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This paper describes the problems posed by running the UNIX" operating 
system on multiprocessors, as well as some solutions. The resulting systems 
function like their single-processor counterparts but yield 70 percent better 
throughput for two-processor configurations. Closely coupled multiprocessor 
UNZX systems currently run on IBM and AT&T Technologies hardware, but 
the implementation described in this paper ports to other architectures as 
well, and the design is not limited to two-processor configurations. 

I. INTRODUCTION 

The UNIX operating system has been ported to many processors, 
but only recently has it been ported to multiprocessor (MP) configu- 
rations. Porting to multiprocessor configurations further extends the 
range of machines on which UNIX systems are available and further 
supports the concept of a portable operating system. It  also extends 
the range of UNIX system applications and provides an important 
extension to the upward migration for projects that begin using the 
UNIX system on a minicomputer and then outgrow that machine's 
capabilities. UNIX systems currently run in multiprocessing environ- 
ments on IBM/370 architecture machines, and AT&T 3B20A and 3B5 
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computers, but the ensuing discussion applies equally well to other 
machine architectures that support multiprocessor environments. 

The UNIX systems that were devised for the various multiproces- 
sors provide complete transparency to user programmers. That is, all 
system calls and commands operate the same way on the multiproces- 
sor systems as they do on single-processor UNIX systems. Existing C 
programs can be moved from single-processor systems to their multi- 
processor versions without recompilation, except for system-depend- 
ent code (e.g., the command to determine process status, ps). The 
terminal interface, file system format, process hierarchy, and all other 
user-visible aspects of the operating system appear identical to those 
on a single-processor UNIX system. 

For the purposes of this paper, a multiprocessor hardware configu- 
ration is one that has two or more processors that share a common 
memory, corresponding to what is commonly called a tightly coupled 
system. It is distinguished from a loosely coupled system, where each 
processor has private memory, and where the processors communicate 
using a networking facility instead of shared memory. 

Multiprocessor hardware configurations can be further classified by 
their symmetry with respect to input/output (110). In an Associated 
Processor (AP) configuration, only one processor is capable of doing 
I/O operations, while in a true multiprocessor configuration either 
processor can do 110. Except as specified, the ensuing discussion 
applies to MP and AP configurations. 

Another multiprocessor UNIX system1 permits only one processor, 
the master, to execute the kernel of the operating system, avoiding 
the system data corruption problems described in Section 3.1. That 
system has modified the algorithm for scheduling processes to recog- 
nize the existence of more than one processor, and it schedules only 
user-level processes to the processor not allowed to execute kernel 
code, the slave. When a process executing on the slave processor does 
a system call, the operating system recognizes that the system call is 
originating on the slave processor, suspends the process, and resched- 
ules it for the master processor. Since benchmark programs show that 
UNIX systems typically spend between 40 and 50 percent of their 
time executing operating system code, restricting one processor from 
executing kernel code prevents the system from achieving the full 
performance potential of the hardware except for specific workloads. 
The multiprocessor UNIX systems described in this paper permit all 
processors to execute kernel code simultaneously, yielding maximum 
efficiency from the hardware configuration. 

This paper begins by describing the motivating factors for running 
the UNIX system on a multiprocessor, and continues by describing 
the special issues posed by multiprocessor configurations. The use of 
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semaphores to solve the multiprocessing issues is described in some 
detail, as is the special consideration given to device drivers. Conclud- 
ing sections describe machine-specific issues and system performance. 
A basic knowledge of UNIX system internals is assumed. 

II. MOTIVATION 

UNIX systems are commonly used for software development, where 
programmers working on a project must communicate and share data 
with each other. But many software development projects, although 
they start out small, later outgrow their original computing capacity, 
so that a single computer no longer adequately supports all users. 

When a project exceeds its machine capabilities, it can either acquire 
more machines and try to share the load between them or it can move 
up to a larger machine. But getting more machines to share the work 
load has several problems: 

1. Communication of data across machines incurs high networking 
overhead. 

2. The network is seldom transparent to the user; that is, users 
must understand the machine/project structure. 

3. Data are frequently replicated across machines to reduce flow 
through the network, but replicated data may be inconsistent because 
of concurrent update problems across different machines. 

On the other hand, moving a project to larger machines, sometimes 
of a different vendor, is frequently expensive in terms of hardware 
costs, data migration, and user productivity. 

A multiprocessor capability allows a smooth growth path for projects 
that can start small with a single processor and, as their computing 
requirements expand, can add more processors to form a larger, more 
powerful system. Such growth is usually less expensive and less dis- 
ruptive to end users than acquiring a new and larger machine. 

Another advantage of a multiprocessor system is that it is potentially 
more robust. If a hardware failure makes one processor inoperable, 
the system can potentially recover from the problem. The users would 
not have to take any special action and would not notice any difference 
in system services except reduced performance. Diagnosing and fixing 
such problems on a multiprocessor UNIX system while the system is 
active is still an open problem, so the systems described here require 
a system reboot to restore operation. However, they execute in single 
processor mode so that failure of one processor does not prohibit 
booting and running the system on the other processors. 

Ill. SYSTEM CHANCES 

3.1 The problem of multiprocessors 

The UNIX system was originally developed to run on a single 
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processor, and the code assumes that the kernel is never preempted 
except for processing of interrupts. Hence, kernel data structures do 
not need to be protected unless referenced by an interrupt routine, 
and if so, the data can be protected by locking out interrupts. This is 
normally done by raising the processor priority level high enough to 
prevent the type of interrupt from occurring. 

For example, consider the code fragments taken from the functions 
getc  and p u t c  in Fig. 1, functions usually used for manipulating 
characters and queues for terminal drivers. Such characters are queued 
onto cblocks, and cblocks are chained together to form clists.  
The function getc  removes a character from a c l i s t ,  or, more 
properly, from the first cblock of the c l  i st. If the cb lock  contains 
no more characters, the cblock is attached to the beginning of a free 
list of cblocks, and the c l  i st  is adjusted accordingly. The function 
p u t  c places a character onto a c 1 i s  t , or, more properly, onto the last 
cblock of the c l i s t .  If that cblock contains no space for new 
characters, a new cblock is removed from the free list of cblocks, 
and the c l  i s t is adjusted accordingly. 

The code fragments in Fig. 1 focus on placing and removing cblocks 
from the free list. Suppose a process executes statement 1 of getc  but 
receives an interrupt before it executes statement 2. If the interrupt 
handler executes putc, it will remove the first cb lock  from the free 
list. When the process resumes control after the interrupt, it executes 
statement 2, making the returned cblock the free list header of 
cb locks .  Unfortunately, the cblock in getc  points to the cblock 

getc (p) 
struct clist *p; 
f 

struct cblock *cp; 

cp->c-next = cfree1ist.c-next; /* 1 * /  
cfree1ist.c-next = cp; / *  2 */  

putc (c ,P) 
struct clist *p: 

struct cblock *cp; 

sp16 0 ; 

cp = cfree1ist.c next; 
cfree1ist.c-next-- cp->c-next; 
cp->c-next = NULL; 

&IOO r 

1 

Fig. 1-hising processor execution level for single processors. 
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just removed by putc, which severed its previous connection to the 
free list. The result is that the free list contains only one free cblock 
and one or more busy cblocks, and the remaining free cbiocks are 
inaccessible. 

UNIX systems traditionally avoid such problems by raising the 
processor execution level to prevent interrupts. In Fig. 1 the function 
sp16 raises the processor execution level to six (presumably a level 
high enough to prevent interrupts whose handlers call putc), and the 
function sp lo  lowers it to zero, allowing all interrupts. Since no 
interrupts can occur between the calls to sp16 and s p l o  in Fig. 1, the 
free list cannot be corrupted. Since processes in the kernel cannot be 
preempted unless they voluntarily relinquish use of the processor, 
raising the processor execution level to prevent interrupts protects all 
system data structures. 

In the multiprocessor systems described in this paper, however, 
raising the processor execution level does not prevent corruption of 
system data structures, as all processors can simultaneously execute 
kernel code. In the example above, one processor could execute getc, 
but its s p l  does not necessarily prevent interrupts from occurring on 
the other processor, and hence the other processor could execute p u t c  
with catastrophic results. Similar corruption could occur without 
interrupts: processors could simultaneously write to terminals, execute 
putc, and remove the identical cblock from the free list with cata- 
strophic results. Therefore, kernel code that references common data 
in multiprocessor systems must protect the data from access by other 
processors. The mechanism chosen to do this was based on Dijkstra's 

Although the use of semaphores is not new to multi- 
processor UNIX systems, their use here is more extensive and system 
throughput is much higher than reported elsewhere. 

3.2 Semaphores 

3.2.1 Definition 

A semaphore* is an integer-valued data structure on which the 
following restricted set of operations can be performed. 

init Initialize the semaphore to an integer value. 
psema Decrement the value of the semaphore. If the resulting 

value is less than zero, then suspend the executing process 
and place it on a linked list of processes sleeping on the 
semaphore. When awakened, the process priority is set to 

* The semaphores being described here are a strictly internal mechanism and have 
nothing to do with the user interprocess communication facility of the same name that 
is described in Ref. 6. 
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vsema 

the value supplied as one of the parameters to psema. If 
signals are pending against an awakened process, the value 
of the priority parameter determines whether they are 
deferred or caught. 
Increment the value of the semaphore. If the resulting 
value is less than or equal to zero, then awaken a process 
that suspended itself doing a psema on the semaphore. 

cpsema If the value of the semaphore is greater than zero, then 
decrement it and return true. Otherwise, leave the sema- 
phore unmodified and return false. 

Semaphore operations are atomic. That is, if two or more processes 
try to do operations on the same semaphore, one completes the entire 
operation before the others begin. 

3.2.2 Uses of semaphores 

To protect a particular resource such as a table or linked list, a 
semaphore is associated with that resource and typically initialized to 
one when the system is booted. When a process wants to gain exclusive 
use of the resource, it does a psema on the semaphore, decrementing 
the semaphore value to zero (assuming it was one) but allowing the 
process to proceed. The process now has exclusive use of the resource. 
If other processes attempt to gain control of the resource, their psema s 
will decrement the semaphore value and suspend process execution. If 
the value of a semaphore is negative, then its absolute value is equal 
to the number of processes that are suspended waiting for that re- 
source. When the process that has control of the resource is done with 
it, it does a vsema on the semaphore, releasing the semaphore and 
awakening a suspended process, if any. The awakened process is now 
eligible for scheduling when a processor becomes available and when 
no higher priority processes exist. When scheduled, the awakened 
process returns from the psema call without knowing that it was 
temporarily suspended, and when it finishes with the resource, it 
should do a vsema to release the semaphore and to awaken the next 
waiting process, if any. 

A semaphore that is used to await an event is initialized to zero. 
Processes awaiting the event do a psema to suspend themselves until 
the event occurs, and processes recognizing the event do a vsema to 
awaken sleeping processes. A semaphore that is used to count the 
number of resources in the system is initialized to the appropriate 
number. When the resource is allocated, the psema decrements the 
semaphore value, and when the resource is freed, the vsema increments 
the semaphore value, so that it always conforms to the number of 
available resources. If the number of available resources drops to zero, 
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processes will sleep in the psema until another process releases a 
resource and does a vsema. 

The cpsema operation is used to lock a resource only if it is 
immediately available, and other action besides sleeping is taken if 
the semaphore is unavailable. This is used in deadlock prevention and 
will be explained in Section 3.2.3. 

Single processor UNIX systems use the sleep and wakeup mecha- 
nisms for process synchronization to voluntarily suspend and resume 
execution waiting for an event to occur. When a single processor 
system does a wakeup call on a resource, all processes sleeping for that 
resource are awakened. Often the resource must be used exclusively, 
so all but one of the awakened processes will test the resource, find it 
busy, and again go to sleep. In muitiprocessor systems on the other 
hand, it is undesirable to awaken all sleeping processes because all 
such processes could not assume exclusive access to system structures. 
So a vsema only awakens a single process that will in turn awaken 
another sleeping process. A process that executes a psema knows that 
it has control of the resource and will not fall asleep again waiting for 
the resource to become ready. 

The kernel of the multiprocessor systems has been modified to 
account for the change in semantics of sleeping. Calls to the psema 
and vsema functions replace calls to the old sleep and wakeup 
functions, as there is one set of process synchronization primitives 
(semaphores) instead of two. 

3.2.3 Coding with semaphores 

A serious problem in the use of semaphores is process deadlock. 
Figure 2 gives an example of deadlock where two processes, A and B, 
execute the shown code sequences. 

At time TI, process A has locked semaphore sema 1 and process B 
has locked semaphore sema2. Process A now attempts to lock sema- 
phore sema2 and will be suspended because process B has control of 
the semaphore. Process B attempts to lock semaphore sema I but will 
be suspended because process A has control of it. Both processes will 

PROCESS A 

psema (semal, pri2 ); 

PROCESS B 

Fig. 2-Example of semaphore deadlock. 

TIME 
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be suspended indefinitely because each is waiting for a resource that 
the other one has. 

To avoid deadlocks, an ordering is imposed on the various resources 
in the system. All processes that simultaneously lock more than one 
resource do so in the prescribed order to guarantee that no deadlock 
can occur. More sophisticated schemes for deadlock detection and 
resolution would complicate the system code and slow down perform- 
ance. Occasionally it is still necessary for a process to lock its sema- 
phores in an order different from the prescribed order. For example, 
the system usually locks inodes before text slots since the exec 
system call first accesses the file before it determines whether or not 
to allocate a text slot. But the algorithm for cleaning swap space of 
unused program text first searches the text table and only sometimes 
needs to access and hence lock the inode. In such cases the process 
must use a cpsema to lock the second semaphore. 

If the cpsema fails, then the process must take some other action 
to avoid the deadlock, usually releasing the semaphore it already holds 
and awaiting an event before attempting to execute the code again. 
Figure 3 contains code that corrects the potential deadlock of Fig. 2. 

3.2.4 Semaphores in interrupt routines 

Interrupt handlers usually share kernel data structures with higher- 
level kernel routines such as the getc and putc routines for terminal 
drivers of Section 3.1, so semaphore protection is required at the 
interrupt handler level as well as the rest of the kernel. It is preferable 
not to sleep in an interrupt routine for two reasons. First, it is desirable 
to service the interrupt as quickly as possible. Second, the process that 
would be suspended is often not related to the interrupt being proc- 
essed. So, interrupt handlers use cpsemas instead of psemas and take 
other action if the semaphore is locked elsewhere. Section 3.5 gives 
more detail on driver interrupt handlers. 

PROCESS A PROCESS B 

psema (semal, pril) ; 
loop : 

TIME 

I 

if ( !  cpsema(sema1) ) ( 
vsema (sema2) ; 
/*other corrective action*/ 

got0 loop; 

Fig. 3-Example of deadlock avoidance. 
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3.2.5 Semaphores and performance 

The use of semaphores must be carefully chosen to balance fre- 
quency of semaphore operations versus the "granularity" of semaphore 
protection, that is, how much data are protected by a single semaphore. 
If a semaphore locks a large set of resources such as the entire buffer 
pool, or if it is held for a long time, then many other processes may be 
suspended while waiting for the semaphore to unlock, delaying process 
flow through the system and resulting in excessive context switching. 
Contention for a semaphore can be measured by examining the mean 
number of processes sleeping on the semaphore and by examining the 
degree of contention for the semaphore, that is, the ratio of how 
frequently processes were denied access to the semaphore to how 
frequently they were attempted. If either of the above numbers is 
much higher than for other semaphores in the system, then semaphore 
usage in the system is unbalanced and new semaphores should be 
encoded to reduce semaphore contention. 

Semaphore contention may be reduced by replacing a single sema- 
phore with a set of semaphores. For example, suppose that there is a 
linked list of resources that must be searched, and items must be 
added to or deleted from the list. The list could be locked by a single 
semaphore, but if the list is large and frequently searched, processes 
may contend for the semaphore, and the semaphore could prove to be 
a system bottleneck. If so, performance can be improved by replacing 
the single linked list with a set of hash buckets, each heading a linked 
list containing those elements from the original list that hash to the 
same value. Instead of having one lock for the entire list, each hash 
bucket can have a separate lock spreading the original load over a set 
of semaphores and reducing the contention for each one. The buffer 
pool for example, contains one semaphore for each hashed (by device 
and block number) queue of buffers, one semaphore for each buffer, 
and one semaphore for the free list of buffers. Although the semaphore 
for the free list has one of the highest contention rates in the system, 
system throughput is much better than if there were only one sema- 
phore for the entire buffer pool. Unfortunately there is no satisfactory 
way to divide the free list into separate lists with separate semaphores 
that does not adversely affect performance of the buffer algorithm. 

Another issue in semaphore performance is whether a psema or a 
cpsema should be used to lock the semaphore; that is, if the semaphore 
is locked, whether the process should sleep until the semaphore be- 
comes free or whether the process should execute a tight loop, attempt- 
ing to lock the semaphore until it finally succeeds (see Fig. 4). 

The issue is decided on a case by case analysis of the semaphores, 
comparing the average amount of time the semaphore is locked to the 
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Fig. 4-Sleep lock and spin lock. 

time it takes to do a context switch. The results depend strongly on 
CPU performance characteristics. 

3.2.6 Semaphore debugging 

In spite of the best attempts at following ordering rules, deadlocks 
occur in multiprocessor systems, especially in early development 
stages. Deadlocks can be difficult to find because by the time the 
symptom appears (a stopped system), the cause of the problem has 
long since passed. To find these problems more easily, the system logs 
all semaphore operations. The log is a circular buffer where entries 
for each semaphore operation contain the type of operation performed, 
the text address where the operation was performed, the address of 
the semaphore, the process number, the semaphore value, and other 
useful information. The semaphore log gives a useful trace of processes 
as they execute kernel routines. Logging may be disabled when com- 
piling the system or, to a lesser extent, while the system is executing 
to improve system performance. 

In addition to  the semaphore log, an extra field in each semaphore 
contains the process number of the last process that gained control of 
the semaphore. The semaphore log and the process number field in 
the semaphore structure are useful in diagnosing bugs in the multipro- 
cessor system that never occur in a single processor system. 

3.3 Example 

Consider the code in Fig. 5 for the xumount function, called when 
unmounting device dev,  that frees t e x t  slots belonging to the device. 
Although unmounting a device and calling xumount is a rare event in 

xumount (dev) 
register dev-t dev: 

f 

register struct inode *ip; 
register struct text *xp; 
register count = 0; 

for (xp = &text[Ol; xp < (struct text *)v.ve-text; xp++) 
if ((ip = xp->X iptr) == NULL) / *  not in use */  

continue; 
if (dev != NODEV & &  dev != ip->i-dev) / *  on device dev*/ 

continue; 
if (xuntext (xp) ) 

count++; 

Fig. 5-Single processor code for xumount. 
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the lifetime of a system, the example illustrates the techniques for 
converting the code of a single processor UNZX system to a multipro- 
cessor version. The function examines every text table entry to see if 
it is in use and if the file resides on the device dev. If SO, it calls 
xuntext to free the swap space and free the text table slot. 

Figure 6 shows the multiprocessor version of the xumount function. 
After the initial checks to ensure that the text table slot is in use and 
that its file is on the correct device, the semaphores for the inode and 
text slot are locked. The semaphores .could be locked before the 
checks are done, but because psema and vsema are expensive opera- 
tions, and because the probability that a text entry will be cleaned 
up here is low, the implementation is more efficient as shown. But 
until the text and inode slots are locked, it is possible for a process 
on another processor to change the inode pointer of the text slot or 
the device number of the inode if either is freed. Therefore, the code 
must check the conditions for calling xuntext again, and if either 
check fails, it must release the locked semaphores. 

The inode semaphore is locked before the text semaphore, follow- 
ing the protocol established by the exec system call, where the inode 
is found first and locked before the text slot is allocated. If either 
psema call results in the process going to sleep, the process will later 
be rescheduled to run at priority PSWP. 

Execution of the xumount function does not guarantee that the 
text table is free of program text from device dev, since a process 
executing on another processor could allocate a text slot that xumount 

xumount (dev) 
register dev-t dev; 

1 
register struct inode *ip; 
register struct text *xp; 
register count = 0; 

for (xp = &text[Ol; xp < (struct text*)v.ve-text;xp++) 
if ((ip = xp->x-iptr) == NULL) 

contmue; 
if (dev 1 =  NODEV && dev !- ip->i-dev) 

continue; 
psema(&ip->i-lock, PSWP); 
psema(&xp->x lock, PSWP); 
if ((ip != xz->x-iptr) 

I (dev != NODEV && dev I -  ip->i-dev)) 

vsema(6xp->x lock); 
vsema (rip->iIlock) ; 
continue; 

1 
If (xuntext(xp) 

count++; 
vseraa(&xp->x lock); 
vsema (&ip->iIlock) ; 

1 
ieturn (count) ; 

Fig. 6-Multiprocessor code for xumount. 
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already passed in its search for program text from the device. The 
calling code (sumount, not shown) prevents allocation of t e x t  slots 
to make such a guarantee. 

3.4 Process execution 

Processes executing in a multiprocessor environment are not aware 
of how many processors are running in the system. The only interac- 
tion between processes because of the multiprocessor environment is 
contention for semaphores, but subject to that restriction, each pro- 
cessor independently executes processes in both kernel and user mode, 
not in a master/slave fashion. Each processor schedules processes 
independently from a global set of runnable processes using conven- 
tional UNIX system scheduling algorithms. If a process is not sched- 
uled by one processor, it is eligible for scheduling by the other proces- 
sors. Multiple processes may be active in the kernel on separate 
processors, except for interaction of system semaphores. In particular, 
system calls give identical results in single or multiprocessor systems. 

The major states of a process are 
1. Running on a processor 
2. Ready to run and loaded in main memory 
3. Ready to run but not loaded in main memory 
4. Sleeping and loaded in main memory 
5. Sleeping and not loaded in main memory 
6. Zombie (exited, waiting for its parent to acknowledge). 
In the process table of single processor UNIX systems, no flag 

distinguishes the first state, currently running on a processor, from 
the second state, ready to run and loaded in main memory. But in 
multiprocessor UNIX systems, a new flag shows that a process is 
currently running on a processor. Without the explicit indication, it 
would be possible to schedule a process for simultaneous execution on 
multiple processors, or swap out a process currently executing on a 
processor, both clearly undesirable events. 

3.5 Device drivers 

In principle, there is no difference between device drivers and other 
parts of the operating system as far as conversion for running on a 
multiprocessor is concerned. Data structures must be locked, sleep 
and wakeup calls must be replaced by psema and vsema calls, and 
special consideration must be given to interrupt routines, as described 
previously. 

But more than half of the the UNIX operating system currently 
consists of device drivers, and new drivers are being added at an 
accelerating rate to support new peripherals and to provide new or 
enhanced services. In practice, therefore, the number and volatility of 
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the drivers make it difficult to change them for multiprocessor systems 
and keep them up to date with changes made for other UNIX systems, 
so it is important to keep most driver code identical over all imple- 
mentations. Three changes had to be made to the system to allow this. 

First, drivers are locked before they are called. Driver calls are table 
driven via the bdevsw and cdevsw tables, and the drivers are locked 
and unlocked around the driver calls using driver semaphores added 
to the tables. Various methods of driver protection are encoded based 
on system configuration. The levels of protection vary from no protec- 
tion (protection is then hard coded in the driver), to forcing the process 
to run on a particular processor (useful in AP configurations, where 
only one processor can do the I/O), to locking per major or per minor 
device type. Each call to a driver routine is now preceded by a call to 
a driver lock routine and followed by a call to a driver unlock routine. 

The second change was to reimplement sleep and wakeup subrou- 
tines that could be called by device drivers, without changing the 
original driver code. Since the old UNIX operating system sleep 
routine uses arbitrary addresses in memory to sleep on, the new 
routines use hash lists of semaphores to actually suspend the process, 
and the address being slept on (a sleep parameter) is stored in the 
process table. Since a semaphore already heads a linked list of all 
processes suspended on the semaphore, the wakeup routine has only 
to search this list to find all processes to awaken. The sleep routine 
unlocks the driver semaphore so that other processes can access the 
driver while the original process sleeps, and it relocks the semaphore ' 
when it awakens from the sleep. The sleep and wakeup routines are 
intended to be used only from drivers. The main kernel code still uses 
psema and vsema directly. 

In addition to the locking before calling driver routines, locking 
must also take place when handling interrupts, since the interrupt is 
no longer blocked by raising the processor execution level (see Section 
3.1). Before the device interrupt handler is invoked, the semaphore 
for the device (if any) is locked via cpsema. If the lock succeeds, the 
interrupt gets handled; if the lock fails, the interrupt is queued but 
not handled immediately. When the process that currently has the 
semaphore locked is finished with the semaphore, it handles queued 
interrupt requests. 

The above discussion does not hold for all multiprocessor UNIX 
systems, IBM/370 for example (see Section IV), but is the culmination 
of several years of evolution and represents the current state of 
development. 

3.5.1 AP systems 

As we discussed in Section I, AP systems do all I/O from one 
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processor, whereas MP systems can do 110 from all processors. Since 
it is desirable that the kernel and drivers have no knowledge of whether 
they are running on an AP or an MP system, the information is 
encoded in tables a t  the lowest software levels that send the direct 
memory access requests out to the hardware on AP systems. If the 
process is on the wrong processor, a context switch is done, and a 
special scheduling parameter forces the process onto the correct pro- 
cessor. 

IV. IBM SPECIFIC ISSUES 

The UNIX system for the IBM/370 does not run directly on IBM 
hardware, but is a two-level system where the upper level consists of 
UNIX system code, and the lower level consists of the resident 
supervisor of the Time-Sharing System (TSS). The resident supervisor 
handles all machine-dependent I/O operations, memory management 
(including paging), process scheduling, and hardware error handling. 
The UNIX system layer implements all UNIX system calls as well as 
the file system structure. The interface between the two layers consists 
of supervisor calls from the UNIX system to the resident supervisor, 
and pseudo-interrupts from the resident supervisor up to the UNIX 
system. 

The major advantages of this approach are that the UNIX system 
on the IBM/370 does not have to concern itself with IBM hardware 
architecture that may change from processor to processor, and support 
for IBM peripherals comes for free, both via the resident supervisor. 
The disadvantages are that a performance penalty is paid in commu- 
nication between the two layers, and that the system algorithms 
employed in the resident supervisor are not necessarily optimal for 
the UNIX operating system. For example, the semaphore operations 
are enhancements to enqueuejdequeue operations that previously 
existed in TSS and are much more general than required by the UNIX 
system. 

V. 38 COMPUTER SPECIFIC ISSUES 

The 3B family of machines is microcoded, so new semaphore instruc- 
tions were encoded to boost performance of multiprocessor systems. 
The design of the instructions has been optimized for the most 
frequently occurring cases, namely, that psema usually finds the 
semaphore unlocked, and that vsema usually need not awaken sleeping 
processes. To this end, the instructions operate on registers containing 
the semaphore address and, if necessary, the address of a function 
that puts a process to sleep (for psema) or awakens a process sleeping 
on the semaphore (for vsema). Use of the new microcoded instructions 
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boosted overall system performance by 30 percent compared to a 
system that implemented semaphore operations in software. 

A 3B hardware feature causes a problem in the implementation of 
a paging system for a multiprocessor configuration. Paging systems 
map the virtual address space of a process to physical pages in memory. 
The tables that define the mapping reside in memory, but for better 
performance they also reside in a special hardware cache called the 
Address Translation Buffer (ATB). Each processor has a private ATB 
and cannot flush the contents of the other processor's ATB. However, 
processes executing from shared text or using the shared memory 
interprocess communication facility (see Ref. 1) can share portions of 
their virtual address space. So the two processors' view of physical 
memory can diverge if one processor changes its address mapping, 
while the other processor continues to use the old mapping still 
contained in its ATB. 

The paging problem is solved by observing the following protocol: 
1. A processor flushes the user portion of its ATB during every 

context switch (this is done in systems without paging anyway, since 
the address mapping of the previously running process is invalid for 
the currently running process). 

2. Kernel pages are never swapped from main memory. 
3. Pages used by a process currently running on another processor 

cannot be swapped. 
Since the paging process cycles through the process table swapping 

the oldest pages on a per-process basis, it is easy to satisfy the third 
rule above, provided the running process uses no shared text or shared 
data. If the running process does use shared text or shared data, the 
paging process verifies that the page to be swapped is not shared, or 
else it does not swap it. 

VI. PERFORMANCE 

Many UNIX operating system algorithms that use linear searches 
of system tables did not scale well from single processor to multipro- 
cessor systems for two reasons. First, multiprocessor systems have 
greater capacity than their single processor counterparts, so systems 
tables such as the inode table and the process table have correspond- 
ingly more active entries, and consequently, searching for particular 
entries takes more time. Second, the system tables must be frequently 
locked so that processes accessing them find a consistent copy until 
they have finished using them. The two reasons combined imply that 
the system will spend more time searching the tables, locking them 
out from other processes and causing heavy contention for the table 
semaphores. 

To avoid such problems, many algorithms were redesigned to avoid 
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linear searches of system tables. For instance, inodes are hashed by 
device number and inode number to a hash chain, and search algo- 
rithms that formerly searched the entire inode table for an inode 
now search for the inode on the hash chain, a much shorter search. 
Further, processes do not contend for a single semaphore for the 
inode table, but rather for a greater number of semaphores for the 
hash chains (see Section 3.2.5). 

The process table is another example where linear searches were 
eliminated to gain performance. An exiting process, for example, finds 
all its "children" and reassigns their "parent" process identifier to be 
one, and it also sends a "death of child" signal to its parent. Instead 
of searching the entire process table for parent and child processes, 
the process structure now contains parent, child, and sibling pointers 
so that the search routines traverse a tree. 

Benchmarking results show that two-processor UNIX systems run 
about 1.7 times as fast as a single-processor system. That is, 1.7 times 
as many processes are handled in the same amount of time as are 
handled on single-processor systems. The figures are based on bench- 
mark programs that run job mixes typical of those found on UNIX 
systems, although CPU-bound job mixes run slightly faster, and I/O- 
bound job mixes run slightly slower. Performance enhancements are 
still being made and are expected to produce further improvements in 
these figures. Contention for semaphores is low, as less than 5 percent 
of the psema operations on lock semaphores result in the process going 
to sleep. By running the code for the multiprocessor system on a single 
processor and comparing its performance to that of a single-processor 
system running original UNIX system code, the overhead of sema- 
phore operations was found to be less than 5 percent. 

The multiprocessor system can be configured to run on a single 
processor by turning on a flag when compiling the system. The flag 
controls a macro that turns off selected semaphore operations. Per- 
formance of such a system is equal to that of regular single-processor 
systems. This has important ramifications for system support because 
one set of source code runs all system configurations. 

VII. CONCLUSIONS 

This paper has described the major problem of implementing mul- 
tiprocessor UNIX systems, namely, concurrent destructive access of 
kernel data structures. It has discussed how to avoid concurrency 
problems in the kernel by using semaphores, and has outlined a scheme 
that allows drivers to stay common across single-processor and mul- 
tiprocessor implementations. The resulting multiprocessor UNIX sys- 
tems are functionally equivalent to single-processor UNIX systems 
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and provide 70 percent better throughput for two-processor configu- 
rations than their single-processor counterparts do. 

The techniques outlined in this paper are applicable to all UNIX 
systems, independent of the machine on which they run. They are 
particularly applicable to microprocessors running the UNIX system, 
because they allow users to increase their computing power by adding 
more processors to their system. 
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