'I I* We don't need this *I
for (iter = I: iter < = 10: iter+ +) { I * do program 10 times 'I

count = 0: I' prime counter *I
for (i = 0: i <= SIZE: i++) I' set all flags TRUE ' I

flagslil = TRUE:
fo r i i = 0: i < = SIZE: i++) {

if (flagslill { I' found a prime 'I
prime = i + i + 3; I' twice index + 3 '1

I * printf('yn%d': prime): 'I I' Nor this 'I
for (k = i + prime: k < = SIZE: k += prime)

flagslkl = FALSE: I * kill all multiples *I
count++: I' primes found * I

I
1

I
I * printfl'yn%d primes.': count):"/ I * primes found on loth pass * I

I

AUGUST 1984 B Y T

BENCHMARKING

NIX system no matter how small, our
nly recourse is to benchmark a vary-
~g number of background processes
e., a multitasking benchmark) and
ssume that the results can be extrap-
lated to a multiuser environment. Even
the benchmark is used to h e l ~ decide
hich single-user system to buy, evaluat-
,g background-process performance is
eneficial since the ability to have many
ackground processes is a strong point
F UNIX.
Using the shell benchmark in listing 6a
; a starting point, we can invoke that
:ript in the background a number of
nes to see how long it takes to execute
ne, two, three, four, five, and even six
f these identical background pro-
sses The shell script in listing 6b does
st that. Contained in a file called

multi.sh, it executes the shell test found
in listing 6a in the background a number
of times. The number of background
nrocesses created is determined by the

~mber of command-line parameters
ven the shell script. The actual values
F the command-line parameters are not
iportant, it's the quantity of positional
arameters that the shell script uses. Al-
lough any character would do as a
xitional parameter, for readability it
convenient to use the characters "1:'
!," "3:' etc. as those parameters. The
?nchmark is run as shown in table 2.
The shell statement wait causes the
)ell script to pause until all background
?ocesses have terminated. Invoking
t.sh more than six times may not be
3ssible (depending upon your operat-
g system) if a "per-user process limit"
defined.

Table 3 shows the results from the
multitasking shell benchmark given in
listing 6b for a variety of UNIX-based
systems. The table is sorted on the
f-stest elapsed time for six background

,ocesses. Remember, this benchmark
3es not measure how many users the
rstem will support but is rather a
easure of how many processes the
stem will support comfortably.
By plotting the number of invocations
:rsus execution time, you can graph
2w a multitasking load varies with
!sponse time. See figure I for a plot
' the results of table 3 in this manner.
'ith fast disks the graph should be
iear, with a change in slope when
iere are more processes than can re-
ain concurrently in memory.

14 B Y T E

Listing 5a: A benchmark to create and write a disk file.
I*

UNlX Operating System Implementation Test #5a

* This portion of the disk throughput benchmark creates and writes
a 512x256 byte file. Since UNlX is so disk intensive, it is important
to have some general idea of how fast (or slow) disk operations are.

Instructions:
* Compile by: cc -0 s -0 dwrite dwrite.~

The -0 option says to use the optimizer.
'

The -s option says to strip the namelist from the
object file after linking.

The -0 option says to place the object file in the file
specified by the next argument.

* Time By: lbinltime dwrite

- Results:
The time to observe is the elapsed time, as we are trying to
gauge disk throughput.

' I

#include istdi0.h z

#define BLOCKS 256

main()
I

I* the buffer for writing *I
char buffer15 121:

I* the filename *I
char 'filename = "a-Iarge-file":

I* a counter to keep up with the blocks written 'I
register int i:

I* file descriptor for the disk file *I
int fildes:

I* create the file *I
if ((fildes = creat(filename, 0640)) < 0) {

printf1"Cannot create file\n");
exit(l):

) else {
closelfildes):

I* open the file for writing *I
if ((tildes = openlfilename, I)) < 0) {

printfInCannot open file\n"):
exit(l I:

1
1
for (i = 0: i < BmCKS: i+ +)

I* write the file, one block at a time *I
if (writetfildes. buffer, 512) < 0) {

printf("Error writing block %An'', i):
exit(l):

1
I* close the file now that we're done *I

close(fildes):
1

r

Listing 5b: A benchmark to randomly read the disk file created by listing 5a.

I*
U N l X Operating System Implementation Test #5b

* This portion of the benchmark opens and reads a 256x 512 byte
file. This benchmark uses a random instead of sequential access

* read, since the majority of disk access is random. Due to differences
(continued)

BENCHMARKING

* in the rand0 routine between UNlX versions, you need to determine if
the rand0 on the machine to be tested generates numbers in the range
0 - 2-15 or in the range 0 - 2-31, andcompile the benchmark accordingly.

Instructions:
Compile By: cc -DSIXTEEN -0 s -0 dread dread.c

for machines with rand0 in the range 0 - 2 ̂ 15

cc -DTHIRTYTWO -Q -s -0 dread dread.c
for machines with rand0 in the range 0 - 2-31

The -0 option says to use the optimizer.
The 5 option says to strip the namelist from the

obiect file after linking.
The -0 option says to place the object file in the file

specified by the next argument.

* Time By: binltime dread

Results:
The time to observe is the elapsed time, as we are trying to
gauge disk throughput.

' I

#include cstdi0.h >

#define BLOCKS 256

long IseekO:

main0

{
I' the buffer for writing *I

char bufferl51.21:
I* the filename '1

char 'filename = "a-IargeJiIe":
I* a counter counting blocks read ' I

register int i:
I* the file descriptor ' I

int fildes:
I' offset to seek into file ' I

long int offset:

I' open the file ' I
if (lfildes = openlfilename. 0)) < 0) {

printf("Cannot find '%s: Run 'dwrite' first.\n': filename):
exit1 l 1:

I

for li = 0: i < BLOCKS: i++) {
I* pick a byte, any byte ' I

difdef SIXTEEN
offset = (1ong)randO 4L:

#endif
#ifdef THIRTYTWO

offset = IlongIrandO 1 16384L:
#endif

I * seek to i t ' I
if llseek(fildes, ofkei. 0) < OL) {

printf("lseek to %Id failed i=%$\nU, offset, i):
exitll I:

I
I* read a block. starting with the current byte */

if (readlfildes. buffer, 5 12) < 0) {
printf("Error reading block at byte %I$\n':offset);
exitll):

1
I

.I* get rid of the file ' I
unlinklfilename):

1
I

: that tesi
:- -L.-..... :

A short b :s incre-
menting ancl I U U ~ I ~ ~g la a1 IUWI I in listing
7. It originally appeared on UNlX
USENET news (article megatest.186) in
February 1983. This little benchmark
tests long integer arithmetic (increment
and test) and is totally processor bound.
It is a lot like the functional benchmarks
shown earlier; it tests long integer
arithmetic but does little else. It could
be improved by multiplying by 2, divid-
ing by 2, adding 2 . and then subtracting
I to better test long integer arithmetic
functions. The benchmark is presented
here in its original form because 1 had
already tested a number of machines
with that particular version. See the
results in table I .

RESULTS
A lot has happened in the last nine
months during which this article was
written. Several U N l X implementations
now exist for the IBM PC. Microcom-
puter U N l X systems continue to in-
filtrate the business environment. and
the UNlX application-software market
seems to be developing at a good pace.
Both DEC and IBM have embraced
UNIX as an alternative to their own pro-
prietary operating systems, which lends
legitimacy to the claim that UNIX is an
industry-standard operating system.
There does not yet seem to be a clear
winner in the UNlX microcomputer mar-
ketplace though several vendors are in
the forefront of the cost/performance
ratio contest.

Judging from the systems I've seen.
the best performance comes from the
Altos 586. It has less memory and fewer
110 ports than the Altos 986 but is other-
wise identical. For about $10.000. you
get an excellent multiuser UNlX system
(5 12K-byte RAM. 40-megabyte Ifor-
matted) Winchester, and six serial ports)
that under moderate load approaches
DEC VAX performance for most tasks
that a user would normally invoke.
Some may argue that if the operating
system isn't spelled U-N-I-X, it isn't real
UNIX. That's just not the case. Altos
XENlX is Version 7 UNlX with some
useful extensions, including a screen-
oriented editor, record and file locking.
and semaphores. Although ATGT no
longer markets Version 7 UNIX, it is well
established in the marketplace and will
be around for quite a while.

(continued)

AUGUST 1984 B Y T E 405

BENCHMARKING

The Sun-21120 and Masscomp corn- poration. It is a complete, usable single-
puters are VAX-class machines, but their user implementation that does what can
cost is beyond the reach of most pro- be done with the 8088. It's interesting
spective. microcomputer owners. They to note that both IBM PC (16-/&bit 8088)
both offer superb graphics and ex- implementations performed better than
cellent response time under loading. did the old reliable 16-bit F-11 chip used

The TRS-80 16B is a usable multiuser in the PDP-11/23 and DEC Professional.
microcomputer system, but its response The Omnibyte OB68K with ldris was
time is hindered by the relatively slow one of the first UNIX work-alike systems
internal 15-megabyte Winchester. Thus, around. As such, the implementation is
depending upon the applications run, not the defacto Version 7 standard. I
it may not be desirable for more than understand that a new version of ldris
a two-user load. is coming out (to borrow a phrase from

The SCI-1000 system benchmarked is Jerry Pournelle) Real Soon Now for the
still under development, and the times Omnibyte that increases performance
reported here should not be taken as substantially.
gospel. This system. with an 80186 chip. The VENlX implementations on the
has the potential for better performance DEC Professional and IBM PC. perform
than, the Altos 586 at less cost and adequately but seem to have a problem
offers System I l l UNIX. with multiple background processes. Al-

IBM's UNIX, PUIX, was not developed though it makes sense to limit the
in house. .It is a System Il l port with number of processes a user may have
added features (a vi-like full-screen on a multiuser minicomputer, it doesn't
editor) done by Interactive Systems Cor- make much sense. to impose those

Listing 6a: A general-purpose shell benchmark. The shelI script shown is contained
in a file called tst.sh and is invoked by lbinltime lbinlsh tst.sh.

sort >sort.$$ < <I*EOF
NOW
is
the
time
for
all
good
men
to
come
to
the
aid
of
their
country
I'EOF
od sort.$$ I sort -n + I > 0 d . s ~
grep the sort.$$ I tee grep.$S 1 wc > wc.$$
rm sort.$$ grep.$S od.S$ wc.$$

. : . . . , .

Listing 6b: A multitasking benchmark with a variable number of background
processes. This shell script is contained in a file called multish. The number of
concurrent processes created is determined by the number of command-line parameters,
such as lbinltime Ibinlsh multi.sh 1 2 3.

for i
do

echo Si
lbinlsh tst.sh &

done
wait

. . . .

406 B Y T E . AUGUST 19t

Circle 325 on inquiry card

BENCHMARKING

limits on a microcomputer that will all response time and system through-
probably never be used by more than put. If Apple could improve the disk
one person. What's more, no message throughput for Lisa to the same as an
is given the user when the number of Altos, Lisa would rival the Altos in the
processes reaches the per-user process best-value category, not to mention the
limit. Instead. quite literally, nothing possibility of excellent graphics.
happens. Granted that the multitasking It should be noted that some of the
benchmark is a little esoteric, it is the systems above that were implied to be
only wayto simulate a multiuser/multi- single-user are really multiuser, but the
tasking load short of having multiple response time is such that they would
users and is a good measure of how ef- not be usable in a multiuser environ-
ficiently or inefficiently competing back- ment. This is the case with such com-
ground processes are handled. puters as the IBM PC, DEC Professional.

And then there's Apple's Lisa. Due to and Apple Lisa.
disk 110 limitations, Lisa's in a class by
herself when it comes to disk-intensive CONCLUSIONS
tasks, as can be easily seen from figure Some words of caution: a few micro-
I . This exemplifies my claim that disk I10 computer systems that claim to be

The Volition system
recommends itself based

on its superior
development

environment. . . its
compiling speed, and its

relative polish.
-Joel Pitt, PC Magazlne

is the single most limiting factor in over- (continued)

Table 2: The shell benchmark run sequence.

lbinltime lbinlsh multish I
Ibinltime lbinkh multi.sh 1 2
lbinltime lbinkh multi.sh I 2 3
lbinltime lbinlsh multi.sh 1 2 3 4
Ibinltime binlsh multi.sh 1 2 3 4 5
Ibinltime lbinlsh multish 1 2 3 4 5 6.

Table 3: Results for the multitasking UNlX benchmark in listing 6 6 with a variable
number of background processes. The data are the elapsed (real) times for the
benchmark to complete. The table is sorted on the fastest execution times with six
background processes (the last column) where possible.

System Elapsed [Real) Time in Seconds

Number of Concurrent Processes
No. Machine UNlX Version 1 2 3 4 5 6

I VAX-I11780 4.1 BSD . 4.3 5.5 7.8 9.0 11.0 13.8
2 VAX-I 11750 4.1 BSD 4.3 5.5 8.8 10.3 13.3 15.0
3 . PDPI 1170 2.8 BSD 5.0 7.8 9.3 11.8 14.3 16.7
4 Masscomp Sys Ill+ 4.2 5.5 9.1 11.8 14.5 17.8
5 Sun-2II20 4.2 BSD 3.6 6.2 8.7 11.8 14.4 18.0
6 Altos 986 XENlX 6.3 7.3 9.3 19.3 27.2 36.0
7 TRS-80 16B XENlX 20.0 24.5 33.0 56.5 1:10.5 1:39.3
8 SCI-1000 Sys Ill+ 15.1 28.6 51.8 1:17.4 1:34.8 1:57.2
9 PDPl1123 V7 22.3 37.3 52.3 1:14.8 1:31.0 2:05.0
10 IBMPCXT PUIX 10.6 23.4 42.8 1:14.1 1:24.2 2:10.7
I I Apple Lisa Sys Ill+ 38.1 1:14.8 1:54.5 2:34.2 3:14.6 3:48.6
12 PDP-11123 VENlX 14.0 32.8 - - - -
13 IBM PC XT VENIX /~~* 15.0 23.5 39.0 - - -
14 DEC Pro1350 VENlX 26.0 41.0 1:22.3 - - -
I5 Omnibyte ldris 1.21-1 - - - - - -

+ lndicates UNlX System Ill plus some Berkeley enhancements.
- Indicates a benchmark that would not complete.

The ldris shell command wait did not appear to function properly, and
thus the benchmark could not be run.

J

If you do not have access
to a VAX, the next most

powerful development
system is a Sage with

Volition's compiler; it is
very fast compiling and

reasonably fast running.
-Terry Anderson, Journal of

Pascal, Ada & Modula-2

1

It is a tribute to the
compactness of this

nroarammina lanauaae r - 3 -- iJ - u - .2

that it can be used on a
64K byte personal

computer.
-Allen Munro, Apple Softalk

The documents that come
with Volition Systems

Modula-2 are about the
best introduction to the

language that I know of.
-Jerry Pournelle, BYTE

Volition
Systems

PO BOX 1236
Del Mar, CA 92014

(619) 481-2286

AUGUST 1984 B Y 1

BENCHMARKING

7 I I

'345 6

5
cn
W
In cn
W

n
Z ;;
K
a
Y
U
a

2 -

- -
30 . . 120 J

SECONDS

gure 1: A graph of the multitasking benchmark data in table 2 with the number
background processes versus elapsed time for each computer. The numbers at the

P of each line correspond to the computers as listed in table 3 . It is interesting to
~ te the cluster of high-performance systems on the left-hand side and the cluster of
her systems on the right.

multiuser and UNIX-like do not swap.
That is, they cannot swap a process out
to disk and bring in another user's pro-
cess. A system that cannot swap is
neither truly multiuser nor UNIX-like.
When a process runs out of primary
memory in these systems, it dies. These
implementations are substantially
cheaper than most others, so be suspi-
cious of low-cost UNIX-like systems.

As mentioned earlier, some systems
implement a relatively low predefined
limit on the amount of memory or num-
ber of, processes one user can have.
regardless of other system activity (or
inactivity). Once this limit is exceeded,
activity grinds to a halt, as a deadlock
has been reached. Each blocked pro-
cess (blocked in the sense that it is
waiting for resources before it can con-
tinue) is waiting for the other to ter-
minate before it can continue. If you

I

Listing 7: A simple benchmark to test incrementing and looping.

I *
UNlX Operating System Implementation ~ e k t #7

* This program tests long integer incrementation. It is
taken from USENET news article "megatest.186':

* Instructions:
* Compile by: cc -0 s -0 loop l0op.c

The -0 obtion says to use the optimizer.
The s option says to strip the namelist from the

object file after linking.
The -0 option says to place the object file in the file

specified by the next argument.

* Time by: lbinltime loop

Results:
Although not very significint, i t does say something about the
speed of the processor, since the compiler would hopefully
compile the "i++" as an INCR instruction and not an ADD
instruction. The benchmark is presented here for historical
reasons.

main()

{
long i:
for (i = 0: i < 1000000: i + +)

ntfr'.~bne\n'.);

plan to be an active user on a small
multiuser system in a single-user en-
vironment, look out for this. The multi-
tasking benchmark in listing 6b will
usually bring any problems to light.

Knowledgeable 4.1 BSD and 4.2 BSD
users should beware of systems that
claim to have Berkeley enhancements.
This means that the Berkeley version of
some UNlX commands have been
added. For example, most so-called
Berkeley-enhanced systems include the
termcap (terminal capability) database,
more (a utility that prints files one
screen at a time), and a version of Is (a
utility to list the files in a directory) that
lists files across, rather ,than down the
screen. Don't expect to find the newtty
driver and the job-control facilities of
real Berkeley U N l X systems.

If you're considering a UNlX micro-
computer, remember that response
doesn't always vary linearly with load
(even on large UNIX systems). This is
due to several factors, most notably
available real memory and disk-access
speed. I f you plan to add a user or two
later, test the prospective system now.
Find out if the hardware can support ad-
ditional memory andlor faster disks.

The benchmarks presented here try
not to be blind to what users do at the
keyboard (not all users execute pro-
grams similar to the Sieve of Eratos-
thenes), but they do try to evaluate
operating-system features that are rou-
tinely used. By explaining how bench-
marks should be developed, this article

AUGUST 1984

- - ~ - - ~

Circle 156 on inquiry card. AUGUS

BENCHMARKING

Benchayk the
specific kinds
of things you
will be doing as
well as O V ~ Y ~ U
pe rfo Y ma nce.
has tried to dispel the myth that all
benchmarks do is see how fast a
machine can crunch numbers (e.g., the
Whetstone benchmark has not been
mentioned).

Of course, benchmark results are not
the only means to judge microcom-
puters. Clear and sufficient documenta-
tion, a solid customer base, and good
product-support history are also impor-
tant. If you do perform benchmarks on
systems you are considering purchas-
ing, try to benchmark the specific kinds
of things you will be doing as well as

ir m e s s a g e
1 ~ u r bscr ibers

From time to time we make the BYTE subscriber list available to other
companies who wish to send our subscribers material about their
products. We take great care to screen these companies, choosing
only those who are reputable, and whose products, services, or
information we feel would be of interest to you. Direct mail is an
efficient medium for presenting the latest personal ,computer goods
and services to our subscribers.

Many BYTE subscribers appreciate this controlled use of our mailing
list, and look forward to finding information of interest to them in the
mail. Used are our subscribers' names and addresses only (no other
information we may have is ever given).

While we believe the distribution of this information is of benefit to
our subscribers, we firmly respect the wishes of any subscriber who
does not want to receive such promotional literature. Should you wish
to restrict the use of your name, simply send your request to the
following address.

BYTE Publications lnc
Attn: Circulation Department

70 Main S t
Peterborough NH

03458

overall performance in case your needs
change. This sounds incredibly obvious.
but many people have been disap-
pointed by systems purchased yester-
day that don't meet their needs
today.

REFERENCES
I . Gilbreath. Jim, and Gary Gilbreath. "Eratos-
thenes Revisited: Once More through the Sieve:'
BYTE, January 1983. page 283.
2. Lions. I . " A Commentary on the UNIX Oper-
ating System:' 1977.
3. Peterson, I.. and A. Silberschatz. Operating Sys-
tem Concepts. Reading. MA: Addison-Wesley.
1983.
4. UNIX Programmels ~a iuaf . 7th ed.. Virtual
VAX-I I Version, volumes I and 2c. Berkeley. CA:
University of California. Department of Elec-
trical Engineering and Computer Science. June
1981.
5. UNIX Programmer's Manual. 7th ed:. volumes
I . 2a, and 2b. Murray Hill, Nl: Bell Telephone
Laboratories. January 1979.

ACKNOWLEDGMENTS
Thanks to Ellen Mendelson and Walt Kennedy
of the Durham and Raleigh Radio Shacks for
access to the TRs-80 Model 16. Thanks to David
Holloman of Keystone Systems Inc, of Raleigh
for access to the Altos 586. Thanks to Michael
Smith of East Carolina University for running
the ldris benchmarks. Special thanks to the
North Carolina Educational Computing Service
for allowing me access to most of the remain-
ine machines listed in table I .

====

I inmac COMpm
Please send me a

I
1 freecopyoflnmac's *owe

Personal Computer
I

1 support Catalog cm

Inmac Catalog Dept. ,, ZIP P H O ~ 1 2465 Augustine Llrive

I
Santa Clara, CA 95051 'In Califomia,cd1-800-547-5447 for our free c d o g . ,I, I

	132.pdf
	133.pdf
	134.pdf
	135.pdf
	400.pdf
	401.pdf
	402.pdf
	403.pdf
	404.pdf
	405.pdf
	406.pdf
	407.pdf
	408.pdf
	409.pdf

