
X Window System, Version 11, Release 5

Release Notes

MIT X Consortium staff

MIT Laboratory for Computer Science

Copyright © 1991 by the Massachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this document for any purpose and without fee is hereby granted, pro-

vided that the above copyright notice and this permission notice appear in all copies, and that the name of MIT not be

used in advertising or publicity pertaining to this document without specific, written prior permission. MIT makes no

representations about the suitability of this document for any purpose. It is provided ‘‘as is’’ without express or implied

warranty.

X Window System is a trademark of MIT.

This document describes how to build, install, and get started with Release 5 of the X Window
System from MIT and gives a brief overview of the contents of the release.

1. For the Impatient Explorer

For those of you who will try to build the distribution without reading the entire release notes
first, here is a quick summary of what to do.

If you want to build with gcc, edit mit/config/site.defby uncommenting the HasGccline.

If you want to install into somewhere other than /usr/bin/X11, /usr/include/X11, etc., edit
mit/config/site.defby uncommenting the ProjectRoot lines and changing "/usr/X11R5" to what-
ev er directory you want to install into. (Do not use DESTDIR.)

Check the appropriate mit/config/vendor.cf file to make sure that OSMajorVersion and OSMi-
norVersion are set correctly (change them if necessary).

Find the BootstrapCFlagsline, if any, in the vendor.cf file. If there isn’t one, cd to the mit direc-
tory and type:

make World >& world.log

If there is a BootstrapCFlags, take its value1 and type:

make World BOOTSTRAPCFLAGS="value" >& world.log

Do not call the output file ‘‘make.log’’, or it will be deleted. If the build is successful, you can
install most of it with:

make install >& install.log

You can install man pages with:

make install.man >& man.log

You can install lint libraries (if desired) with:

make install.ln >& lintlib.log

1. If you are using the x386.cffile, you will have to compute the correct value.

X Window System Release Notes X Version 11, Release 5

-2-

If things fail, read the rest of the release notes.

2. Brief Overview of the Distribution

(If you want, you can skip to the next chapter first, and get your build started. While it is compil-
ing you will have plenty of time to read the rest of the release notes.)

There are two parts to the Release 5 distribution: MIT software and documentation, and user-con-
tributed software and documentation. The MIT part contains:

X Consortium Standards

The MIT X Consortium produces standards: documents which define network protocols,
programming interfaces, and other aspects of the X environment. See the XStandards man
page for a list of standards. See the XConsortium man page for information about the X
Consortium.

Sample Implementations

For most of our standards, we provide sample implementations to demonstrate proof of
concept. These are not reference implementations; the written specifications define the
standards.

Fonts

A collection of bitmap and outline fonts are included in the distribution, contributed by var-
ious individuals and companies.

Utility Libraries

A number of libraries, such as the Athena Widget Set, are included. These are not stan-
dards, but are used in building MIT applications and may be useful in building other appli-
cations.

Sample Programs

We also provide a number of application programs. A few of these programs, such as xdm,
should be considered essential in almost all environments. The rest of the applications
carry no special status, they are simply programs that have been developed and/or main-
tained by MIT X Consortium staff. In some cases, you will find better substitutes for these
programs in the user-contributed software.

The user-contributed part contains whatever people contribute. You find a variety of software and
documentation here: application programs, demos, examples, libraries, Asian input methods, X
server extensions, etc.

2.1. Structure of the MIT Sources

All of the MIT sources are under a single directory, mit . Sources are organized into the following
subdirectories:

clients

This directory contains most of the sample applications. See the program man pages for
details.

config

This directory contains configuration files and the imake program used to build the release.
Details are covered in other sections below.

X Window System Release Notes X Version 11, Release 5

-3-

demos

This directory contains a small collection of graphics demonstration programs, a few util-
ity/test programs, and some performance demonstration programs. These are by no means
the ‘‘best’’ demo programs around, they just happen to be ones we try to maintain.

doc

This directory contains troff sources to X Consortium standards, server internals documen-
tation, documentation for various utility libraries, some useful tutorial material.

extensions

This directory contains implementations of X server extensions, both the server internals
and the application programming libraries, and some test programs. Of particular note
here, new in Release 5, is PEX, the PHIGS Extension to X used for 3D graphics, and the
PHIGS programming library which interfaces to the PEX protocol.

fonts

This directory contains bitmap fonts in source form, some outline fonts, a sample font
server, a utility font library used by the X server and font server, a client font library for
interacting with the font server, and programs for building fonts and querying the font
server.

hardcopy

This directory contains pre-generated PostScript files for the client man pages and for most
of the documentation found in the doc directory. The files are compressed with compress
to save disk space. If you do not have compresson your system, you will find a version in
the mit/util/compress directory.

include

This directory contains various library-independent C header files and a collection of bit-
map files.

lib

This directory contains programming libraries and support files. Of note are Xlib (the low-
est-level C programming interface to X), Xt (the X Toolkit Intrinsics), Xmu (an eclectic set
of utility functions), Xaw (the Athena Widget Set), and CLX (a Common Lisp interface to
X).

man

This directory contains a few top-level man pages about the release (general information,
server access control mechanisms, the X Consortium, and X Consortium standards), and
man pages for some of the programming libraries.

rgb

This directory contains a program to generate the color database used by the X server and
sample databases.

server

This directory contains the X server sources, both device-independent (dix) and device-
dependent (ddx). In this release, there is support for building the following servers:

DECstation 2100/3100 monochrome and color displays
DECstation 5000 CX and MX displays
IBM RS/6000 skyway adapter
Apple Macintosh monochrome and color displays

X Window System Release Notes X Version 11, Release 5

-4-

MIPS monochrome and color displays
OMRON LUNA monochrome displays (color displays operate in monochrome)
Tektronix 4319 color display
VAXstation QVSS and QDSS displays
Sun monochrome and 8-bit color displays (with GX support)
Various VGA displays under System V/386

If your favorite hardware is not listed above, please do not blame us at MIT, we ship what
Consortium members provide. Only in a few cases do we try to maintain device-specific
software for our own development needs.

util

This directory contains miscellaneous utility programs and shell scripts used to build, main-
tain, and install the release.

3. Building the Release

The core distribution (code under the mit directory) has been built and tested at MIT on the fol-
lowing systems:

AIX 3.1.5, on IBM RS/6000
Apollo SR10.3 (very minimal testing, bsd4.3 only)
AT&T Unix System V Release 4 V2, on AT&T WGS6386
A/UX 2.0.1
HP-UX 7.0, on HP9000/s300
IRIX 4.0
Mach 2.5 Version 1.13, on OMRON Luna 88k
NEWS-OS 4.1, on Sony NWS-1850
NEWS-OS 5.0U, on Sony NWS-3710
SunOS 4.1.1, on Sun 3, Sparc 1, and Sparc 2
Ultrix-32 4.2, VAX and RISC
UNICOS 5.1
UTek 4.0
VAX 4.3bsd (with unknown local changes)

In somes cases, we have not used the most recent version of the operating system (sorry). Sup-
port for earlier versions of the operating systems listed is not claimed, and not guaranteed.

In addition to the systems above, support has been provided by vendors for:

AIX 2.2 and AOS 4.3, on IBM RT
AIX 1.2.1, on IBM PS/2
ConvexOS V9.0
DG/UX 4.32
INTERACTIVE UNIX Version 2.2.1
Mach 2.5 Version 1.40, on OMRON Luna 68k
Motorola R32V2/R3V6.2 and R40V1
RISCOS 4.50
UNIOS-B 4.3BSD UNIX: 2.00
Unix System V/386 Release 3.2, on ESIX, SCO, and AT&T (‘‘work in progress’’)
Unix System V/386 Release 4.0, on DELL

3.1. Unpacking the Distribution

The distribution normally comes as multiple tar files, either on tape or across a network. Create a
directory to hold the distribution, cd to it, and untar everything from that directory. For example:

X Window System Release Notes X Version 11, Release 5

-5-

mkdir sourcedir
cd sourcedir
tar xfp tar-file-or-tape-device

If you have obtained compressed and split tar files over the network, then the sequence for each
part of the mit directory might be:

cd ftp-dir/mit-N
cat mit-N.?? | uncompress | (cd sourcedir; tar xfp -)

The sequence for each part of the contrib directory might be:

cd ftp-dir/contrib-N
cat contrib-N.?? | uncompress | (cd sourcedir; tar xfp -)

The sourcedir directory you choose can be anywhere in any of your filesystems that is convenient
to you. After extracting the release, you should end up with an mit subdirectory, and a contrib
subdirectory if you unpack user-contributed software. You will need about 100 megabytes of disk
space to unpack the mit directory contents; building it will of course require more disk space.

3.2. Symbolic Link Trees

If you expect to build the distribution on more than one machine using a shared source tree, or
you just want to keep the source tree pure, you may want to use the shell script
mit/util/scripts/lndir.sh to create a symbolic link tree on each build machine. This is fairly
expensive in disk space, however. To do this, create a directory for the build, cd to it, and type:

sourcedir/mit/util/scripts/lndir.sh sourcedir

where sourcedir is the pathname of the directory where you stored the sources. All of the build
instructions given below should then be done in the build directory on each machine, rather than
in the source directory.

The shell script is reasonably portable but quite slow to execute. If you want you can instead try
compiling a similar C program, but it is slightly tricky to do before the distribution is built; cd to
the directory mit/util/progs and try typing:

ln -s ../../include X11
cc -o lndir -I. lndir.c

If it compiles and links, it will probably work; otherwise you can try typing:

cc -o lndir -I. -DNOSTDHDRS lndir.c

If it still fails, use the shell script.

3.3. Setting Configuration Parameters

You will notice that few if any of the subdirectories under mit contain a Makefile, but they do
contain an Imakefile. The Imakefile is a template file used to create a Makefile containing build
rules and variables appropriate for the target machine. The Makefile is generated by the program
imake. Most of the configuration work prior to building the release is to set parameters so that
imake will generate correct files.

The directory mit/config contains configuration files that control how the distribution is built. On
systems directly supported by this distribution, only minimal editing of these files should be nec-
essary. If your system is not supported by the distribution but conforms to ANSI C and POSIX.1
and has socket-style networking, then you should be able to build a new configuration file rela-
tively easily. Otherwise, edits to many files throughout the system may be necessary. We only
deal with minor editing for supported systems here.

X Window System Release Notes X Version 11, Release 5

-6-

The main files to be concerned with in the mit/config directory are site.def and one of the ven-
dor.cf files. The site.deffile should be used for most site-specific configuration customizations.
The .cf file should normally only need to be edited if you are using a different release of the oper-
ating system.

3.3.1. The vendor.cf File

Find the appropriate .cf file from this table:

AIX ibm.cf
AOS ibm.cf
Apollo apollo.cf
AT&T Unix SVR4 att.cf
A/UX macII.cf
BSD bsd.cf
ConvexOS convex.cf
DG/UX DGUX.cf
HP-UX hp.cf
INTERACTIVE x386.cf
IRIX sgi.cf
Mach (Luna) luna.cf
Motorola moto.cf
NEWS-OS sony.cf
RISCOS Mips.cf
SunOS sun.cf
Ultrix ultrix.cf
UNICOS cray.cf
UTek pegasus.cf
UNIOS-B luna.cf
Unix System V/386 x386.cf

Look through this file, and check the OSMajorVersion and OSMinorVersion values. The num-
bers have been preset to what was tested at MIT or what was supplied by the vendor. If the ver-
sion numbers match the operating system you are currently running, all is well. If they do not,
you will need to edit to file to make them correct. In a few cases (specifically changing UNICOS
from 5.1 to 6.0) there should not be a problem in moving the version numbers forward to a newer
release. However, if you are moving the version numbers backwards, or moving forward to a ver-
sion that hasn’t been pre-tested, you may have problems, and you have hav e to edit other parts of
the file (and possibly other files) to get things to work.

You can browse through the rest of the items in the .cf file, but most of them you should not need
to edit.

3.3.2. The site.def File

There are two main variables to set in the site.def file: HasGcc and ProjectRoot. If you are
going to compile the distribution with gcc, find the line that looks like

/* #define HasGcc YES */

and remove the comment markers, turning it into

#define HasGcc YES

If you are sharing a single site.defacross multiple systems, you can do something more compli-
cated. For example, if you only want to use gcc on a Sun 3 (but not on Sparcs) you might use
this:

X Window System Release Notes X Version 11, Release 5

-7-

#ifdef SunArchitecture
#define HasGcc mc68000
#endif

The most common error when using gcc is to fail to run the fixincludes script (from the gccdis-
tribution) when installing gcc. Make sure you have done this before compiling the release.
Another common error is likely to be using gcc ANSI C include files when the vendor operating
system supplies correct ones. The gcc include files assert.h, limits.h , and stddef.h are prime
candidates for not installing.

The ProjectRoot variable controls where the software will eventually be installed. The default as
distributed for most systems is to install into ‘‘system’’ directories: /usr/bin/X11,
/usr/include/X11, /usr/lib , and /usr/man (this is the behaviour when ProjectRoot is not
defined). If you prefer to install into alternate directories, the simplest thing to do is to set Pro-
jectRoot. Find the four ProjectRoot lines in the site.def file, and again remove the ‘‘/*’’ and
‘‘*/’’ comment markers that surround them. You will see a default choice for ProjectRoot of
/usr/X11R5; if you don’t like that one, replace it with another. Assuming you have set the vari-
able to some value /path, files will be installed into /path/bin, /path/include/X11, /path/lib, and
/path/man.

Note that in a few cases (ibm.cf and x386.cf) the vendor-supplied .cf file supplies a ProjectRoot
by default. If you want to accept this one, do not uncomment the one in site.def; otherwise the
one you place in site.defwill override the default setting.

The directories where the software will be installed are compiled in to various programs and files
during the build process, so it is important that you get the configuration correct at the outset. If
you change your mind later, you will want to do a ‘‘make Everything’’ to rebuild correctly.

Notice that the site.deffile was two parts, one protected with ‘‘#ifdef BeforeVendorCF’’ and one
with ‘‘#ifdef AfterVendorCF’’. The file is actually processed twice, once before the .cf file and
once after. About the only thing you need to set in the ‘‘before’’ section is HasGcc; just about
ev erything else can be set in the ‘‘after’’ section.

There are a large number of parameters that you can modify to change what gets built and how it
gets built. An exhaustive list and explanation will not be given here; you can browse through
mit/config/README to see a list of parameters. However, here are some notable parameters
that you can set in the ‘‘after’’ section:

BuildXsi and BuildXimp

New in this release, Xlib contains support for internationalized input methods, using
library- or network-based implementation methods. The implementation details internal to
Xlib can vary considerably depending on the types of input methods supported. In this
release, two different implementations are supported, named Xsi and Ximp . As distrib-
uted, the default on all systems except Sony is Xsi. If you want to use Ximp instead, add
this:

#define BuildXimp YES

BuildServer

This controls whether or not an X server is built. If the variable is not set to NO in the .cf
file, then the default is to build a server. If you want to disable the server, add this:

#define BuildServer NO

X Window System Release Notes X Version 11, Release 5

-8-

BuildFonts

Compiled fonts take up a lot of disk space. In this release, the compiled form (called
‘‘pcf ’’) can be shared across all machines of all architectures, so you may only want to
build the fonts on one machine. To disable font building, add this:

#define BuildFonts NO

BuildPex

PEX is an X extension supporting 3-D graphics and the PHIGS programming interface.
The PEX sources are known to cause some compilers to exceed their static symbol table
sizes. If this happens to you, you can disable PEX by adding this:

#define BuildPex NO

ManSuffix

User program man pages are installed by default in subdirectory ‘‘mann’’ with suffix ‘‘.n’’.
You can change this to ‘‘man1’’ and ‘‘.1’’, for example, by adding this:

#define ManSuffix 1

InstallLibManPages

By default, the programming library man pages (Xlib, Xt, various extensions) are installed
along with all of the other man pages. The library pages constitute a considerable number
of files. If you do not expect to be programming with X, or prefer using other forms of
documentation, you can disable installation of the library pages by adding this:

#define InstallLibManPages NO

InstallXdmConfig and InstallXinitConfig

The xdm and xinit programs are the normal ways to run X servers. By default, the config-
uration files for these programs are not installed, to avoid inadvertently destroying existing
configuration files. If you are not yet using xdm or xinit , or will be installing into a new
destination, or do not wish to retain your old configuration files, add these:

#define InstallXdmConfig YES
#define InstallXinitConfig YES

XdmServersType

Some of the xdm config files are generated based on configuration parameters. One of the
files controls whether an X server is started by default. By default the choice is made based
on whether an X server is built as part of this distribution (the BuildServer parameter). If
you are not building a server, but you will be running a product server on the workstation
under xdm, you should add this:

#define XdmServersType ws

HasXdmAuth

This release supports a DES-based form of authorization called XDM-AUTHORIZA-
TION-1. The source file mit/lib/Xdmcp/Wraphelp.c , which is necessary for this to com-
pile, might not be included in your distribution due to possible export regulations; if it is
not included and you are a US citizen, you should be able to obtain the file over the net-
work. To enable building of this mechanism, add this:

#define HasXdmAuth YES

X Window System Release Notes X Version 11, Release 5

-9-

InstallFSConfig

New to this release is a network font server, fs. By default, the configuration files for the
font server are not installed. To hav e them installed, add this:

#define InstallFSConfig YES

MotifBC

If you want to use the Release 5 Xlib and Xt with Motif 1.1, you will need to enable a
backward compatibility flag, by adding this:

#define MotifBC YES

3.4. System Pitfalls

On a few systems, you are likely to have build problems unless you make some minor changes to
the system. Naturally, you should exercise caution before making changes to system files, but
these are our recommendations based on our experience.

On VAX Ultrix systems, you may find that <stdlib.h> contains declarations of malloc, calloc,
and realloc with a return value of ‘‘void *’’. You may find this causes problems when compiling
with a non-ANSI-C compiler, in which case a workaround is to change the return values to
‘‘char*’’ in the ‘‘#else’’ section.

Ultrix may not provide <locale.h>unless you load the Internationalization subset. You will need
this file to compile the distribution (or else you will need to reset a configuration parameter, see
below).

On SunOS systems, you may find that statically linking (when debugging) against both Xlib and
the libc will result in unresolved symbols to dynamic linker functions, because Xlib contains calls
to wcstombs. Either link dynamically against libc, or compile and link the stub routines in
mit/util/misc/dlsym.c.

On Sun 3s, the default is to compile library files with no special floating point assumptions. If all
of your Sun 3s have floating point hardware, you may want to change this, for better performance
of Xlib color functions. For example, in the ‘‘after’’ section of your site.deffile, you might add:

#if defined(SunArchitecture) && defined(mc68000)
#undef LibraryCCOptions
#define SharedLibraryCCOptions -f68881 -pipe
#endif

On AOS, you may find that <stdarg.h> is missing. In that case, you should be able to copy
mit/util/misc/rt.stdarg.h to create the file.

On some System V/386 systems, you may find when using gcc in ANSI mode that there are
inconsistent declarations between <memory.h> and <string.h>. In that case, you may find it
convenient to remove <memory.h> and make it a link to <string.h>.

On some System V/386 systems, you may need to build and install a dbm library before building
the X server and RGB database. One can be found in contrib/util/sdbm .

3.4.1. Internationalization

This release has support for internationalization, based on the ANSI C and POSIX locale model.
On some systems, you may discover that while the locale interface is supported, only the ‘‘C’’
locale is actually provided in the base operating system. If you have such a system, and would
like to experiment with a broader set of locales, the Xlib implementation contains support you can
use, although use of this override has not really be tested. You need to add the following defines
to the StandardDefinesparameter:

X Window System Release Notes X Version 11, Release 5

-10-

-DX_WCHAR -DX_LOCALE

In most cases you will have to directly edit the .cf file to do this, or else you will have to know
what the rest of the values are supposed to be, and add this to site.def:

#undef StandardDefines
#define StandardDefines previous-values -DX_WCHAR -DX_LOCALE

It is also possible to directly edit the file mit/include/Xosdefs.h, but this is not recommended.

With this setup, you will have to be careful that the system’s declaration of wchar_t (in <std-
def.h>) nev er gets used; this might be tricky.

3.5. Typing ‘‘make World’’

One more piece of information is required before building, at least on some systems: bootstrap
flags. Look in your .cf file for a line of the form

#define BootstrapCFlags value

If there isn’t one things are simple, otherwise things are only slightly more complicated. If there
is more than one (for example, in ibm.cf, moto.cf, and sony.cf), then you need to select the right
one; it should be pretty obvious by the grouping according to operating system type. Note that on
A/UX you only need this value if you are using gcc, and that on a Sun you only need this value if
you are using an earlier version of the operating system.

If you are using x386.cf, you will have to ‘‘compute’’ the value from the information given in the
file. You may also need to do other preparatory work; please read
mit/server/ddx/x386/README.

If no value is required on your system, you can cd to the mit directory and start the build with:

make World >& world.log

If a value is required, start the build with:

make World BOOTSTRAPCFLAGS="value" >& world.log

You can call the output file something other than ‘‘world.log’’, but do not call it ‘‘make.log’’
because files with this name are automatically deleted during the ‘‘cleaning’’ stage of the build.

Because the build can take sev eral hours to complete, you will probably want to run it in the
background, and keep a watch on the output. For example:

make World >& world.log &
tail -f world.log

If something goes wrong, the easiest thing is to just start over (typing ‘‘make World’’ again) once
you have corrected the problem. It is possible that a failure will corrupt the top-level Makefile.
If that happens, simply delete the file and recreate a workable substitute with:

cp Makefile.ini Makefile

When the build completes, examine the world.log file for errors. If you search for ‘:’ (colon)
characters, and skip the obvious compile lines, it is usually pretty easy to spot any errors.2

4. Installing the Release

Although it is possible to test the release before installing it, it is a lot easier to test after it has
been installed. If everything is built successfully, you can install the software by typing the

2. Searching for colon does not work particularly well on the RS/6000 because it
appears in command lines when building shared libraries. Try searching for
colon followed by space.

X Window System Release Notes X Version 11, Release 5

-11-

following as root, from the mit directory:

make install >& install.log

Again, you might want to run this in the background and use tail to watch the progress.

You can install the man pages by typing the following as root, from the mit directory:

make install.man >& man.log

You can install lint libraries (useful if your systems does does not have an ANSI C compiler) by
typing the following as root, from the mit directory:

make install.ln >& lintlib.log

4.1. Setting Up xterm

If your /etc/termcapand /usr/lib/terminfo databases do not have correct entries for xterm, sam-
ple entries are provided in the directory mit/clients/xterm/. System V users may need to compile
and install the terminfo entry with the tic utility.

Since each xterm will need a separate pseudoterminal, you need a reasonable number of them for
normal execution. You probably will want at least 32 on a small, multiuser system. On most sys-
tems, each pty has two devices, a master and a slave, which are usually named
/dev/tty[pqrstu][0-f] and /dev/pty[pqrstu][0-f]. If you don’t hav e at least the ‘‘p’’ and ‘‘q’’ sets
configured (try typing ‘‘ls /dev/?ty??’’), you should have your system administrator add them.
This is commonly done by running the MAKEDEV script in the /dev directory with appropriate
arguments.

4.2. Starting Servers at System Boot

The xdm program is designed to be run automatically at system startup. Please read the xdm
man page for details on setting up configuration files; reasonable sample files are in
mit/clients/xdm/config. If your system uses an /etc/rc file at boot time, you can usually enable
xdm by placing the following at or near the end of the file:

if [-f /usr/bin/X11/xdm]; then
/usr/bin/X11/xdm; echo -n ’ xdm’

fi

The example here uses /usr/bin/X11, but if you have installed into a different directory (for
example by setting ProjectRoot) then you need to substitute the correct directory.

If you are going to use the font server, you can also start it at boot time by adding this:

if [-f /usr/bin/X11/fs]; then
/usr/bin/X11/fs &; echo -n ’ fs’

fi

If you are unsure about how system boot works, or if your system does not use /etc/rc, consult
your system administrator for help.

5. Rebuilding the Release

You shouldn’t need this right away, but eventually you are probably going to make changes to the
sources, for example by applying public patches distributed by MIT. If only C source files are
changed, you should be able to rebuild just by going to the mit directory and typing:

make >& make.log

If configuration files are changed, the safest thing to do is type:

X Window System Release Notes X Version 11, Release 5

-12-

make Everything >& every.log

‘‘Everything’’ is similar to ‘‘World’’ in that it rebuilds every Makefile, but unlike ‘‘World’’ it does
not delete the existing objects, libraries, and executables, and only rebuilds what is out of date.

Note that in both kinds of rebuilds you do not need to supply the BootstrapCFlags value any
more, the information is already recorded.

6. Building Contributed Software

The software in contrib is not set up to have everything built automatically. It is assumed that
you will build individual pieces as you find the desire, time, and/or disk space. You need to have
the MIT software built and installed before building the contributed software. To build a program
or library in contrib , look in its directory for any special build instructions (for example, a
README file). If there are none, and there is an Imakefile, cd to the directory and type:

xmkmf -a
make >& make.log

This will build a Makefile in the directory and all subdirectories, and then build the software. If
the build is successful, you should be able to install it using the same commands used for the mit
software:

make install >& install.log
make install.man >& man.log

7. Filing Bug Reports

If you find a reproducible bug in software in the mit directory, or find bugs in the mit documenta-
tion, please send a bug report to MIT using the form in the file mit/bug-report and the destina-
tion address:

xbugs@expo.lcs.mit.edu

Please try to provide all of the information requested on the form if it is applicable; the little extra
time you spend on the report will make it much easier for us to reproduce, find, and fix the bug.
Receipt of bug reports is generally acknowledged, but sometimes it can be delayed by a few
weeks.

Bugs in contrib software should not be reported to MIT. Consult the documentation for the indi-
vidual software to see where (if anywhere) to report the bug.

8. Public Fixes

We occasionally put out patches to the MIT software, to fix any serious problems that are discov-
ered. Such fixes (if any) can be found on export.lcs.mit.edu, in the directory pub/R5/fixes, using
anonymous ftp . Fixes are applied using the patch program; a copy of it is included in the direc-
tory mit/util/patch .

For those without ftp access, individual fixes can be obtained by electronic mail by sending a
message to

xstuff@expo.lcs.mit.edu

(Note that the host here is ‘‘expo’’, not ‘‘export’’.) In the usual case, the message should have a
subject line and no body, or a single-line body and no subject, in either case the line looking like:

send fixes number

where number is a decimal number, starting from one. To get a summary of available fixes, make
the line:

X Window System Release Notes X Version 11, Release 5

-13-

index fixes

If you need help, make the line:

help

Some mailers produce mail headers that are unusable for extracting return addresses. If you use
such a mailer, you won’t get any response. If you happen to know an explicit return path, you can
include include one in the body of your message, and the daemon will use it. For example:

path user%host.bitnet@mitvma.mit.edu
or

path host1!host2!user@uunet.uu.net

9. Configuring for a New Architecture

Here is a very brief overview of the files that imake reads. All the files are in the mit/config
directory, except for the Imakefile in the directory for which the Makefile is being created. The
processing order is:

Imake.tmpl variables not related specifically to X
site.def site-specific BeforeVendorCF part
*.cf machine-specific

*Lib.rules shared library rules
site.def site-specific AfterVendorCF part
Project.tmpl X-specific variables

*Lib.tmpl shared library variables
Imake.rules rules

Imakefile specific to the program or library
Library.tmpl library rules
Server.tmpl server rules

The indentation levels indicate what files include other files.

9.1. Imake.tmpl

The first part of Imake.tmpl determines which .cf file to include. If your cpp defines a unique
symbol, that should be used to select the file. Otherwise, you should place a -D symbol definition
in BootstrapCFlagsin your .cf file and use that. The canonical code to add to Imake.tmpl is:

#ifdef symbol
#define MacroIncludeFile <symbol.cf>
#define MacroFile symbol.cf
#undef symbol
#define SymbolArchitecture
#endif /* symbol */

9.2. imakemdep.h

You also need to edit the file imakemdep.h. There are three parts to this file. The first contains
defines (beyond BootstrapCFlags) or compiler options that are required to get imake itself built
the first time.

The next section is for imake itself. There is a hook in case your cpp collapses tabs down to sin-
gle spaces. There is also a way to override the cpp to use. Finally, add specific defines to pass to
cpp when processing configuration files.

The last section is for makedepend, to tell it about predefined symbols that will be used to con-
trol inclusion of header files.

X Window System Release Notes X Version 11, Release 5

-14-

9.3. vendor.cf

Most of the rest of your vendor-specific configuration information goes here. We won’t try to tell
you everything you need; study the other .cf files and copy from systems that are similar. One
good rule to follow is to not define anything that will get the correct default value from some-
where else; this will make it easier to see what is special, and will make it easier for sites to cus-
tomize in their site.def.

If you have shared libraries, the convention is to place the configuration rules and standard param-
eters in a file named osLib.rules , and to place version number parameters and make variables in
a file named osLib.tmpl . Look at the existing files and mimic them.

9.4. Other Files

Unfortunately, for a new system there are a potentially large number of files that you may have to
modify. Only the most prominent ones are listed here.

mit/include/Xfuncs.h
mit/include/Xmd.h
mit/include/Xos.h
mit/include/Xosdefs.h
mit/clients/xload/get_load.c
mit/clients/xman/vendor.c
mit/clients/xman/vendor.h
mit/clients/xterm/main.c
mit/lib/X/Xlibnet.h
mit/server/include/servermd.h

10. Writing Portable Code

In this section we give a brief introduction to using various header files to aid in writing portable
code.

10.1. <X11/Xosdefs.h>

The file <X11/Xosdefs.h>defines symbols that describe the system environment for ANSI C and
POSIX. We likely will extend it to other standards in the future. We hav e found these symbols
useful in writing portable code, and hope that other writers of X software will use them as well.
This file is not part of any X Consortium standard, it is simply part of our software distribution.

<X11/Xosdefs.h>can be included directly by a file, or it will be automatically included when
you include <X11/Xos.h>.

The symbols in <X11/Xosdefs.h>tell when you can, for example, do

#include <stdlib.h>

without getting a ‘‘no such header file’’ error from the compiler. If the system provides a declara-
tion for a function or value for a constant, it is important to use the system’s definition rather than
providing your own, particularly because you might not use function prototypes and the system
might, or vice versa.

<X11/Xosdefs.h>currently controls two symbols: X_NOT_STDC_ENV and X_NOT_POSIX.

X_NOT_STDC_ENV means the system does not have ANSI C header files. Thus, for example,
if X_NOT_STDC_ENV is not defined, it is safe to include <stdlib.h>. Do not confuse this sym-
bol with __STDC_ _, which says whether the compiler itself supports ANSI C semantics.
X_NOT_STDC_ENV is independent, and tells what header files it is safe to include.

X Window System Release Notes X Version 11, Release 5

-15-

Lack of the symbol X_NOT_STDC_ENV does not mean that the system has <stdarg.h>. This
header file is part of ANSI C, but we have found it more useful to check for it separately because
many systems have all the ANSI C files we need except this one. __STDC_ _is used to control
inclusion of this file.

An example of using X_NOT_STDC_ENV might be to know when the system declares getenv:

#ifndef X_NOT_STDC_ENV
#include <stdlib.h>
#else
extern char *getenv();
#endif

We usually put the standard case first in our code, using ‘‘#ifndef ’’.

X_NOT_POSIX means the system does not have POSIX.1 header files. Lack of this symbol
does not mean that the POSIX environment is the default. You may still have to define
_POSIX_SOURCEbefore including the header file to get POSIX definitions.3

An example of using X_NOT_POSIX might be to determine the type that getuid would be
declared by in <pwd.h>:

#include <pwd.h>
#ifndef X_NOT_POSIX

uid_t uid;
#else

int uid;
extern int getuid();

#endif
uid = getuid();

Note that both of these symbols, when declared, state a non-compliance. This was chosen so that
porting to a new, standard platform would be easier. Only non-standard platforms need to add
themselves to <X11/Xosdefs.h>to turn on the appropriate symbols.

Not all systems for which we leave these symbols undefined strictly adhere to the relevant stan-
dards. Thus you will sometimes see checks for a specific O/S near a check for one of the Xos-
defs.h symbols. However, we hav e found it most useful to label systems as conforming even if
they hav e some holes in their compliance. Presumably these holes will become fewer as time
goes on.

10.2. <X11/Xos.h>

In general, <X11/Xos.h>should be used instead of the following header files:

<string.h>
<strings.h>
<sys/types.h>
<sys/file.h>
<fcntl.h>
<sys/time.h>
<unistd.h>

This file is not part of any X Consortium standard, it is simply part of our software distribution.

3. We hav e found it very unfortunate that POSIX did not define a standard sym-
bol that means ‘‘give me POSIX, plus any non-conflicting vendor-specific defini-
tions’’.

X Window System Release Notes X Version 11, Release 5

-16-

Some common routines for which you need to include <X11/Xos.h>before using are:

index
rindex
strchr
strrchr
(all the other standard string routines)
gettimeofday
time

Data types and constants that should be obtained with <X11/Xos.h>are:

caddr_t
O_RDONLY
O_RDWR
(and other openconstants)
R_OK
W_OK
X_OK
(and other fcntl constants)

Unfortunately, we did not create a header file for declaring malloc correctly, and it can be a bit
tricky. You can use what we currently have by copying, for example, from mit/lib/Xt/Alloc.c :

#ifndef X_NOT_STDC_ENV
#include <stdlib.h>
#else
char *malloc(), *realloc(), *calloc();
#endif
#if defined(macII) && !defined(__STDC__) /* stdlib.h fails to define these */
char *malloc(), *realloc(), *calloc();
#endif /* macII */

10.3. <X11/Xfuncs.h>

This file contains definitions of bcopy, bzero, and bcmp.4 You should include this header in any
file that uses these functions. This file is not part of any X Consortium standard, it is simply part
of our software distribution.

10.4. <X11/Xfuncproto.h>

This file contains definitions for writing function declarations to get function prototypes to work
right. It deals with ANSI C compilers as well as pre-ANSI C compilers that have parts of func-
tion prototypes implemented. This file is not part of any X Consortium standard, it is simply part
of our software distribution.

For external header files that might get used from C++, you should wrap all of your function dec-
larations like this:

_XFUNCPROT OBEGIN
function declarations
_XFUNCPROT OEND

When in doubt, assume that the header file might get used from C++.

4. Yes, we should have used the ANSI C function names, but we thought we had
too much existing code using the BSD names.

X Window System Release Notes X Version 11, Release 5

-17-

A typical function declaration uses NeedFunctionPrototypes, like this:

extern Atom XInternAtom(
#if NeedFunctionPrototypes

Display* /* display */,
_Xconst char* /* atom_name */,
Bool /* only_if_exists */

#endif
);

If there are constparameters, use the symbol _Xconst instead, as above. If it is plausible to pass
a string literal to a char* parameter, then it is a good idea to declare the parameter with _Xconst,
so that literals can be passed in C++.

If there are nested function prototypes, use NeedNestedPrototypes:

extern Bool XCheckIfEvent(
#if NeedFunctionPrototypes

Display* /* display */,
XEvent* /* ev ent_return */,
Bool (*) (

#if NeedNestedPrototypes
Display* /* display */,

XEvent* /* ev ent */,
XPointer /* arg */

#endif
) /* predicate */,

XPointer /* arg */
#endif
);

If there is a variable argument list, use NeedVarargsPrototypes:

extern char *XGetIMValues(
#if NeedVarargsPrototypes

XIM /* im */, ...
#endif
);

If you have parameter types that will widen in K&R C, then you should use NeedWideProto-
types:

extern XModifierKeymap *XDeleteModifiermapEntry(
#if NeedFunctionPrototypes

XModifierKeymap* /* modmap */,
#if NeedWidePrototypes

unsigned int /* keycode_entry */,
#else

Ke yCode /* keycode_entry */,
#endif

int /* modifier */
#endif
);

If you use _Xconst, NeedNestedPrototypes, NeedVarargsPrototypes, or NeedWideProto-
types, then your function implementation also has to have a function prototype. For example:

X Window System Release Notes X Version 11, Release 5

-18-

#if NeedFunctionPrototypes
Atom XInternAtom (

Display *dpy,
_Xconst char *name,
Bool onlyIfExists)

#else
Atom XInternAtom (dpy, name, onlyIfExists)

Display *dpy;
char *name;
Bool onlyIfExists;

#endif
{

...
}

Actually, anytime you use a function prototype in a header file, you should use a function proto-
type in the implementation, as required by ANSI C. The MIT X sources do not follow this
(we’ve nev er had time to make all the changes), and there are almost certainly compilers that will
complain if the implementation does not match the declaration.

10.5. Other Symbols

Do not use the names class, new, or index as variables or struct members. The names classand
new are reserved words in C++, and you may find your header files used by a C++ program
someday. Depending on your system, index can be defined as strchr or a macro in
<X11/Xos.h>; this may cause problems if you include this header file.

The following system-specific symbols are commonly used in X sources where OS dependencies
intrude:5

USG based on System V Release 2
SYSV based on System V Release 3
SVR4 System V Release 4

For other system-specific symbols, look at the StandardDefinesparameters in the mit/config/*.cf
files.

11. What’s New, What’s Changed

In this section we briefly describe some of the more significant new features of Release 5.

11.1. New standards

The following standards are new in Release 5:

X Font Service Protocol

Instead of forcing each X server to read all fonts from the filesystem, the X Font Server
Protocol makes it possible to manage fonts separately from the X server, directing the X
server to request fonts via this new Consortium standard network protocol from a font
server. In addition, for fonts which take a long time to open, this allows the X server to
continue with other clients while the font server services the font requests.

5. At most one of these symbols should be defined on a given system!

X Window System Release Notes X Version 11, Release 5

-19-

XLFD changes for scalable fonts

The X Logical Font Description standard has been compatibly enhanced to allow clients to
specify and use scalable fonts.

X Input Device Extension

This extension has been promoted from Draft Standard to full Consortium Standard with
this release.

Inter-Client Communications Conventions

This standard has been updated to cover the new X Device Color Characterization Conven-
tions for device-independent color support in Xlib.

11.2. General

We hav e tried hard with this release to make our code use standard features from POSIX.1 and
ANSI C when possible. A new include file <X11/Xosdefs.h>describes which systems comply or
do not comply with these standards.

Tw o new X authorization schemes are included, a DES based private-key system which was
described in the R4 XDMCP document - XDM-AUTHORIZATION-1 (along with the associated
XDMCP authentication system XDM-AUTHENTICATION-1) and the Sun Secure RPC based
SUN-DES-1 system, which uses the SunOS supplied security system.

11.3. Clients

Most clients participate in the WM_DELETE_WINDOW protocol.

New clients: editres, viewres, xconsole, xcmsdb. New demos: beach_ball, auto_box, gpc,
xcmstest, xgas, x11perf. Xlswins has been removed; it is replaced by xwininfo -tree. Moved to
contrib: muncher, plaid. Completely new implementation: bitmap and xmag. Other changes of
note:

editres

Editres is a tool that allows users and application developers to view the full widget hierar-
chy of any X Toolkit client that speaks the Editres protocol. In addition editres will help
the user construct resource specifications, allow the user to apply the resource to the appli-
cation and view the results dynamically. Once the user is happy with a resource specifica-
tion, editres will append the resource string to the user’s resources file.

xdm

Xdm can now display a menu of hosts for XDMCP-capable terminals using the new
chooser client. This is useful for X terminals that do not themselves offer such a menu.
XDMCP works with STREAMS. A new setup program is invoked by xdm prior to putting
up the login window; this program can be used to run xsetroot, xcmsdb, and do any other
custom initialization required.

xterm

Cuts of wrapped lines are now treated as a single line. Cuts of multi-page regions now
work and highlight correctly. Pasting large amounts of data into xterm now works (on sys-
tems with properly-working pty implementations). New arguments have been added to the
send-signal action: quit, alarm. The titeInibit resource has been modified to also inhibit
the escape sequence which switches to the alternate screen. Tw o new items have been
added to the VT Fonts menu: 5x7 (Tiny) and 10x20 (Huge). The following resources have
been added: resizeGravity, bellSuppressTime, appcursorDefault, appkeypadDefault,
ginTerminator , autoWrap. The Xterm Control Sequences document is up to date. Xterm

X Window System Release Notes X Version 11, Release 5

-20-

is installed securely when made setuid on SunOS 4.1.1 with shared libraries.

xmh

Xmh now uses the MH environment variable, if set. Xmh now supports checking for mail
in multiple maildrops. Enhanced participation in WM_PROT OCOLS has been added.
New resources have been added, including: checkpointInterval, checkpointNameFor-
mat, mailInterval , rescanInterval, showOnInc, noMailBitmap , newMailBitmap , new-
MailIconBitmap , and noMailIconBitmap . New actions have been added: XmhWMPro-
tocols, XmhShellCommand, XmhCheckForNewMail, XmhViewMarkDelete. Better recov-
ery from unexpected inconsistencies with the filesystem has been implemented. Better
POP support has been added. See the file mit/clients/xmh/CHANGES for more details.

oclock

Oclock has a new −transparent option.

xload

Xload is secure on SunOS 4.1.1 with shared libraries.

xditview

Xditview now supports pic, scalable fonts, settable device resolution, and has a better user
interface.

11.4. Libraries in General

All of the useful libraries now use function prototypes by default for systems which support them.
SunOS shared libraries now use much less swap space than in R4. In addition, System V Release
4 and AIX 3.1 shared libraries are also supported now. Configuring new shared library systems
should be much easier than before.

11.5. Xlib

Tw o new major pieces of functionality have been added to Xlib: device independent color, and
internationalization (i18n). In addition, a few other additions and improvements have been made.

11.5.1. Xlib Manual

The Xlib manual has been reorganized for Release 5. Unfortunately, this may cause considerable
confusion for a while when people quote section numbers without reference to the release. How-
ev er, we feel that the new org anization is a considerable improvement.

11.5.2. Device-independent Color

The Xcms (X Color Management System) functions in Xlib support device-independent color
spaces derivable from the CIE XYZ color space. This includes the CIE XYZ, xyY, L*u*v*, and
L*a*b* color spaces as well as the TekHVC color space. In addition, linear RGB intensity value
space has been added, as well as gamma correction for device RGB values, and a uniform syntax
has been adopted for specifying colors in strings. Xlib now supports client-side color name data-
bases, and the existing Xlib functions that use color names (e.g., XLookupColor and XAlloc-
NamedColor) now handle all color spaces, so that the contrivance of using XParseColor fol-
lowed by XAllocColor is no longer necessary. Xlib provides direct programming interfaces for
dealing with color values in different spaces, and for converting between spaces. New device-
independent color spaces can also be added. For details on the new color functionality, read
Chapter 6 of the new Xlib manual.

X Window System Release Notes X Version 11, Release 5

-21-

Monitors are characterized by data stored on root window properties; the new xcmsdb program
can be used to set these properties. Unfortunately, you need a color analyzer instrument to gener-
ate characterizations; choosing a random one will almost certainly produce inaccurate colors.
However, you will find some sample database files in mit/clients/xcmsdb/datafilesand in con-
trib/clients/ca100/monitors.

11.5.3. Internationalization

An internationalized application is one which is adaptable to the requirements of different native
languages, local customs, and character string encodings. The process of adapting the operation
to a particular native language, local custom, or string encoding is called localizaton. A goal of
internationalization is to permit localization without program source modifications or recompila-
tion.

Internationalization in Xlib is based on the concept of a locale. A locale defines the ‘‘localized’’
behavior of a program at run-time. Locales affect Xlib in its:

• Encoding and processing of input method text

• Encoding of resource files and values

• Encoding and imaging of text strings

• Encoding and decoding for inter-client text communication

Characters from various languages are represented in a computer using an encoding. Different
languages have different encodings, and there are even different encodings for the same charac-
ters in the same language.

Xlib provides support for localized text imaging and text input. Sets of functions are provided for
multibyte (char*) text as well as wide character (wchar_t) text in the form supported by the host
C language environment. For details on the new internationalization functionality, read Chapter
13 of the new Xlib manual.

Tw o sample implementations of the internationalization mechanisms exist in this release, one
called Xsi and one called Ximp . You will find documentation for them in mit/doc/I18N and con-
trib/im , and locale definition files in mit/lib/nls . In contrib/im you will also find network-based
Input Method servers.

Unfortunately, none of the programs in the MIT software use the new internationalization facili-
ties. However, you will find some sample clients in contrib/im , and internationalized versions of
some of the MIT clients in contrib/clients.

11.5.4. Keysyms

By default a database of all registered vendor-private keysyms gets installed, so that Xlib can map
between keysym values and names.

11.5.5. Resource Databases

A new SCREEN_RESOURCES property has been defined, permitting screen-specific resources
to be set, so that (for example) colors can be specified for a color screen and not effect a mono-
chrome screen on the same server. The xrdb program has been enhanced to ‘‘do the right thing’’
automatically in most cases.

New functions have been defined to merge a resource database directly from a file, and to com-
bine two databases with either ‘‘augment’’ or ‘‘override’’ semantics.

A ‘‘#include’’ syntax is now supported in resource files. A specific example of using this is to
have a customized app-defaults file (in an Xt application) include the base app-defaults file.

X Window System Release Notes X Version 11, Release 5

-22-

A new reserved component name, ‘‘?’’, has been defined that matches a single level in the
resource hierarchy. This makes it easier to override resources specified in app-defaults files.

A new function, XrmEnumerateDatabase, has been defined to search for matching entries in a
resource database. The appres program has been enhanced in this release to become a con-
venient interface to this function.

A new function, XrmPermStringToQuark , has been introduced to avoid having Xlib allocate
needless storage for constant strings.

11.5.6. Extensions

A new function has been added to permit an extension to convert errors with additional data into
Xlib format, and one has been added to permit an extension to print out the values in an error han-
dler.

11.5.7. Miscellaneous

A new type XPointer has been introduced, replacing uses of the non-standard type caddr_t. Old
programs using caddr_t will still work, of course.

11.5.8. Performance

The new color and internationalization facilities have the unfortunate effect of making executa-
bles quite a bit larger on systems that do not have shared libraries.

The resource database functions have been completely rewritten for this release. Databases
should be significantly smaller in memory, and loading and parsing resources should be faster.

11.6. Xt Intrinsics

At the data structure level, Release 5 retains complete binary compatibility with Release 4. The
specification of the ObjectPart, RectObjPart, CorePart, CompositePart, ShellPart,
WMShellPart , TopLevelShellPart, and ApplicationShellPart instance records was made less
strict to permit implementations to add internal fields to these structures. Any implementation
that chooses to do so would, of course, force a recompilation. The Xlib specification for Xrm-
Value and XrmOptionDescRecwas updated to use a new type, XPointer, for the addr and value
fields respectively, to avoid ANSI C conformance problems. The definition of XPointer is binary
compatible with the previous implementation.

11.6.1. baseTranslations Resource

A new pseudo-resource, XtNbaseTranslations, was defined to permit application developers to
specify translation tables in application defaults files while still giving end users the ability to
augment or override individual event sequences. This change will affect only those applications
that wish to take advantage of the new functionality, or those widgets that may have previously
defined a resource named ‘‘baseTranslations’’.

Applications wishing to take advantage of the new functionality would change their application
defaults file, e.g., from

app.widget.translations: value
to

app.widget.baseTranslations: value
If it is important to the application to preserve complete compatibility of the defaults file between
different versions of the application running under Release 4 and Release 5, the full translations
can be replicated in both the ‘‘translations’’ and the ‘‘baseTranslations’’ resource.

X Window System Release Notes X Version 11, Release 5

-23-

11.6.2. Resource File Search Path

The current specification allows implementations greater flexibility in defining the directory struc-
ture used to hold the application class and per-user application defaults files. Previous specifica-
tions required the substitution strings to appear in the default path in a certain order, preventing
sites from collecting all the files for a specific application together in one directory. The Release
5 specification allows the default path to specify the substitution strings in any order within a sin-
gle path entry. Users will need to pay close attention to the documentation for the specific imple-
mentation to know where to find these files and how to specify their own XFILESEARCHPATH
and XUSERFILESEARCHPATH values when overriding the system defaults.

11.6.3. Customization Resource

XtResolvePathnamesupports a new substitution string, %C, for specifying separate application
class resource files according to arbitrary user-specified categories. The primary motivation for
this addition was separate monochrome and color application class defaults files. The substitution
value is obtained by querying the current resource database for the application resource name
‘‘customization’’, class ‘‘Customization’’. Any application that previously used this resource
name and class will need to be aware of the possibly conflicting semantics.

11.6.4. Per-Screen Resource Database

To allow a user to specify separate preferences for each screen of a display, a per-screen resource
specification string has been added and multiple resource databases are created; one for each
screen. This will affect any application that modified the (formerly unique) resource database
associated with the display subsequent to the Intrinsics database initialization. Such applications
will need to be aware of the particular screen on which each shell widget is to be created.

Although the wording of the specification changed substantially in the description of the process
by which the resource database(s) is initialized, the net effect is the same as in prior releases with
the exception of the added per-screen resource specification and the new customization substitu-
tion string in XtResolvePathname.

11.6.5. Internationalization of Applications

Internationalization as defined by ANSI is a technology that allows support of an application in a
single locale. In adding support for internationalization to the Intrinsics the restrictions of this
model have been followed. In particular, the new Intrinsics interfaces are designed to not pre-
clude an application from using other alternatives. For this reason, no Intrinsics routine makes a
call to establish the locale. However, a convenience routine to establish the locale at initialize
time has been provided, in the form of a default procedure that must be explicitly installed if the
application desires ANSI C locale behavior.

As many objects in X, particularly resource databases, now inherit the global locale when they are
created, applications wishing to use the ANSI C locale model should use the new function XtSet-
LanguageProcto do so.

The internationalization additions also define event filters as a part of the Xlib Input Method spec-
ifications. The Intrinsics enable the use of event filters through additions to XtDispatchEvent.
Applications that may not be dispatching all events through XtDispatchEvent should be
reviewed in the context of this new input method mechanism.

In order to permit internationalization of error messages the name and path of the error database
file is now allowed to be implementation dependent. No adequate standard mechanism has yet
been suggested to allow the Intrinsics to locate the database from localization information sup-
plied by the client.

X Window System Release Notes X Version 11, Release 5

-24-

The previous specification for the syntax of the language string specified by xnlLanguage has
been dropped to avoid potential conflicts with other standards. The language string syntax is now
implementation-defined. The example syntax cited is consistent with the previous specification.

11.6.6. Permanently Allocated Strings

In order to permit additional memory savings, an Xlib interface was added to allow the resource
manager to avoid copying certain string constants. The Intrinsics specification was updated to
explicitly require the Object class_name, resource_name, resource_class, resource_type,
default_type in resource tables, Core actions string field, and Constraint resource_name,
resource_class, resource_type, and default_type resource fields to be permanently allocated. This
explicit requirement is expected to affect only applications that may create and destroy classes on
the fly.

11.6.7. Arguments to Existing Functions

The args argument to XtAppInitialize , XtVaAppInitialize , XtOpenDisplay, XtDisplayInitial-
ize, and XtInitialize were changed from Cardinal* to int* to conform to pre-existing convention
and avoid otherwise annoying typecasting in ANSI C environments.

11.6.8. Implementation

Function prototypes are now fully supported in the header files.

<X11/Intrinsic.h> no longer includes <X11/Xos.h>by default. Inclusion of this file was a bug
in earlier releases. If you have old code that depends on this bug, you can define -DXT_BC when
you compile to get back the old behaviour.

String constants are now defined in a single array, saving memory and external symbols. Note
that because the new implementation uses #defines, string constants in widget header files which
duplicate a constant defined by Xt should either be removed or protected from a collision.

The translation manager facilities have been completely reimplemented in this release, resulting
in substantially less memory consumed by some applications. A number of other memory-saving
changes have been implemented, and in a few cases execution time should be faster.

The default keycode to keysym translator deals with all Latin keysyms.

11.6.9. Extension Events

Unfortunately, the Xt standard as of R5 still does not address the issues of integrating events from
protocol extensions into the normal Xt dispatch mechanism. The adventurous will find a set of
patches to Xt in contrib/lib/Xt that attempt to address this problem. These patches are non-stan-
dard, experimental, subject to change, not guaranteed, may adversely affect your ability to apply
public patches from MIT, and have not reviewed by the X Consortium.

11.7. PEX

The PEX Sample Implementation (SI) is composed of several parts. The major components are
the extension to the X Server, which implements the PEX protocol, and the client side Applica-
tion Protocol Interface (API), which provides a mechanism by which clients can generate PEX
protocol. The API provided with the PEX-SI is the ISO IS PHIGS Binding and the yet to be stan-
dardized PHIGS PLUS Binding.

In addition to these major components, several other minor components are provided. These
include documentation, 3D fonts for PEX, demos, and a verification suite called InsPEX. Also
provided in contrib are additional example programs and demos.

X Window System Release Notes X Version 11, Release 5

-25-

These elements are located in the following area:

The PEX server extension is located in the directories under mit/extensions/server/PEX. Device
independent portions are located in mit/extensions/server/PEX/dipex. Device dependent func-
tionality appears in mit/extensions/server/PEX/ddpex. Operating system font dependent code
appears in mit/extensions/server/PEX/ospex. General purpose server include files are in
mit/extensions/server/PEX/include.

The API code is located under the directory mit/extensions/lib/PEX. The PHIGS/PHIGS PLUS
Binding routines are in the c_binding subdirectory. The PHIGS Monitor (PM), a separate
process started at client runtime to handle PHIGS Input functionality, is in the cp subdirectory.
Other code located in the various subdirectories handles PHIGS archival, error handling, and
comprises the internal library level that PHIGS calls to generate the PEX Protocol.

All PEX documentation is located in the directory mit/doc/extensions/PEX, with pregenerated
PostScript files in mit/hardcopy/extensions/PEX. The PEX Protocol Specification itself is in the
Proto subdirectory. All SI documentation is in the SI subdirectory. Three subdirectories there
contain an Architecture Specification, a Porting Guide (with implementation details), and a User’s
Guide. The sources and programs used to generate these files are located in the mit/doc/exten-
sions/PEX/SI directory. Also located there is the PHIGS subdirectory which contains PHIGS
man pages and macros for printing these pages.

Font source for PEX and utilities to build them are located in the directory mit/fonts/PEX. Two
stroke fonts are supplied.

The PEX verification tool InsPEX can be found in the mit/extensions/test/InsPEXdirectory.
Shell scripts are provided there to run InsPEX. More information on InsPEX is available in the
User’s Guide.

Demos for PEX can be found in the mit/demos directory. Two demos and the NCGA Graphics
Performance Characterization (GPC) Suite can be found there. The demos are in the
mit/demos/auto_box and mit/demos/beach_ball directories, and are named auto_box and
beach_ballrespectively. The GPC suite is found in mit/demos/gpc. This suite consists of demos
(in the objects subdirectory), benchmarks (various directories below benchmarks) and tests (in
tests). For more information on how to run these demos see the User’s Guide.

There are also several unsupported demos and examples available in contrib . In con-
trib/demos/beach_ball2a newer version of the beach_ball demo with enhanced functionality
can be found. In contrib/examples/PEXvarious PHIGS based clients that demonstrate how to
use PEX via the PHIGS API are available.

11.7.1. Standards and Functionality

This release conforms to the PEX Protocol Specification V5.0P. The release comes with 2 fonts,
Roman and Roman_M (see the User’s Guide for more details). It implements the minimum
required HLHSR (Hidden Line/ Hidden Surface Removal) for PHIGS compliance (i.e., NONE).
The release only supports 8-bit color.

The API binding has been updated to the ISO IS PHIGS binding. The directory mit/util/PEX
contains sedscripts for converting programs from the previous binding to the new binding. These
scripts do most of the work, but some manual editing is still needed. There is a README file in
this directory with notes and information.

The PHIGS Binding provides most PHIGS/PHIGS PLUS functionality. The full PHIGS Input
Model (Valuator, Locator, Stroke, Choice, String, Pick) is implemented in a device independent
manner using the Athena Widget Set. PHIGS/PHIGS PLUS functionality includes, but is not
limited to the following graphical primitives: Polylines, Polymarkers, Fill Areas, Triangle Strips,

X Window System Release Notes X Version 11, Release 5

-26-

NURBS Curves and Surfaces, 2D and 3D Text. Other operations include Depth Cueing, Model-
ling Clip, Backface removal, Lighting Models and Surface Reflection.

Functionality not completed in this release is as follows:

In the API:

Mapping of PHIGS font ids to PEX fonts

In the Server:

Backface Attributes and Distinguish Flag
Font sharing between clients
Patterns, Hatches and associated attributes
Color Interpolation
Transparency
Depth Cueing for Markers
Z-buffering
Double Buffering

In InsPEX:

Completion of port to ISO IS PHIGS Binding

11.7.2. PEX and PHIGS Documents

The following documents are provided with this release:

PEX-SI User Guide
PEX-SI Graphics Library Manual Pages
PEX-SI Architecture Specification
PEX-SI Porting Guide

They are located in subdirectories of mit/doc/extensions/PEX. Please read the PEX-SI User’s
Guide for descriptions of the documents and how to use them. Instructions for printing the docu-
ments are provided in a README file in each of the document directories.

The User’s Guide is provided as a starting point in the documentation. It describes the various
documents provided with the release, and includes instructions on using the clients, the API and
the server code. It also includes specifications for the server functionality and archive format.

The Graphics Library Manual Pages are for the client-side library, written to the ISO IS binding.

The Architecture Specification describes the PEX-SI architecture at a high level.

The Porting Guide is intended as an extension to the Architecture Specification. There is a lot of
good information in this document, and it is organized fairly well, but it lacks some polish. It is
not a complete document.

11.7.3. InsPEX

This release of InsPEX includes coverage of all the PHIGS PLUS graphics primitives, such as fill
area sets with data, quadrilateral meshes, triangle strips, and NURBS. PHIGS PLUS attributes
such as direct color specification, depth cuing, and lighting are also exercised.

The testing of input is somewhat limited by the problem of simulating mouse and keyboard input
in a reliable and portable fashion. For the pick, locator, and stroke devices, simulating the mouse
ev ents is straightforward, but since the string, valuator, and choice devices are built upon a toolkit
(Athena Widgets in the PEX-SI’s case), getting window id’s for the appropriate windows and
sending mouse clicks to the right place on those windows is more difficult, and probably impossi-
ble to do in a way that could be quickly ported to another toolkit along with these input devices.
The technology for automatic testing of software using a graphical user interface under X has not

X Window System Release Notes X Version 11, Release 5

-27-

progressed to the point where this functionality could be tested in a way that would be useful to
all the potential users of InsPEX.

For nearly all of the tests that use image comparison to verify graphical output, reference images
have been supplied. Due to outstanding bugs in the code, however, some tests are shipped with-
out reference images. Also, since back-facing attributes are not implemented, the images saved
for these tests are actually incorrect. These have been shipped, however, because they still can be
helpful to someone porting the PEX-SI. It should be expected that when backfacing attributes are
implemented, these tests will fail and image comparison will be required.

Along with the README in the main InsPEX directory, there is a sample log file, sample.log,
and an automatically-generated summary of all the current tests, test_descrip. See the
README for a description of how that file was generated.

11.8. Athena Widget Set

Many minor bugs have been fixed. The Xaw examples have been moved to contrib . Howev er,
please note that the Athena Widgets have been and continue to be low on our priority list, so
many bugs remain (particularly in the Text widget) and many requests for enhancements have not
been implemented. Because some incompatible changes have been made, the shared library
major version number on Suns has been incremented.

Header Files

Function prototypes have been added to the public interfaces.

AsciiSrc

No warning message is printed when the file cannot be written to; the return value should
be enough info. GetValueson the string resource was failing when "useStringInPlace" was
set to true; fixed. A memory leak when freeing pieces in a source of type "ascii String" has
been plugged. The buffer is now updated whenever the "string" resource is set using
XtSetValues. If the type is file then the file is read in again.

Box

Box.h now includes <X11/Xmu/Converters.h>for the orientation resources.

Clock

Changed to be a subclass of Simple instead of Core.

Command

A bug in changing the shape style back to Rectangular has been fixed.

Dialog

The Icon resource type has changed from Pixmap to Bitmap.

Form

The geometry handler now will now disallow geometry management requests that will
force the child outside the Form’s window. EdgeType names have been changed to have
prefix ‘‘Xaw’’ instead of ‘‘Xt’’, but the old definitions are still around with a #define. The
string-to-widget converter no longer caches resources.

Logo

Changed to be a subclass of Simple instead of Core. Rev erse video now works correctly.

X Window System Release Notes X Version 11, Release 5

-28-

Mailbox

Changed to be a subclass of Simple instead of Core. Rev erse video now works correctly.

MenuButton

The MenuButton widget no longer places a server grab on itself. Instead, PopupMenu is
registered as a grab action. As a result of this, clients which popped up menus without
using XtMenuPopup or MenuPopup or PopupMenu in the menu button translations will
fail to have a grab active. They should make a call to XtRegisterGrabAction on the
appropriate action in the application initialization routine, or use a different translation.

Paned

Paned.hnow includes <X11/Xmu/Converters.h>for the orientation resources.

Panner

This widget is new in R5, see the Xaw manual for details.

Porthole

This widget is new in R5, see the Xaw manual for details.

Repeater

This widget is new in R5, see the Xaw manual for details.

Scrollbar

Changed to be a subclass of Simple instead of Core. The type of thumb resource has
changes from Pixmap to Bitmap. Howev er, if applications provide the resource conver-
sion, the SetValuesmethod can still handle pixmaps of correct depth.

Simple

A color cursor converter has been added, as well as the new new resource types: XtNpoint-
erColor, XtNpointerColorBackground , and XtNcursorName.

SmeBSB

The Right bitmaps are now painted in the correct location. Right and Left Bitmaps can be
specified in resource files, and at startup time.

Text

If there is no current selection the the selection extends from the insert point, rather than
some random location. Forward (Backward) Paragraph works at the paragraph boundaries
now. Selecting a word now transitions correctly at both end points. An infinite loop when
using fill paragraph in a read only text widget has been found and fixed. When the "resize"
resource is set the text will start up with exactly enough space to contain the text in the wid-
get. A bug that could cause an infinite loop when Meta-Q was used to invoke the form-
paragraph function on a read-only text widget has been fixed. Problems dealing with expo-
sure events have been fixed. In TextP.h, the names of the following symbolic constants
have each had the prefix Xaw added to them: XawLF , XawCR, XawTAB , XawBS,
XawSP, XawDEL , and XawBSLASH.

Toggle

The widget state is preserved across changes in sensitivity. A string-to-widget converter is
registered for radio groups.

Tr ee

This widget is new in R5, see the Xaw manual for details.

X Window System Release Notes X Version 11, Release 5

-29-

Paned

A bug that caused XtGeometryYes returns to have bogus values, and caused panes to get
random sizes, has been fixed.

Vendor

Support has been added for the editres protocol. All applications using the Athena Wid-
gets are automatically editable with editres. A bug that cause Shell to ignore all but first
child has been fixed.

Viewport

XawPannerReport support has been added.

11.9. X Server

Considerably more work speeding up the server has been done, particularly in the cfb and mfb
code. The font interfaces are completely new. Compressed fonts are not supported in the release.
Other changes are documented in mit/doc/Server/r5.tbl.ms.

11.10. Fonts

Font Server

A sample implementation of the server side of the X Font Service Protocol is provided in a
new program, fs. On the Macintosh, a special version of the server called MacFS can be
used to serve TrueType fonts.

New Font Format

Both the X server and the font server use a new font format, pcf (portable compiled font).
Pcf is readable across different machines and contains more information about a font than
the old snf format. Fonts in snf format can still be used.

Font Applications

The following new utilities talk to the font server: fsinfo, fslsfonts, fstobdf, and showfont.
To build pcf fonts, bdftosnf has been replaced by bdftopcf.

Scalable Fonts

Bitstream, Inc. has donated an outline scaling engine along with a set of sample fonts,
matching the donated bitmap fonts included with Release 4. In addition, a usable (but not
very pretty) bitmap scaling engine has been implemented which allows the use of all other
fonts at arbitrary point sizes.

Font Changes

Many misc fonts now hav e ISO Latin-1 upper half characters and some tuning. The fol-
lowing sets of fonts are new: Latin/Hebrew in ISO8859-8 encoding, Kanji in
JISX0208.1983-0 encoding,6 Hangul in KSC5601.1987-0 encoding.

6. The JIS Kanji fonts were purchased on behalf of the MIT X Consortium from
the Japanese Standards Association, 1-24, Akasaka 4, Minato-ku, Tokyo 107,
Japan. They were converted to BDF format, keeping within the JIS rules. In
keeping with JIS rules, these fonts should not be transformed into other encod-
ings, they should only be used in the JISX0208.1983-0 encoding. It is also
strongly recommended that companies wishing to use these fonts in commercial
products should purchase the original JIS font standards directly from JSA. The
purchase price is nominal.

X Window System Release Notes X Version 11, Release 5

-30-

12. Acknowledgements

The MIT Release 5 distribution is brought to you by the MIT X Consortium. A cast of thousands,
literally, hav e made this release possible. We cannot possibly acknowledge them all here. The
names of all people who made it a reality will be found in the individual documents and source
files. We greatly appreciate the work that everyone has put into this release.

Hoping you enjoy Release 5,

Donna Converse
Stephen Gildea
Susan Hardy
Jay Hersh
Keith Packard
David Sternlicht
Bob Scheifler
Ralph Swick

(R5 Survival Club)

X Window System Release Notes X Version 11, Release 5

