
Virtual Memory Architecture in SunOS

Robert A. Gingell
Joseph P. Moran

William A. Shannon

Sun Microsystems, Inc.
2550 Garcia Ave.

Mountain View, CA 94043

ABSTRACT

A new virtual memory architecture for the Sun implementation of theUNIX†
operating system is described. Our goals included unifying and simplifying the concepts
the system used to manage memory, as well as providing an implementation that fit well
with the rest of the system. We discuss an architecture suitable for environments that
(potentially) consist of systems of heterogeneous hardware and software architectures.
The result is a page-based system in which the fundamental notion is that of mapping
process addresses to files.

1. Introduction and Motivation

The UNIX operating system has traditionally provided little support for memory sharing between
processes, and no support for facilities such as file mapping. For some communities, the lack of such facil-
ities has been a barrier to the adoption ofUNIX, or has hampered the development of applications that
might have benefited from their availability. Our own desire to provide a shared libraries capability has
provided additional incentive for us to explore providing new memory management facilities in the system.

We have also found ourselves faced with having to support a variety of interfaces. These included
the partially implemented interfaces we have had in our 4.2BSD-derived kernel [JOY 83] and those specified
by AT&T for System V [AT&T 86]. Aggravating these situations were the variations on those interfaces
being developed by a number of vendors that were incompatible with or extended the original proposals.
Also, entirely new interfaces have been proposed and implemented, most notably in Carnegie-Mellon’s
MACH [ACCE 86]. There has been no market movement to suggest which, if any, of these would become
dominant, and in some cases a specific interface lacked an important capability (such as System V’s lack of
file mapping).

Finally, our existing implementation is too constraining a base from which to provide the new func-
tionality we wanted. It is targeted to traditional models ofUNIX memory management and specifically
towards the hardware model of the VAX.‡ The work required to enhance the current implementation
appeared to be adding its own new wart to an increasingly baroque implementation, and we were con-
cerned for its long-term maintainability.

Thus, we decided to create a new Virtual Memory (VM) system for Sun’s implementation ofUNIX,
SunOS. This paper describes the architecture of this new system: the goals we had for its design and the
constraints under which we operated, the concepts it embodies, the interfaces it offers theUNIX application
programmer and its relationship to the rest of the system. Although our primary intent is to discuss the
architectural issues, information relating to the project and its implementation is provided to add context to
the presentation.
������������������
† UNIX is a trademark of Bell Laboratories.
‡ VAX is a trademark of Digital Equipment Corporation

1

2. Goals/Non-Goals

Beyond the previously mentioned functional issues of memory sharing and file mapping, our goals
for the new architecture were:

· Unify memory handling. Our primary architectural goal was to find the general concepts
underlying all of the functions we wanted to provide or could envision, and then to provide
them as the basis for all VM operations. If successful, we should be able to reimplement exist-
ing kernel functions (such asfork and exec) in terms of these new mechanisms. We also
hoped to replace many of the existing memory management schemes in the kernel with facili-
ties provided by the new VM system.

· Non-kernel implementation of many functions. If we were successful in identifying and
providing the right mechanisms as kernel operations, then it seemed likely that many functions
that otherwise would have had to be provided in the kernel could in fact be implemented as
library routines. In particular, we wanted to be able to provide capabilities such as shared
libraries and the System V interfaces asapplications of these basic mechanisms.

· Improved portability. The existing system was targeted towards a specific machine architec-
ture. In many cases, attributes of this architecture had crept cancerously through the code that
implements software-defined functionality. We therefore wanted to describe software-defined
objects using data structures appropriate to the software, and relegate machine-dependent code
to a lower system layer accessed through a well-defined and narrow interface.

· Consistent with environment. We wanted our system to fit well with theUNIX concepts we
were not changing. It would not be acceptable to build the world’s most wonderful memory
management system if it was completely incompatible with the rest of the system and its
environment. Particularly important to us in this respect was the use of the file system as the
name space for the objects supported by the system. Moreover, we sell systems that are
intended to operate in highly networked environments, and thus we could not create a system
that presented barriers to the networked environment.

In addition to thesearchitectural goals, there were other goals we had for the project as a whole. These
project goals were:

· Maintain performance. Although it is always desirable to tag a project with the label
‘‘improves performance’’, we chose the apparently more conservative goal of simply provid-
ing more functionality for the same cost in terms of overall system performance. While the
new functionality might enable increasedapplication performance, the performance of the sys-
tem itself seemed uncertain. Further, when one considers that we replaced a mature imple-
mentation with one which has not been subjected to several years of tuning, getting back to
current performance levels appeared to be an ambitious goal, something later experience has
proven correct.

· Engineer for the future. We wanted to build an implementation that would be amenable to
anticipated future requirements, such as kernel support for ‘‘lightweight’’ processes [KEPE 85]
and multiprocessors.

When engaging in a large project, it is often as important to know what one’s goals arenot. In the
architectural arena, our principal ‘‘non-goals’’ were:

· New external interfaces. As previously noted, a large number of groups were already work-
ing on the refinement and definition of interfaces. To the extent possible, we wanted to use
such interfaces as had already been defined by others, and to provide those that were
sufficiently defined to be implementable and that the market was demanding.

· Compatible internal interfaces. An unfortunate characteristic ofUNIX is the existence of
programs that have some understanding of the system’s internals and use this information to
rummage through the kernel by reading the memory device. The changes to the system we
contemplated clearly made it impossible for us to try to support these programs, and thus we
decided not to fool ourselves into trying.

2

Relevant project non-goals included:

· Pageable kernel. We did not intend to produce an implementation in which the kernel itself
was paged− beyond a general desire in principle for the kernel to use less physical memory,
we would have satisfied no specific functional goal by having the kernel pageable. However,
it has turned out that a considerable portion of the memory that was previously ‘‘wired down’’
for kernel use is in fact now paged, although kernel code remains physically locked.

· Massive policy changes. Our interests lay in changing the mechanisms and what they pro-
vide, not in the policies by which they were administered. Although we would eventually like
to support an integrated view of process and memory scheduling using techniques such as
working set page replacement policies and balance set scheduling, we decided to defer these to
future efforts.

3. Constraints

Working within the framework of an existing system imposed a number of constraints on what we
could do. The constraints were not always limits on our flexibility; in fact, those reflecting specific custo-
mer requirements provided data that guided us through a number of design decisions. A major constraint
was that of compatibility with previous versions of the system− ultimately, compatibility drove many deci-
sions.

One such decision was that the new system would execute existinga.out files. This was necessary to
preserve the utility of the programs already in use by customers and third parties. An important implication
is that the system must provide a binary-compatible interface for existing programs, which means that
existing system calls that perform memory management functions must continue to work. In our case, this
meant supporting our partial implementation of the 4.2BSDmmap(2) system call, which we used to map
devices, such as frame buffers, into a process’s address space.

Although the system had to be binary-compatible, we did not feel constrained to leave it source-
compatible, nor to usemmap as the principal interface to the memory management facilities of the system.
Users with programs that used interfaces we changed in this manner would have to change their programs
the next time they compiled them, but they would not be forced to recompile just to install and continue
operating on the new system.

A wide variety of customer requirements implied that the interfaces we would offer would have to
present very few constraints on a process’s use of its address space. Some applications wanted to manage
their address space completely, including the ability to assign process addresses for objects and to use a
large, sparsely populated address space. Our own desire to build a base on which many different interfaces
could be easily constructed suggested that we wanted as much flexibility as possible in user level address
space management. However, other factors and requirements suggested that the system should also be able
to control many details of an address space. One such factor was the introduction of a virtual address
cache in the Sun-3/200 family of processors, where system control of address assignment would have a
beneficial impact on performance. We also wanted to use copy-on-write techniques to enhance the level of
sharing in the system, and to do this efficiently required page-level protection.

4. New Architecture: General Concepts

This section describes in general terms the abstractions and properties of the new VM system, and
some reflections on the decisions that led to their creation. In many cases, our decisions were not based on
obvious considerations, but rather ‘‘fell out’’ of a large number of small issues. Although this makes the
decisions more difficult to explain, the process by which they were reached increased our confidence that,
given our goals and constraints, we had in fact reached the best conclusion.

4.1. Pages vs. Segments

Our earliest decision was that the basic kernel facilities would operate on pages, rather than seg-
ments. The major factors in this decision included:

· compatibility with current systems (the 4.2BSDmmap is page-based);

3

· implementing efficient copy-on-write facilities required maintenance of per-page information
anyway;

· pages appeared to offer the greatest opportunity to satisfy customer requirements for flexibil-
ity; and

· segments could be built as an abstraction on top of the page-based interface by library routines.

The major advantage to a segment-based mechanism appeared simply to be that it was a ‘‘better’’ pro-
gramming abstraction. Since we could still build abstraction from the page-based mechanisms, and in fact
gained some flexibility in building different forms of the abstraction as libraries, providing segments
through the kernel appeared to offer little benefit and possibly even presented barriers to accomplishing
some of our goals.

Although we believed we could gain the architectural advantages of segments through library rou-
tines built on our page-based system, another potential advantage to a segment-based system was the
opportunity to implement a compact representation for a sparsely populated address space. However, since
we needed per-page information to implement per-page copy-on-write and perform other physical storage
management, at the very least we would end up with a mix of page- and segment-oriented data structures.
We recognized that we could keep the major implementation advantage of a segment-based system, i.e.,
the concise description of the mapping for a range of addresses, by viewing it as an optimization (a sort of
run-length encoding) of the per-page data structure (a similar scheme is used in MACH.)

4.2. Virtual Memory, Address Spaces, and Mapping

The system’svirtual memory consists of all its available physical memory resources. Examples
include file systems (both local and remote), pools of unnamed memory (also known asprivate or
anonymous storage, and implemented by the processor’s primary memory andswap space), and other ran-
dom access memory devices. Named objects in the virtual memory are referenced through theUNIX file
system. This does not imply that all file system objects are in the virtual memory, but simply that all
named objects in the virtual memory are named in the file system. One of the strengths ofUNIX has been
the use of a single name-space for system objects, and we wished to build upon that strength. Some objects
in the virtual memory, such as process private memory and our implementation of System V shared
memory segments, do not have names. Although the most common form of object is theUNIX ‘‘regular
file’’, previous work on SunOS has allowed for many different implementations of objects, which the sys-
tem manipulates as an abstraction of the originalUNIX inode, called avnode [KLEI 86].

A process’saddress space is defined by mappings onto the address spaces of one or more objects in
the system’s virtual memory. As previously discussed, the system provides a page-based interface, and
thus each mapping is constrained to be sized and aligned with the page boundaries defined by the system
on which the process is executing. Each page may be mapped (or not) independently, and thus the pro-
grammer may treat an address space as a simple vector of pages. It should be noted that the only valid pro-
cess address is one which is mapped to some object, and in particular there is no memory associated with
the process itself− all memory is represented by virtual memory objects.

Each object in the virtual memory has anobject address space defined by some physical storage, the
specific form being object-specific. A reference to an object address accesses the physical storage that
implements the address within the object. The virtual memory’s associated physical storage is thus
accessed by transforming process addresses to object addresses, and then to the physical store. The
system’s VM management facilities may interpose one or more layers of logical caching on top of the
actual physical storage used to implement an object, a fact that has implications forcoherency, discussed
below.

A given process page may map to only one object, although a given object address may be the sub-
ject of many process mappings. The amount of the object’s address space covered by a mapping is an
integral multiple of the page size as seen by the process performing the mapping. An important charac-
teristic of a mapping is that the object to which the mapping is made is not required to be affected by the
mereexistence of the mapping. The implications of this are that it cannot, in general, be expected than an
object has an ‘‘awareness’’ of having been mapped, or of which portions of its address space are accessed
by mappings; in particular, the notion of a ‘‘page’’ is not a property of the object. Establishing a mapping

4

to an object simply provides thepotential for a process to access or change the object’s contents.

The establishment of mappings provides anaccess method that renders an object directly addressable
by a process. Applications may find it advantageous to access the storage resources they use directly rather
than indirectly throughread andwrite. Potential advantages include efficiency (elimination of unnecessary
data copying) and reduced complexity (e.g., updates changed to a single step rather than aread, modify
buffer, write cycle). The ability to access an object and have it retain its identity over the course of the
access is unique to this access method, and facilitates the sharing of common code and data.

It is important to note that thisaccess method view of the VM system does not directly provide shar-
ing. Thus, although our motivations included providing shared memory, we have actually only provided
the mechanisms for applications tobuild such sharing. For the system to provide not only an access method
but also thesemantics for such access is not only difficult or impossible, it is not clear that it is the correct
thing to do in a highly heterogeneous environment. However, useful forms of sharing can be built in such
environments, as the previous mechanisms for sharing in the kernel (such as the shared program text and
file data buffer cache) have been subsumed by kernel programming building on top of these mechanisms.

4.3. Networking, Heterogeneity, and Coherence

Many of the factors that drove our adoption of the access method view of a VM system originated
from our goal of providing facilities that ‘‘fit’’ with their expected environment. A major characteristic of
our environment is the extensive use of networking to access file systems that would be part of the system’s
virtual memory. These networks are not constrained to consist of similar hardware or a common operating
system; in fact, the opposite is encouraged. Making extensive assumptions about the properties of objects
or their access creates potentially extensive barriers to accommodating heterogeneity. These properties
include such system variables as page sizes and the ability of an object to synchronize its uses. While a
given set of processes mayapply a set of mechanisms to establish and maintain various properties of
objects, a given operating system should notimpose them on the rest of the network.

As it stands, the access method view of a virtual memory maintains the potential for a given object
(say a text file) to be mapped by systems running our memory management system but also accessed by
systems for which the notion of a virtual memory or storage management techniques such as paging would
be totally foreign, such as PC-DOS. Such systems could continue to share access to the object, each using
and providing its programs with the access method appropriate to that system. The alternative would be to
prohibit access to the object by less capable systems, an alternative we find unacceptable.

A new consideration arises when applications use an object as a communications channel, or other-
wise attempt to access it simultaneously. In addition to providing the mapping functions described previ-
ously, the VM management facilities also manage a storage hierarchy in which the processor’s primary
memory is often used as a cache for data from the virtual memory. Since the system cannot assume either
that the object will coordinate accesses to it, nor that other systems will in fact cooperate with such coordi-
nation, it does not attempt on its own to synchronize the ‘‘virtual memory cache’’ it maintains. This is not
to say that such objects can not exist, nor that systems will not cooperate; simply thatin general the system
can not make such an assumption. Even within a single system, the sharing that results is a consequence of
the system’s attempt to use its cache resources efficiently, not part of its defined functionality.

However, the lack of cache synchronization is not the limitation it might first appear. Applications
that intend to share an object must employ a synchronization mechanism around their access and this
requirement is independent of the access method they use. The scope and nature of the mechanism
employed is best left to the application to decide. While today applications sharing a file object must access
and update it indirectly usingread andwrite, they must coordinate their access using semaphores or file
locking or some application-specific protocol. In such environments, either caching is totally disabled
(resulting in performance limitations) or the applications must employ a function such asfsync to ensure
that the object is updated. Coherency of shared objects is not a new issue, and the introduction of a new
access method simply exposes a new manifestation of an old problem. All that is required in an environ-
ment where mapping replacesread andwrite as the access method is that an operation comparable tofsync
be provided.

5

Thus, the nature and scope of synchronization over shared objects is something that is application-
defined from the outset. If the system attempted to impose any automatic semantics for sharing, it might
prohibit other useful forms of mapped access that have nothing whatsoever to do with communication or
sharing. By providing the mechanism to support coherency, and leaving it to cooperating applications to
apply the mechanism, our design meets the needs of applications without providing barriers to hetero-
geneity. Note that this design does not prohibit the creation of libraries that provide coherent abstractions
for common application needs. Not all abstractions on which an application builds need be supplied by the
‘‘operating system’’.

4.4. Historical Acknowledgements

Many of the concepts we have described are not new. MULTICS [ORGA 72] supported the notion of
file/process memory integration that is fundamental to our system. TENEX [BOBR 72] [MURP 72] supported
a page-based environment together with the notion of a process page map independent of the object being
mapped.

5. External Interfaces: System Calls

The applications programmer gains access to the facilities of the new VM system through several
sets of system calls. At present, we have defined our principal interface to be a refinement of those pro-
vided with 4.2BSD. We also provide interfaces for System V’s shared memory operations. The new sys-
tem also impacted other system calls and facilities. These are described further below. Although these
represent the initial interfaces we intend to support, others may be provided in the future in response to
market demand.

5.1. 4.2BSD-based Interfaces

The 4.2BSDUNIX specification [JOY 83] included the definition of a number of system calls for map-
ping files, although the system did not implement them. Earlier releases of SunOS included partial imple-
mentations of these calls to support mapping devices such as frame buffers into a process’s address space.
The basic concepts embedded in the interface were very close to our own, namely a page-based system
providing mappings from process addresses to objects identified with file descriptors, and thus working
from this base was a natural thing to do.

However, we had problems with the 4.2BSD interfaces due to their sketchy definition. Although the
intent was well understood, the lack of an implementation left many semantic issues unresolved or ambigu-
ous. We required some facilities that were not part of the specification, and other facilities were part of the
specification but seemed superfluous. Thus, although we did manage to avoid creating an entirely new
interface, we did find ourselves refining an existing, but unimplemented one. The process of refinement
involved many people; in fact most were external to Sun and involved exchanges utilizing a ‘‘VM
interest’’ mailing list supported and maintained by the developers at UC Berkeley, CSRG. Table 1 sum-
marizes our refined interface, and the following sections expand on various areas of refinements.

5.1.1. mmap

The mmap(2) system call is used to establish mappings from a process’s address space to an object.
Its definition is:

caddr_t mmap(addr, len, prot, flags, fd, off)

mmap establishes a mapping between the process’s address space at an addresspaddr for len bytes to the
object specified byfd at offsetoff for len bytes. The value ofpaddr is an implementation-dependent func-
tion of the parameteraddr and values offlags, further described below. A successfulmmap call returns
paddr as its result. The address ranges covered by [paddr, paddr + len) and [off, off + len) must be legiti-
mate for the address space of a process and the object in question, respectively. The mapping established
by mmap replaces any previous mappings for the process’s pages in the range [paddr, paddr + len).

The parameterprot determines whetherread, execute, write or some combination of accesses are
permitted to the pages being mapped. The values desired are expressed by or’ing the flags values
PROT_READ, PROT_EXECUTE, and PROT_WRITE. It is not expected that all implementations

6

__
Table 1 − Refined 4.2BSD Interfaces__

Call Function__
madvise(addr, len, behav)
caddr_t addr; int len, behav;

Gives advice about the handling of
memory over a range of addresses.__

mincore(addr, len, vec)
caddr_t addr; int len; result char *vec;

Determines residency of memory
pages. (Will be replaced by more
general map reading function.)__

caddr_t
mmap(addr, len, prot, flags, fd, off)
caddr_t addr; int len, prot, flags, fd;
off_t off;

Establish mapping from address
space to object named byfd.

__
mprotect(addr, len, prot)
caddr_t addr; int len, prot;

Change protection on mapped
pages.__

msync(addr, len, flags)
caddr_t addr; int len, flags;

Synchronizes and/or invalidates
cache of mapped data.__

munmap(addr, len)
caddr_t addr; int len;

Removes mapping of address
range.__�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

literally provide all possible combinations. PROT_WRITE is often implemented as
PROT_READ|PROT_WRITE, and PROT_EXECUTE as PROT_READ|PROT_EXECUTE. However, no
implementation will permit a write to succeed where PROT_WRITE has not been set. The behavior of
PROT_WRITE can be influenced by setting MAP_PRIVATE in theflags parameter.

The parameterflags provides other information about the handling of the pages being mapped. The
options are defined by a field describing an enumeration of the ‘‘type’’ of the mapping, and a bit-field
specifying other options. The enumeration currently defines two values, MAP_SHARED and
MAP_PRIVATE. The bit-field values are MAP_FIXED and MAP_RENAME. The ‘‘type’’ value chosen
determines whether stores to the mapped addresses are actually propagated to the object being mapped
(MAP_SHARED) or directed to a copy of the object (MAP_PRIVATE). If the latter is specified, the ini-
tial write reference to a page will create a private copy of the page of the object and redirect the mapping to
the copy. The mapping type is retained across afork(2). The mapping ‘‘type’’ only affects the disposition
of stores bythis process− there is no insulation from changes made by other processes. If an application
desires such insulation, it should use theread system call to make a copy of the data it wishes to keep pro-
tected.

MAP_FIXED informs the system that the value ofpaddr must beaddr, exactly. The use of
MAP_FIXED is discouraged, as it may prevent an implementation from making the most effective use of
system resources.

When MAP_FIXED is not set, the system usesaddr as a hint in an implementation-defined manner
to arrive atpaddr. Thepaddr so chosen will be an area of the address space that the system deems suitable
for a mapping oflen bytes to the specified object. All implementations interpret anaddr value of zero as
granting the system complete freedom in selectingpaddr, subject to constraints described below. A non-
zero value ofaddr is taken to be a suggestion of a process address near which the mapping should be
placed. When the system selects a value forpaddr, it will never place a mapping at address 0, nor will it
replace any extant mapping, nor map into areas considered part of the potential data or stack ‘‘segments’’.
In the current SunOS implementation, the system strives to choose alignments for mappings that maximize
the performance of systems with a virtual address cache.

MAP_RENAME causes the pages currently mapped in the range [paddr, paddr + len) to be effec-
tively renamed to be the object addresses in the range [off, off + len). The currently mapped pages must be
mapped as MAP_PRIVATE. MAP_RENAME implies a MAP_FIXED interpretation ofaddr. fd must be
open for write. MAP_RENAME affects the size of the memory object referenced byfd: the size is max(off
+ len - 1, flen) (whereflen was the previous length of the object). After the pages are renamed, a mapping

7

to them is reestablished with the parameters as specified in the renamingmmap.

The addition of MAP_FIXED and corresponding changes in the default interpretation ofaddr and
mmap’s return value represent the principal change made to the original 4.2BSD specification. The change
was made to remove the burden of managing a process’s address space from applications that did not wish
it.

5.1.2. Additions

We added one new system call,msync. msync has the interface

msync(addr, len, flags)

msync causes all modified copies of pages over the range [addr, addr + len) in system caches to be flushed
to the objects mapped by those addresses.msync optionally invalidates such cache entries so that further
references to the pages will cause the system to obtain them from their permanent storage locations. The
flags argument provides a bit-field of values which influencesmsync’s behavior. The bit names and their
interpretations are:

MS_ASYNC Return immediately
MS_INVALIDATE Invalidate caches

MS_ASYNC causesmsync to return immediately once all I/O operations are scheduled; normally,
msync will not return until all I/O operations are complete. MS_INVALIDATE causes all cached copies of
data from mapped objects to be invalidated, requiring them to be re-obtained from the object’s storage
upon the next reference.

5.1.3. Unchanged Interfaces

Two 4.2BSD calls were implemented without change. They weremprotect for changing the protec-
tion values of mapped pages, andmunmap for removing a mapping.

5.1.4. Removed: mremap

We deleted one system call,mremap. Upon reading the 4.2BSD specification, we had the impres-
sion thatmremap was the mapping equivalent of theUNIX mv command. However, discussions with those
involved in its original specification created confusion as to whether it was in fact supposed to be the
equivalent ofmv, cp, or ln. In the presence of the uncertainty and lacking any other motivation to include
it, mremap was dropped from the system.

5.1.5. Open Issues

Two 4.2BSD system calls,madvise andmincore, remain unspecified.madvise is intended to provide
information to the system to influence its management policies. Since a major rework of such policies was
deferred to a future release, we decided to defer full specification and implementation ofmadvise until that
time.

mincore was specified to return the residency status of a group of pages. Although the intent was
clear, we felt that a more comprehensive interface for obtaining the status of a mapping was required.
However, at present, this revised interface has not been defined.

Also unspecified is an interface for locking pages in memory. We envision either a newmlock sys-
tem call, or a variation onmadvise.

5.2. System V Shared Memory

The ‘‘System V Interface Definition’’ [AT&T 86] defines a number of operations on entities called
‘‘shared memory segments’’. Early in our project, we had hoped to implement these operations not as sys-
tem calls but rather as library routines which built the System V abstractions out of the basic mechanisms
supplied by the kernel. Unfortunately, System V shared memory is almost, but not completely the same as,
aUNIX file. The primary differences are:

8

· name space: a shared memory segment exists in a name space different from that of the tradi-
tionalUNIX file system; and

· ownership and access: a shared memory segment separates the notion of ‘‘creator’’ from
‘‘owner’’.

Together, these differences motivated a kernel-based implementation to allocate and manage the different
name space (which shared implementation with other System V-specific objects such as semaphores), and
to administer the different ownership and access control operations.

Although the databases peculiar to these differences are maintained inside the kernel, the implemen-
tation of the objects and access are built from the standard notions. Specifically, the memory object
representing the shared memory segment exists as an unnamed object in the system’s virtual memory, and
the operation which attaches processes to it performs the internal equivalent of anmmap.

Implementation plans call for the object used to represent the shared memory segment to be sup-
ported by an anonymous memory-based file system./tmp could be implemented as a file system of this
type, potentially eliminating all I/O operations for temporary files and simply supporting them out of the
processor’s memory resources.

5.3. Other System Calls and Facilities

The new VM system has had an impact on other areas of the system as well, either extending or
slightly altering the semantics of existing operations.

5.3.1. ‘‘Segments’’

Traditionally, the address space of aUNIX process has consisted of three segments: one each for
write-protected program code (text), a heap of dynamically allocated storage (data), and the process’s
stack. Under the new system, a process’s address space is simply a vector of pages and there exists no real
structure to the address space. However, for compatibility purposes, the system maintains address ranges
that ‘‘should’’ belong to such segments to support operations such as extending or contracting the data
segment’s ‘‘break’’. These are initialized when a program is initiated withexec.

5.3.2. exec

exec overlays a process’s address space with a new program to be executed. Under the new system,
exec performs this operation by performing the internal equivalent of anmmap to the file containing the
program. The text and initialized data segments are mapped to the file, and the program’s uninitialized
data and stack areas are mapped to unnamed objects in the system’s virtual memory. The boundaries of the
mappings it establishes are recorded as representing the traditional ‘‘segments’’ of aUNIX process’s
address space.

exec establishes MAP_PRIVATE mappings, which has implications for the operation offork and
ptrace, as discussed below. The text segment is mapped with only PROT_READ and PROT_EXECUTE
protections, so that write references to the text produce segmentation violations. The data segment is
mapped as writable; however any page of initialized data that does not get written may be shared among all
the processes running the program.

5.3.3. fork

Previously, a process created byfork had an address space made from a copy of its parent’s address
space. Under the new system, the address space is not copied, but the mappings defining it are. Sinceexec
specifies MAP_PRIVATE on all the mappings it performs, parent and child thus effectively have copy-on-
write access to a single set of objects. Further, since the mapping is generally far smaller than the data it
describes,fork should be considerably more efficient. Any MAP_SHARED mappings in the parent are
also MAP_SHARED in the child, providing the opportunity for both parent and child to operate on a com-
mon object.

9

5.3.4. vfork

Berkeley-based systems include a ‘‘VM-efficient’’ form of thefork system call to avoid the overhead
of copying massive processes that simply threw away the copy operation with a subsequentexec call. At
one point we hoped that the efficiencies gained through a reimplementedfork would obviate the need for
vfork. Unfortunately,vfork is defined to suspend the parent process until the child performs either anexec
or an exit and to allow the child full access to the parent’s address space (not a copy) in the interim. A
number of programs take advantage of this quirk, allowing the child to record data in the address space for
later examination by the parent. Eliminatingvfork would break these programs, a fact we discovered in
numerous ways when early versions of the system simply treated avfork as fork. Further,vfork remains
fundamentally more efficient than even afork that only copies an address space map, sincevfork copies
nothing.

However, to encourage programmers at Sun to avoid the use ofvfork, we took our time restoring it to
the system and as a result got many programs ‘‘fixed’’.

5.3.5. ptrace

In previous versions of the system, theptrace system call (used for process debugging) would refuse
to deposit a breakpoint in a program that was being run by more than one process. This restriction was
imposed by the nature of the old system’s facility for sharing program code, which was to share the entire
text portion of an executable file.

In the new system, the system simply shares file pages among all those who have mappings to them.
When a mapping is made MAP_PRIVATE, writes by a process to a page to which writes are permitted are
diverted to a copy of the page− leaving the original object unaffected.ptrace takes advantage of the fact
that an exec establishes the mapping to the file containing the program and its initialized data as
MAP_PRIVATE, as it inserts a breakpoint by making a read-only page writable, depositing the breakpoint,
and restoring the protection. The page on which the breakpoint is deposited, and only that page, is no
longer shared with other users of the program− and their view of that page is unaffected.

5.3.6. truncate

The truncate system call has been changed so that it sets the length of a file. If the newly specified
length is shorter than the file’s current length,truncate behaves as before. However, if the new length is
longer, the file’s size is increased to the desired length. When writing a file exclusively through mapping,
extending throughtruncate is the only alternative to MAP_RENAME operations for growing a file.

5.3.7. Resource Limits

Berkeley-based systems include functions for limiting the consumption of certain system resources.
We have introduced a new resource limit: RLIMIT_PRIVATE. This limit controls the amount of ‘‘private
memory’’ that a process may dynamically allocate from the system’s source of unnamed backing store. In
many respects, RLIMIT_PRIVATE really describes the limit that RLIMIT_DATA and RLIMIT_STACK
attempt to capture, namely the amount of swap space a given process may consume.

6. Internal Interfaces

The new VM system provides a set of abstractions and operations to the rest of the kernel. In many
cases, these are used directly as the basis for the system call interfaces described above. In other areas they
support internal forms of those system call interfaces, allowing the kernel to perform mappings for the
address space in which it operates. The VM system also relies on services from other areas of the kernel.

6.1. Internal Role of VM

In general, the kernel uses the VM system as the manager of a logical cache of memory pages and as
the object manager for ‘‘address space objects’’. In its role as cache manager, the VM system also
manages the physical storage resources of the processor, as it uses these resources to implement the cache
it maintains. The VM system is a particularly effective cache manager, and maintains a high degree of
sharing over multiple uses of a given page of an object. As such, it has subsumed the functions of older

10

data structures, in particular the text table and disk block data buffer cache (the ‘‘buffer cache’’). The VM
system has replaced the old fixed-size buffer cache with a logical cache that uses all of the system’s page-
able physical memory. Thus its use as a ‘‘buffer cache’’ in the old sense dynamically adapts to the pattern
of the system’s use− in particular if the system is performing a high percentage of file references, all of the
system’s pageable physical memory is devoted to a function that previously only had approximately 10%
of the same resources. The VM system is also responsible for the management of the system’s memory
management hardware, although these operations are invisible to the machine-independent portions of the
kernel.

Kernel algorithms that operate on logical quantities of memory, such as the contents of file pages, do
so by establishing mappings from the kernel’s address space to the object they wish to access. Those algo-
rithms that implement theread andwrite system calls on such memory objects are particularly interesting:
they operate by creating a mapping to the object and then copying the data to or from user buffers as
appropriate. When mapping is used in this manner, users of the object are provided with a consistent view
of the object, even if they mix references through mapped accesses or theread and write system calls.
Note that the decision to use mapping operations in this way is left to the manager of the object being
accessed.

The VM system does not know the semantics of theUNIX operating system. Instead, those proper-
ties of an address space that are the province ofUNIX, such as the notions of ‘‘segments’’ and stack-
growth, are implemented by a layer ofUNIX semantics over the basic VM system. By providing only the
basic abstractions from the VM system itself, we believe we have made it easier to provide future system
interfaces that may not haveUNIX-like characteristics.

The VM system relies on the rest of the system to provide managers for the objects to which it estab-
lishes mappings. These managers are expected to provide advice and assistance to the VM system to
ensure efficient system management, and to perform physical I/O operations on the objects they manage.
These responsibilities are detailed further below.

6.2. as layer

The primary object managed by the VM system is a (process)address space (as). The interfaces
through which the system requests operations on anas object are summarized in Table 2, and are collec-
tively referred to as theas-layer of the system. Anas contains the memory of the mappings that comprise
an address space. In addition, it contains ahardware address translation (hat) structure that holds the state
of the memory management hardware associated with this address space. This structure is opaque to much
of the VM system, and is interpreted only by a machine-dependent layer of the system, described further
below.

An as exists independent of any of its uses, and may be shared by multiple processes, thus setting the
stage for future integration of a multi-threaded address space capability as described in [KEPE 85]. The
‘‘address space’’ in which the kernel operates is also described by anas structure, and is the handle by
which the kernel effects internal mapping operations usingas_map.

The operations permitted on anas generally correspond to the functions provided by the system call
interface. An implication of this is that just about any operation that the kernel could perform on an
address space could also be implemented by an application directly. More work is necessary to define an
interface for obtaining information about anas, to support the generation ofcore files, and the as-yet
unspecified interfaces for reading mappings. An additional interface is also needed to support any advice
operations we might choose to define in the future.

Internally to an address space, each individual mapping is treated as an object with a ‘‘mapping
object manager’’. Such mappings are run-length compact encodings describing the mapping being per-
formed, and may or may not have per-page information recorded depending on the nature of the mapping
or subsequent references to the object being mapped. Due to a regrettable lack of imagination at a critical
junction in our design, these ‘‘mapping objects’’ are termedsegments, and their managers are called ‘‘seg-
ment drivers’’.

11

__
Table 2 − as operations__

Operation Function__
struct as *as_alloc() as allocation.__
struct as *as_dup(as)
struct as *as;

Duplicates as − used infork.

__
void as_free(as)
struct as *as;

as deallocation.
__
enum as_res
as_map(as, addr, size, crfp, crargsp)
struct as *as; addr_t addr; u_int size;
int (*crfp)(); caddr_t crargsp;

Internal mmap. Establish a
mapping to an object using the
mapping manager routine identified
in crfp, providing object specific
arguments in the opaque structure
crargsp.__

enum as_res
as_unmap(as, addr, size)
struct as *as; addr_t addr; u_int size;

Remove a mapping inas.

__
enum as_res
as_setprot(as, addr, size, prot)
struct as *as; addr_t addr;
u_int size, prot;

Alter protection of mappings in
as.

__
enum as_res
as_checkprot(as, addr, size, prot)
struct as *as; addr_t addr;
u_int size, prot;

Determine whether mappings
satisfy protection required by
prot.

__
enum as_res
as_fault(as, addr, size, type, rw)
struct as *as; addr_t addr; u_int size;
enum fault_type type; enum seg_rw rw;

Resolves a fault.

__
enum as_res
as_faulta(as, addr, size)
struct as *as; addr_t addr; u_int size;

Asynchronous fault − used for
‘‘fault-ahead’’.

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

6.3. hat layer

As previously noted, ahat is an object representing an allocation of memory management hardware
resources. The set of operations on ahat are not visible outside of the VM system, but represent a
machine-dependent/independent boundary called thehat-layer. Although it provides no services to the rest
of the system, thehat-layer is of import to those faced with porting the system to various hardware archi-
tectures. It provides the mapping from the software data structures of anas and its internals to those
required by the hardware of the system on which it resides.

We believe that thehat-layer has successfully isolated the hardware-specific requirements of Sun’s
systems from the machine-independent portions of the VM system and the rest of the kernel. In particular,
under the old system the addition of support for a virtual address cache permeated many areas of the sys-
tem. Under the new system, support for the virtual address cache is isolated within thehat layer.

6.4. I/O Layer

The primary services the VM system requires of the rest of the kernel are physical I/O operations on
the objects it maps. These operations occur across an interface called the ‘‘I/O Layer’’. Although used
mainly to cause physical page frames to be filled (page-in) or drained (page-out) operations, the I/O layer
also provides an opportunity for the managers of particular objects to map the system-specific page abstrac-
tion used by the VM system to the representation used by the object being mapped.

12

For instance, although the system operates on page-sized allocations, the 4.2BSDUNIX file system
[MCKU 84] operates on collections of disk blocks that are often not page-sized. Efficient file system perfor-
mance may also require non-page-sized I/O operations, in order to amortize the overhead of starting opera-
tions and to maximize the throughput of the particular subsystem involved. Thus, the VM system will pass
several operations (such as the resolution of a fault on an object address, even one for which the VM sys-
tem has a cached copy) through the object manager to provide it the opportunity to intercede. The object
manager for NFS files uses these intercessions to prevent cached pages from becoming stale. Managers for
network-coherent objects enforce coherence through this technique.

The I/O layer is to some extent bi-directional, as a given operation requested by the VM system may
cause the object manager to request several VM-based operations. I/O clustering is an example of this,
where a request by the VM system to obtain a page’s worth of data may cause the object manager to actu-
ally schedule an I/O operation for logical pages surrounding the one requested in the hopes of avoiding
future I/O requests. The old notion of ‘‘read-ahead’’ is implemented in this manner, and each object
manager has the opportunity to recognize and act on patterns of access to a given object in a manner that
maximizes its performance.

7. Project Status & Future Work

The architecture described in this paper has been implemented and ported to the Sun-2 and Sun-3
families of workstations. At present, all our major functional goals have been met. The work has con-
sumed approximately four man-years of effort over a year and a half of real time. A surprisingly large
amount of effort has been drained by efforts to interpose the VM system as the logical cache manager for
the file systems, in particular with respect to the 4.2BSDUNIX file system.

With respect to our performance goals, more tuning work is required before we can claim to meet
them. However, in some areas dealing with file access, early benchmarks reveal substantial performance
improvements resulting from the much larger cache available for I/O operations. We expect further perfor-
mance improvements when more of the system uses the new mechanisms. In particular, we expect an
implementation of shared libraries to have a substantial impact upon the use of system resources. Future
uses of mapping include a rewritten standard I/O library to usemmap rather thanread and perhapswrite,
thus eliminating the dual copying of data and providing a transparent performance improvement to many
applications. As sharing increases in the system, we expect the requirements for swap resources to
decrease.

Other future work involves refining and completing the interfaces that have not yet been fully
defined. We plan an investigation of new management policies, especially with respect to different page-
replacement policies and the better integration of memory and processor scheduling. We would also like to
port the system to different hardware bases, in particular to the VAX, to test the success of thehat layer in
isolating machine dependencies from the rest of the system.

8. Conclusions

We believe the new VM architecture successfully meets our goals. Reviewing these reveals:

· Unify memory handling. All VM operations have been unified around the single notion of file
mapping. Extant operations such asfork andexec have been reconstructed and their perfor-
mance, and in some cases function, has been improved through their use of the new mechan-
isms.

· Non-kernel implementation of many functions. Although we were disappointed that kernel
support was required to implement System V shared memory segments, we believe that this
goal has been largely satisfied. In particular, our implementation of shared libraries [GING 87]
requires no specific kernel support. We believe the basic operations the interfaces provide will
permit the construction of other useful abstractions with user-level programming.

· Improved portability. Although more experience is required, we were pleased with the
degree to which the Sun-3 virtual address cache was easily incorporated into the new system,
in comparison with the difficulty experienced in integrating it into the previous system.

13

· Consistent with environment. The new system builds on the abstractions already inUNIX, in
particular with respect to our use of theUNIX file system as the name space for named virtual
memory objects. The integrated use of the new facilities in the system has helped to extend
the previous abstractions in a natural manner. The semantics offered by the basic system
mechanisms also do not impede the heterogeneous use of objects accessed through the system,
an important consideration for the networked environments in which we expect the system to
operate.

Finally, we have provided the functionality that motivated the work in the first place.

9. Acknowledgements

The system was designed by the authors, with Joe Moran providing the bulk of the implementation.
Bill Joy offered commentary and advice on the architecture, as well as insights into the intents of the
4.2BSD interface, and an initial sketch of an implementation of the internal VM interfaces. Kirk
McKusick and Mike Karels of UC Berkeley, CSRG, spent several days discussing the issues with us. The
other members of Sun’s System Software group gave considerable assistance and advice during the design
and implementation of the system.

10. References

[ACCE 86] Accetta, M., R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, M. Young,
‘‘Mach: A New Kernel Foundation for UNIX Development’’,Summer Confer-
ence Proceedings, Atlanta 1986, USENIX Association, 1986.

[AT&T 86] AT&T, System V Interface Definition, Volume I, 1986

[BOBR 72] Bobrow, D. G., J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, ‘‘TENEX, a
Paged Time Sharing System for the PDP-10’’,Communications of the ACM,
Volume 15, No. 3, March 1972.

[GING 87] Gingell, R. A., M. Lee, X. T. Dang, M. S. Weeks, ‘‘Shared Libraries in SunOS’’,
Summer Conference Proceedings, Phoenix 1987, USENIX Association, 1987.

[JOY 83] Joy, W. N., R. S. Fabry, S. J. Leffler, M. K. McKusick,4.2BSD System Manual,
Computer Systems Research Group, Computer Science Division, University of
California, Berkeley, 1983.

[KEPE 85] Kepecs, J. H., ‘‘Lightweight Processes for UNIX Implementation and Applica-
tions’’, Summer Conference Proceedings, Portland 1985, USENIX Association,
1985.

[KLEI 86] Kleiman, S. R., ‘‘Vnodes: An Architecture for Multiple File System Types in Sun
UNIX’’, Summer Conference Proceedings, Atlanta 1986, USENIX Association,
1986.

[MKCU 84] McKusick, M. K., W. N. Joy, S. J. Leffler, R. S. Fabry, ‘‘A Fast File System for
UNIX’’, Transactions on Computer Systems, Volume 2, No. 3, August 1984.

[MURP 72] Murphy, D. L., ‘‘Storage organization and management in TENEX’’,Proceedings
of the Fall Joint Computer Conference, AFIPS, 1972.

[ORGA 72] Organick, E. I.,The Multics System: An Examination of Its Structure, MIT Press,
1972.

14

