
AT&T Bell Laboratories Technical Journal
Vol. 63, No. 8, October 1984
Printed in U.S.A.

The UNIX System:

Multiprocessor UNlX Operating Systems

By M. j. BACH* and S. I. BUROFF*

(Manuscript received August 22, 1983)

This paper describes the problems posed by running the UNIX" operating
system on multiprocessors, as well as some solutions. The resulting systems
function like their single-processor counterparts but yield 70 percent better
throughput for two-processor configurations. Closely coupled multiprocessor
UNZX systems currently run on IBM and AT&T Technologies hardware, but
the implementation described in this paper ports to other architectures as
well, and the design is not limited to two-processor configurations.

I. INTRODUCTION

The UNIX operating system has been ported to many processors,
but only recently has it been ported to multiprocessor (MP) configu-
rations. Porting to multiprocessor configurations further extends the
range of machines on which UNIX systems are available and further
supports the concept of a portable operating system. It also extends
the range of UNIX system applications and provides an important
extension to the upward migration for projects that begin using the
UNIX system on a minicomputer and then outgrow that machine's
capabilities. UNIX systems currently run in multiprocessing environ-
ments on IBM/370 architecture machines, and AT&T 3B20A and 3B5

* AT&T Bell Laboratories.

Co~vrieht O 1984 AT&T. Photo re~roduction for noncommercial use is wrmitted with-
oui payment of royalty provided tdat each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis-
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

computers, but the ensuing discussion applies equally well to other
machine architectures that support multiprocessor environments.

The UNIX systems that were devised for the various multiproces-
sors provide complete transparency to user programmers. That is, all
system calls and commands operate the same way on the multiproces-
sor systems as they do on single-processor UNIX systems. Existing C
programs can be moved from single-processor systems to their multi-
processor versions without recompilation, except for system-depend-
ent code (e.g., the command to determine process status, ps). The
terminal interface, file system format, process hierarchy, and all other
user-visible aspects of the operating system appear identical to those
on a single-processor UNIX system.

For the purposes of this paper, a multiprocessor hardware configu-
ration is one that has two or more processors that share a common
memory, corresponding to what is commonly called a tightly coupled
system. It is distinguished from a loosely coupled system, where each
processor has private memory, and where the processors communicate
using a networking facility instead of shared memory.

Multiprocessor hardware configurations can be further classified by
their symmetry with respect to input/output (110). In an Associated
Processor (AP) configuration, only one processor is capable of doing
I/O operations, while in a true multiprocessor configuration either
processor can do 110. Except as specified, the ensuing discussion
applies to MP and AP configurations.

Another multiprocessor UNIX system1 permits only one processor,
the master, to execute the kernel of the operating system, avoiding
the system data corruption problems described in Section 3.1. That
system has modified the algorithm for scheduling processes to recog-
nize the existence of more than one processor, and it schedules only
user-level processes to the processor not allowed to execute kernel
code, the slave. When a process executing on the slave processor does
a system call, the operating system recognizes that the system call is
originating on the slave processor, suspends the process, and resched-
ules it for the master processor. Since benchmark programs show that
UNIX systems typically spend between 40 and 50 percent of their
time executing operating system code, restricting one processor from
executing kernel code prevents the system from achieving the full
performance potential of the hardware except for specific workloads.
The multiprocessor UNIX systems described in this paper permit all
processors to execute kernel code simultaneously, yielding maximum
efficiency from the hardware configuration.

This paper begins by describing the motivating factors for running
the UNIX system on a multiprocessor, and continues by describing
the special issues posed by multiprocessor configurations. The use of

1734 TECHNICAL JOURNAL, OCTOBER 1984

semaphores to solve the multiprocessing issues is described in some
detail, as is the special consideration given to device drivers. Conclud-
ing sections describe machine-specific issues and system performance.
A basic knowledge of UNIX system internals is assumed.

II. MOTIVATION

UNIX systems are commonly used for software development, where
programmers working on a project must communicate and share data
with each other. But many software development projects, although
they start out small, later outgrow their original computing capacity,
so that a single computer no longer adequately supports all users.

When a project exceeds its machine capabilities, it can either acquire
more machines and try to share the load between them or it can move
up to a larger machine. But getting more machines to share the work
load has several problems:

1. Communication of data across machines incurs high networking
overhead.

2. The network is seldom transparent to the user; that is, users
must understand the machine/project structure.

3. Data are frequently replicated across machines to reduce flow
through the network, but replicated data may be inconsistent because
of concurrent update problems across different machines.

On the other hand, moving a project to larger machines, sometimes
of a different vendor, is frequently expensive in terms of hardware
costs, data migration, and user productivity.

A multiprocessor capability allows a smooth growth path for projects
that can start small with a single processor and, as their computing
requirements expand, can add more processors to form a larger, more
powerful system. Such growth is usually less expensive and less dis-
ruptive to end users than acquiring a new and larger machine.

Another advantage of a multiprocessor system is that it is potentially
more robust. If a hardware failure makes one processor inoperable,
the system can potentially recover from the problem. The users would
not have to take any special action and would not notice any difference
in system services except reduced performance. Diagnosing and fixing
such problems on a multiprocessor UNIX system while the system is
active is still an open problem, so the systems described here require
a system reboot to restore operation. However, they execute in single
processor mode so that failure of one processor does not prohibit
booting and running the system on the other processors.

Ill. SYSTEM CHANCES

3.1 The problem of multiprocessors

The UNIX system was originally developed to run on a single

MULTIPROCESSOR SYSTEMS 1735

processor, and the code assumes that the kernel is never preempted
except for processing of interrupts. Hence, kernel data structures do
not need to be protected unless referenced by an interrupt routine,
and if so, the data can be protected by locking out interrupts. This is
normally done by raising the processor priority level high enough to
prevent the type of interrupt from occurring.

For example, consider the code fragments taken from the functions
getc and p u t c in Fig. 1, functions usually used for manipulating
characters and queues for terminal drivers. Such characters are queued
onto cblocks, and cblocks are chained together to form clists.
The function getc removes a character from a c l i s t , or, more
properly, from the first cblock of the c l i st. If the cb lock contains
no more characters, the cblock is attached to the beginning of a free
list of cblocks, and the c l i st is adjusted accordingly. The function
p u t c places a character onto a c 1 i s t , or, more properly, onto the last
cblock of the c l i s t . If that cblock contains no space for new
characters, a new cblock is removed from the free list of cblocks,
and the c l i s t is adjusted accordingly.

The code fragments in Fig. 1 focus on placing and removing cblocks
from the free list. Suppose a process executes statement 1 of getc but
receives an interrupt before it executes statement 2. If the interrupt
handler executes putc, it will remove the first cb lock from the free
list. When the process resumes control after the interrupt, it executes
statement 2, making the returned cblock the free list header of
cb locks . Unfortunately, the cblock in getc points to the cblock

getc (p)
struct clist *p;
f

struct cblock *cp;

cp->c-next = cfree1ist.c-next; /* 1 * /
cfree1ist.c-next = cp; / * 2 */

putc (c ,P)
struct clist *p:

struct cblock *cp;

sp16 0 ;

cp = cfree1ist.c next;
cfree1ist.c-next-- cp->c-next;
cp->c-next = NULL;

&IOO r

1

Fig. 1-hising processor execution level for single processors.

1736 TECHNICAL JOURNAL, OCTOBER 1984

just removed by putc, which severed its previous connection to the
free list. The result is that the free list contains only one free cblock
and one or more busy cblocks, and the remaining free cbiocks are
inaccessible.

UNIX systems traditionally avoid such problems by raising the
processor execution level to prevent interrupts. In Fig. 1 the function
sp16 raises the processor execution level to six (presumably a level
high enough to prevent interrupts whose handlers call putc), and the
function sp lo lowers it to zero, allowing all interrupts. Since no
interrupts can occur between the calls to sp16 and s p l o in Fig. 1, the
free list cannot be corrupted. Since processes in the kernel cannot be
preempted unless they voluntarily relinquish use of the processor,
raising the processor execution level to prevent interrupts protects all
system data structures.

In the multiprocessor systems described in this paper, however,
raising the processor execution level does not prevent corruption of
system data structures, as all processors can simultaneously execute
kernel code. In the example above, one processor could execute getc,
but its s p l does not necessarily prevent interrupts from occurring on
the other processor, and hence the other processor could execute p u t c
with catastrophic results. Similar corruption could occur without
interrupts: processors could simultaneously write to terminals, execute
putc, and remove the identical cblock from the free list with cata-
strophic results. Therefore, kernel code that references common data
in multiprocessor systems must protect the data from access by other
processors. The mechanism chosen to do this was based on Dijkstra's

Although the use of semaphores is not new to multi-
processor UNIX systems, their use here is more extensive and system
throughput is much higher than reported elsewhere.

3.2 Semaphores

3.2.1 Definition

A semaphore* is an integer-valued data structure on which the
following restricted set of operations can be performed.

init Initialize the semaphore to an integer value.
psema Decrement the value of the semaphore. If the resulting

value is less than zero, then suspend the executing process
and place it on a linked list of processes sleeping on the
semaphore. When awakened, the process priority is set to

* The semaphores being described here are a strictly internal mechanism and have
nothing to do with the user interprocess communication facility of the same name that
is described in Ref. 6.

MULTIPROCESSOR SYSTEMS 1737

vsema

the value supplied as one of the parameters to psema. If
signals are pending against an awakened process, the value
of the priority parameter determines whether they are
deferred or caught.
Increment the value of the semaphore. If the resulting
value is less than or equal to zero, then awaken a process
that suspended itself doing a psema on the semaphore.

cpsema If the value of the semaphore is greater than zero, then
decrement it and return true. Otherwise, leave the sema-
phore unmodified and return false.

Semaphore operations are atomic. That is, if two or more processes
try to do operations on the same semaphore, one completes the entire
operation before the others begin.

3.2.2 Uses of semaphores

To protect a particular resource such as a table or linked list, a
semaphore is associated with that resource and typically initialized to
one when the system is booted. When a process wants to gain exclusive
use of the resource, it does a psema on the semaphore, decrementing
the semaphore value to zero (assuming it was one) but allowing the
process to proceed. The process now has exclusive use of the resource.
If other processes attempt to gain control of the resource, their psema s
will decrement the semaphore value and suspend process execution. If
the value of a semaphore is negative, then its absolute value is equal
to the number of processes that are suspended waiting for that re-
source. When the process that has control of the resource is done with
it, it does a vsema on the semaphore, releasing the semaphore and
awakening a suspended process, if any. The awakened process is now
eligible for scheduling when a processor becomes available and when
no higher priority processes exist. When scheduled, the awakened
process returns from the psema call without knowing that it was
temporarily suspended, and when it finishes with the resource, it
should do a vsema to release the semaphore and to awaken the next
waiting process, if any.

A semaphore that is used to await an event is initialized to zero.
Processes awaiting the event do a psema to suspend themselves until
the event occurs, and processes recognizing the event do a vsema to
awaken sleeping processes. A semaphore that is used to count the
number of resources in the system is initialized to the appropriate
number. When the resource is allocated, the psema decrements the
semaphore value, and when the resource is freed, the vsema increments
the semaphore value, so that it always conforms to the number of
available resources. If the number of available resources drops to zero,

1738 TECHNICAL JOURNAL, OCTOBER 1984

processes will sleep in the psema until another process releases a
resource and does a vsema.

The cpsema operation is used to lock a resource only if it is
immediately available, and other action besides sleeping is taken if
the semaphore is unavailable. This is used in deadlock prevention and
will be explained in Section 3.2.3.

Single processor UNIX systems use the sleep and wakeup mecha-
nisms for process synchronization to voluntarily suspend and resume
execution waiting for an event to occur. When a single processor
system does a wakeup call on a resource, all processes sleeping for that
resource are awakened. Often the resource must be used exclusively,
so all but one of the awakened processes will test the resource, find it
busy, and again go to sleep. In muitiprocessor systems on the other
hand, it is undesirable to awaken all sleeping processes because all
such processes could not assume exclusive access to system structures.
So a vsema only awakens a single process that will in turn awaken
another sleeping process. A process that executes a psema knows that
it has control of the resource and will not fall asleep again waiting for
the resource to become ready.

The kernel of the multiprocessor systems has been modified to
account for the change in semantics of sleeping. Calls to the psema
and vsema functions replace calls to the old sleep and wakeup
functions, as there is one set of process synchronization primitives
(semaphores) instead of two.

3.2.3 Coding with semaphores

A serious problem in the use of semaphores is process deadlock.
Figure 2 gives an example of deadlock where two processes, A and B,
execute the shown code sequences.

At time TI, process A has locked semaphore sema 1 and process B
has locked semaphore sema2. Process A now attempts to lock sema-
phore sema2 and will be suspended because process B has control of
the semaphore. Process B attempts to lock semaphore sema I but will
be suspended because process A has control of it. Both processes will

PROCESS A

psema (semal, pri2);

PROCESS B

Fig. 2-Example of semaphore deadlock.

TIME

MULTIPROCESSOR SYSTEMS 1739

be suspended indefinitely because each is waiting for a resource that
the other one has.

To avoid deadlocks, an ordering is imposed on the various resources
in the system. All processes that simultaneously lock more than one
resource do so in the prescribed order to guarantee that no deadlock
can occur. More sophisticated schemes for deadlock detection and
resolution would complicate the system code and slow down perform-
ance. Occasionally it is still necessary for a process to lock its sema-
phores in an order different from the prescribed order. For example,
the system usually locks inodes before text slots since the exec
system call first accesses the file before it determines whether or not
to allocate a text slot. But the algorithm for cleaning swap space of
unused program text first searches the text table and only sometimes
needs to access and hence lock the inode. In such cases the process
must use a cpsema to lock the second semaphore.

If the cpsema fails, then the process must take some other action
to avoid the deadlock, usually releasing the semaphore it already holds
and awaiting an event before attempting to execute the code again.
Figure 3 contains code that corrects the potential deadlock of Fig. 2.

3.2.4 Semaphores in interrupt routines

Interrupt handlers usually share kernel data structures with higher-
level kernel routines such as the getc and putc routines for terminal
drivers of Section 3.1, so semaphore protection is required at the
interrupt handler level as well as the rest of the kernel. It is preferable
not to sleep in an interrupt routine for two reasons. First, it is desirable
to service the interrupt as quickly as possible. Second, the process that
would be suspended is often not related to the interrupt being proc-
essed. So, interrupt handlers use cpsemas instead of psemas and take
other action if the semaphore is locked elsewhere. Section 3.5 gives
more detail on driver interrupt handlers.

PROCESS A PROCESS B

psema (semal, pril) ;
loop :

TIME

I

if (! cpsema(sema1)) (
vsema (sema2) ;
/*other corrective action*/

got0 loop;

Fig. 3-Example of deadlock avoidance.

1740 TECHNICAL JOURNAL, OCTOBER 1984

3.2.5 Semaphores and performance

The use of semaphores must be carefully chosen to balance fre-
quency of semaphore operations versus the "granularity" of semaphore
protection, that is, how much data are protected by a single semaphore.
If a semaphore locks a large set of resources such as the entire buffer
pool, or if it is held for a long time, then many other processes may be
suspended while waiting for the semaphore to unlock, delaying process
flow through the system and resulting in excessive context switching.
Contention for a semaphore can be measured by examining the mean
number of processes sleeping on the semaphore and by examining the
degree of contention for the semaphore, that is, the ratio of how
frequently processes were denied access to the semaphore to how
frequently they were attempted. If either of the above numbers is
much higher than for other semaphores in the system, then semaphore
usage in the system is unbalanced and new semaphores should be
encoded to reduce semaphore contention.

Semaphore contention may be reduced by replacing a single sema-
phore with a set of semaphores. For example, suppose that there is a
linked list of resources that must be searched, and items must be
added to or deleted from the list. The list could be locked by a single
semaphore, but if the list is large and frequently searched, processes
may contend for the semaphore, and the semaphore could prove to be
a system bottleneck. If so, performance can be improved by replacing
the single linked list with a set of hash buckets, each heading a linked
list containing those elements from the original list that hash to the
same value. Instead of having one lock for the entire list, each hash
bucket can have a separate lock spreading the original load over a set
of semaphores and reducing the contention for each one. The buffer
pool for example, contains one semaphore for each hashed (by device
and block number) queue of buffers, one semaphore for each buffer,
and one semaphore for the free list of buffers. Although the semaphore
for the free list has one of the highest contention rates in the system,
system throughput is much better than if there were only one sema-
phore for the entire buffer pool. Unfortunately there is no satisfactory
way to divide the free list into separate lists with separate semaphores
that does not adversely affect performance of the buffer algorithm.

Another issue in semaphore performance is whether a psema or a
cpsema should be used to lock the semaphore; that is, if the semaphore
is locked, whether the process should sleep until the semaphore be-
comes free or whether the process should execute a tight loop, attempt-
ing to lock the semaphore until it finally succeeds (see Fig. 4).

The issue is decided on a case by case analysis of the semaphores,
comparing the average amount of time the semaphore is locked to the

MULTIPROCESSOR SYSTEMS 1741

Fig. 4-Sleep lock and spin lock.

time it takes to do a context switch. The results depend strongly on
CPU performance characteristics.

3.2.6 Semaphore debugging

In spite of the best attempts at following ordering rules, deadlocks
occur in multiprocessor systems, especially in early development
stages. Deadlocks can be difficult to find because by the time the
symptom appears (a stopped system), the cause of the problem has
long since passed. To find these problems more easily, the system logs
all semaphore operations. The log is a circular buffer where entries
for each semaphore operation contain the type of operation performed,
the text address where the operation was performed, the address of
the semaphore, the process number, the semaphore value, and other
useful information. The semaphore log gives a useful trace of processes
as they execute kernel routines. Logging may be disabled when com-
piling the system or, to a lesser extent, while the system is executing
to improve system performance.

In addition to the semaphore log, an extra field in each semaphore
contains the process number of the last process that gained control of
the semaphore. The semaphore log and the process number field in
the semaphore structure are useful in diagnosing bugs in the multipro-
cessor system that never occur in a single processor system.

3.3 Example

Consider the code in Fig. 5 for the xumount function, called when
unmounting device dev, that frees t e x t slots belonging to the device.
Although unmounting a device and calling xumount is a rare event in

xumount (dev)
register dev-t dev:

f

register struct inode *ip;
register struct text *xp;
register count = 0;

for (xp = &text[Ol; xp < (struct text *)v.ve-text; xp++)
if ((ip = xp->X iptr) == NULL) / * not in use */

continue;
if (dev != NODEV & & dev != ip->i-dev) / * on device dev*/

continue;
if (xuntext (xp))

count++;

Fig. 5-Single processor code for xumount.

1742 TECHNICAL JOURNAL, OCTOBER 1984

the lifetime of a system, the example illustrates the techniques for
converting the code of a single processor UNZX system to a multipro-
cessor version. The function examines every text table entry to see if
it is in use and if the file resides on the device dev. If SO, it calls
xuntext to free the swap space and free the text table slot.

Figure 6 shows the multiprocessor version of the xumount function.
After the initial checks to ensure that the text table slot is in use and
that its file is on the correct device, the semaphores for the inode and
text slot are locked. The semaphores .could be locked before the
checks are done, but because psema and vsema are expensive opera-
tions, and because the probability that a text entry will be cleaned
up here is low, the implementation is more efficient as shown. But
until the text and inode slots are locked, it is possible for a process
on another processor to change the inode pointer of the text slot or
the device number of the inode if either is freed. Therefore, the code
must check the conditions for calling xuntext again, and if either
check fails, it must release the locked semaphores.

The inode semaphore is locked before the text semaphore, follow-
ing the protocol established by the exec system call, where the inode
is found first and locked before the text slot is allocated. If either
psema call results in the process going to sleep, the process will later
be rescheduled to run at priority PSWP.

Execution of the xumount function does not guarantee that the
text table is free of program text from device dev, since a process
executing on another processor could allocate a text slot that xumount

xumount (dev)
register dev-t dev;

1
register struct inode *ip;
register struct text *xp;
register count = 0;

for (xp = &text[Ol; xp < (struct text*)v.ve-text;xp++)
if ((ip = xp->x-iptr) == NULL)

contmue;
if (dev 1 = NODEV && dev !- ip->i-dev)

continue;
psema(&ip->i-lock, PSWP);
psema(&xp->x lock, PSWP);
if ((ip != xz->x-iptr)

I (dev != NODEV && dev I - ip->i-dev))

vsema(6xp->x lock);
vsema (rip->iIlock) ;
continue;

1
If (xuntext(xp)

count++;
vseraa(&xp->x lock);
vsema (&ip->iIlock) ;

1
ieturn (count) ;

Fig. 6-Multiprocessor code for xumount.

MULTIPROCESSOR SYSTEMS 1743

already passed in its search for program text from the device. The
calling code (sumount, not shown) prevents allocation of t e x t slots
to make such a guarantee.

3.4 Process execution

Processes executing in a multiprocessor environment are not aware
of how many processors are running in the system. The only interac-
tion between processes because of the multiprocessor environment is
contention for semaphores, but subject to that restriction, each pro-
cessor independently executes processes in both kernel and user mode,
not in a master/slave fashion. Each processor schedules processes
independently from a global set of runnable processes using conven-
tional UNIX system scheduling algorithms. If a process is not sched-
uled by one processor, it is eligible for scheduling by the other proces-
sors. Multiple processes may be active in the kernel on separate
processors, except for interaction of system semaphores. In particular,
system calls give identical results in single or multiprocessor systems.

The major states of a process are
1. Running on a processor
2. Ready to run and loaded in main memory
3. Ready to run but not loaded in main memory
4. Sleeping and loaded in main memory
5. Sleeping and not loaded in main memory
6. Zombie (exited, waiting for its parent to acknowledge).
In the process table of single processor UNIX systems, no flag

distinguishes the first state, currently running on a processor, from
the second state, ready to run and loaded in main memory. But in
multiprocessor UNIX systems, a new flag shows that a process is
currently running on a processor. Without the explicit indication, it
would be possible to schedule a process for simultaneous execution on
multiple processors, or swap out a process currently executing on a
processor, both clearly undesirable events.

3.5 Device drivers

In principle, there is no difference between device drivers and other
parts of the operating system as far as conversion for running on a
multiprocessor is concerned. Data structures must be locked, sleep
and wakeup calls must be replaced by psema and vsema calls, and
special consideration must be given to interrupt routines, as described
previously.

But more than half of the the UNIX operating system currently
consists of device drivers, and new drivers are being added at an
accelerating rate to support new peripherals and to provide new or
enhanced services. In practice, therefore, the number and volatility of

1744 TECHNICAL JOURNAL, OCTOBER 1984

the drivers make it difficult to change them for multiprocessor systems
and keep them up to date with changes made for other UNIX systems,
so it is important to keep most driver code identical over all imple-
mentations. Three changes had to be made to the system to allow this.

First, drivers are locked before they are called. Driver calls are table
driven via the bdevsw and cdevsw tables, and the drivers are locked
and unlocked around the driver calls using driver semaphores added
to the tables. Various methods of driver protection are encoded based
on system configuration. The levels of protection vary from no protec-
tion (protection is then hard coded in the driver), to forcing the process
to run on a particular processor (useful in AP configurations, where
only one processor can do the I/O), to locking per major or per minor
device type. Each call to a driver routine is now preceded by a call to
a driver lock routine and followed by a call to a driver unlock routine.

The second change was to reimplement sleep and wakeup subrou-
tines that could be called by device drivers, without changing the
original driver code. Since the old UNIX operating system sleep
routine uses arbitrary addresses in memory to sleep on, the new
routines use hash lists of semaphores to actually suspend the process,
and the address being slept on (a sleep parameter) is stored in the
process table. Since a semaphore already heads a linked list of all
processes suspended on the semaphore, the wakeup routine has only
to search this list to find all processes to awaken. The sleep routine
unlocks the driver semaphore so that other processes can access the
driver while the original process sleeps, and it relocks the semaphore '
when it awakens from the sleep. The sleep and wakeup routines are
intended to be used only from drivers. The main kernel code still uses
psema and vsema directly.

In addition to the locking before calling driver routines, locking
must also take place when handling interrupts, since the interrupt is
no longer blocked by raising the processor execution level (see Section
3.1). Before the device interrupt handler is invoked, the semaphore
for the device (if any) is locked via cpsema. If the lock succeeds, the
interrupt gets handled; if the lock fails, the interrupt is queued but
not handled immediately. When the process that currently has the
semaphore locked is finished with the semaphore, it handles queued
interrupt requests.

The above discussion does not hold for all multiprocessor UNIX
systems, IBM/370 for example (see Section IV), but is the culmination
of several years of evolution and represents the current state of
development.

3.5.1 AP systems

As we discussed in Section I, AP systems do all I/O from one

MULTIPROCESSOR SYSTEMS 1745

processor, whereas MP systems can do 110 from all processors. Since
it is desirable that the kernel and drivers have no knowledge of whether
they are running on an AP or an MP system, the information is
encoded in tables a t the lowest software levels that send the direct
memory access requests out to the hardware on AP systems. If the
process is on the wrong processor, a context switch is done, and a
special scheduling parameter forces the process onto the correct pro-
cessor.

IV. IBM SPECIFIC ISSUES

The UNIX system for the IBM/370 does not run directly on IBM
hardware, but is a two-level system where the upper level consists of
UNIX system code, and the lower level consists of the resident
supervisor of the Time-Sharing System (TSS). The resident supervisor
handles all machine-dependent I/O operations, memory management
(including paging), process scheduling, and hardware error handling.
The UNIX system layer implements all UNIX system calls as well as
the file system structure. The interface between the two layers consists
of supervisor calls from the UNIX system to the resident supervisor,
and pseudo-interrupts from the resident supervisor up to the UNIX
system.

The major advantages of this approach are that the UNIX system
on the IBM/370 does not have to concern itself with IBM hardware
architecture that may change from processor to processor, and support
for IBM peripherals comes for free, both via the resident supervisor.
The disadvantages are that a performance penalty is paid in commu-
nication between the two layers, and that the system algorithms
employed in the resident supervisor are not necessarily optimal for
the UNIX operating system. For example, the semaphore operations
are enhancements to enqueuejdequeue operations that previously
existed in TSS and are much more general than required by the UNIX
system.

V. 38 COMPUTER SPECIFIC ISSUES

The 3B family of machines is microcoded, so new semaphore instruc-
tions were encoded to boost performance of multiprocessor systems.
The design of the instructions has been optimized for the most
frequently occurring cases, namely, that psema usually finds the
semaphore unlocked, and that vsema usually need not awaken sleeping
processes. To this end, the instructions operate on registers containing
the semaphore address and, if necessary, the address of a function
that puts a process to sleep (for psema) or awakens a process sleeping
on the semaphore (for vsema). Use of the new microcoded instructions

1746 TECHNICAL JOURNAL, OCTOBER 1984

boosted overall system performance by 30 percent compared to a
system that implemented semaphore operations in software.

A 3B hardware feature causes a problem in the implementation of
a paging system for a multiprocessor configuration. Paging systems
map the virtual address space of a process to physical pages in memory.
The tables that define the mapping reside in memory, but for better
performance they also reside in a special hardware cache called the
Address Translation Buffer (ATB). Each processor has a private ATB
and cannot flush the contents of the other processor's ATB. However,
processes executing from shared text or using the shared memory
interprocess communication facility (see Ref. 1) can share portions of
their virtual address space. So the two processors' view of physical
memory can diverge if one processor changes its address mapping,
while the other processor continues to use the old mapping still
contained in its ATB.

The paging problem is solved by observing the following protocol:
1. A processor flushes the user portion of its ATB during every

context switch (this is done in systems without paging anyway, since
the address mapping of the previously running process is invalid for
the currently running process).

2. Kernel pages are never swapped from main memory.
3. Pages used by a process currently running on another processor

cannot be swapped.
Since the paging process cycles through the process table swapping

the oldest pages on a per-process basis, it is easy to satisfy the third
rule above, provided the running process uses no shared text or shared
data. If the running process does use shared text or shared data, the
paging process verifies that the page to be swapped is not shared, or
else it does not swap it.

VI. PERFORMANCE

Many UNIX operating system algorithms that use linear searches
of system tables did not scale well from single processor to multipro-
cessor systems for two reasons. First, multiprocessor systems have
greater capacity than their single processor counterparts, so systems
tables such as the inode table and the process table have correspond-
ingly more active entries, and consequently, searching for particular
entries takes more time. Second, the system tables must be frequently
locked so that processes accessing them find a consistent copy until
they have finished using them. The two reasons combined imply that
the system will spend more time searching the tables, locking them
out from other processes and causing heavy contention for the table
semaphores.

To avoid such problems, many algorithms were redesigned to avoid

MULTIPROCESSOR SYSTEMS 1747

linear searches of system tables. For instance, inodes are hashed by
device number and inode number to a hash chain, and search algo-
rithms that formerly searched the entire inode table for an inode
now search for the inode on the hash chain, a much shorter search.
Further, processes do not contend for a single semaphore for the
inode table, but rather for a greater number of semaphores for the
hash chains (see Section 3.2.5).

The process table is another example where linear searches were
eliminated to gain performance. An exiting process, for example, finds
all its "children" and reassigns their "parent" process identifier to be
one, and it also sends a "death of child" signal to its parent. Instead
of searching the entire process table for parent and child processes,
the process structure now contains parent, child, and sibling pointers
so that the search routines traverse a tree.

Benchmarking results show that two-processor UNIX systems run
about 1.7 times as fast as a single-processor system. That is, 1.7 times
as many processes are handled in the same amount of time as are
handled on single-processor systems. The figures are based on bench-
mark programs that run job mixes typical of those found on UNIX
systems, although CPU-bound job mixes run slightly faster, and I/O-
bound job mixes run slightly slower. Performance enhancements are
still being made and are expected to produce further improvements in
these figures. Contention for semaphores is low, as less than 5 percent
of the psema operations on lock semaphores result in the process going
to sleep. By running the code for the multiprocessor system on a single
processor and comparing its performance to that of a single-processor
system running original UNIX system code, the overhead of sema-
phore operations was found to be less than 5 percent.

The multiprocessor system can be configured to run on a single
processor by turning on a flag when compiling the system. The flag
controls a macro that turns off selected semaphore operations. Per-
formance of such a system is equal to that of regular single-processor
systems. This has important ramifications for system support because
one set of source code runs all system configurations.

VII. CONCLUSIONS

This paper has described the major problem of implementing mul-
tiprocessor UNIX systems, namely, concurrent destructive access of
kernel data structures. It has discussed how to avoid concurrency
problems in the kernel by using semaphores, and has outlined a scheme
that allows drivers to stay common across single-processor and mul-
tiprocessor implementations. The resulting multiprocessor UNIX sys-
tems are functionally equivalent to single-processor UNIX systems

1748 TECHNICAL JOURNAL, OCTOBER 1984

and provide 70 percent better throughput for two-processor configu-
rations than their single-processor counterparts do.

The techniques outlined in this paper are applicable to all UNIX
systems, independent of the machine on which they run. They are
particularly applicable to microprocessors running the UNIX system,
because they allow users to increase their computing power by adding
more processors to their system.

VIII. ACKNOWLEDGMENTS

We would like to thank the following people, who haye worked on
the multiprocessing UNIX system projects: Bob Bison, Yuhlan Cho,
Hugh Devore, Bob Earnst, Bill Felton, Ezra Goldman, Clyde Imagna,
Robert Kennedy, Jeff Kinker, Steve Kiseli, Bart Prieve, Tom Rich-
ards, Doris Ryan, Tom Schlagel, Jeff Smits, Paul Swigert, Dan Tier-
nan, Tom Vaden, Mike Wilde, and Robert Zarrow. Special thanks to
Ian Johnstone for his work on both projects.

REFERENCES

1. G. H. Goble and M. H. Marsh, "A Dual Processor VAX 11/780," Purdue University
Technical Report, TR-EE 81-31, Se tember 1981.

2. E. W. Dijkstra "Solution of a ~robkm in Concurrent Programming Control,"
CACM, 8, No. 9 (September 1965), pp. 569-78.

3. E. W. Dijkstra "Coo erating Sequential Processes," Programming Languages, F.
Genuys, ed., New Jerk: Academic Press, 1968, pp. 43-112.

4. E. W. Di'kstra "The Structure of T.H.E. Multiprogramming System," CACM, 11,
No. 5 (~ a y 1968) p .341-6

5. J. A. Hawley and ~. 5. ~ e ~ e r "MUNIX, A Multiprocessing Version of UNIX,"
M.S. Thesis, Naval Postgraduate School, Monterey, California, 1975.

6. UNZX System Users Manual, Release 5.0, June 1982, Bell Laboratories, Inc.

AUTHORS
Maurice J. Bach, B.A. (Physics), 1973, Yeshiva University; Ph.D. (Computer
Science), 1979, Columbia University; AT&T Bell Laboratories, 1977-. At
AT&T Bell Laboratories Mr. Bach first worked on database translation
systems. Before joining the UNIX Systems Development department in 1982,
he worked on experimental multi-microprocessor systems. Member, ACM.

Steven J. Buroff, B.S. and M.S. (Electrical Engineering), 1968 and 1969,
respectively, Ph.D. (Computer Science), 1977, Illinois Institute of Technology;
AT&T Bell Laboratories, 1977-. Mr. Buroff worked on the first porting of a
UNIX system to a multiprocessor. He has also been involved with other
multiprocessor UNIX system implementations and has recently helped design
a new processor architecture. Mr. Buroff is currently working on converting
the UNIX system from a swapping to a paging system.

MULTIPROCESSOR SYSTEMS 1749

	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf

