
-- --

The Evolution of the Kerberos Authentication Service

John T. Kohl

Digital Equipment Corporation

B. Clifford Neuman

Information Sciences Institute
University of Southern California

Theodore Y. Ts’o

Massachusetts Institute of Technology

ABSTRACT

The Kerberos Authentication Service, developed atMIT, has been widely adopted
by other organizations to identify clients of network services across an insecure network
and to protect the privacy and integrity of communication with those services. While
Version 4 was a step up from traditional security in networked systems, extensions were
needed to allow its wider application in environments with different characteristics than
that atMIT. This paper discusses some of the limitations of Version 4 of Kerberos and
presents the solutions provided by Version 5.

1. Introduction

The Kerberos Authentication Service was developed by the Massachusetts Institute of Technology (MIT) to
protect the emerging network services provided by Project Athena. Versions 1 through 3 were used inter-
nally. Although designed primarily for use by Project Athena, Version 4 of the protocol has achieved
widespread use beyondMIT. Models for administration and use of computer services differ from site to site
and some environments require support that isn’t present in Version 4. Version 5 of the Kerberos protocol
incorporates new features suggested by experience with Version 4, making it useful in more situations.
Version 5 was based in part upon input from many contributors familiar with Version 4.

This paper begins by describing the Kerberos model and basic protocol exchanges. Section 3 discusses the
limitations of Version 4 of Kerberos. The fourth section reviews new features found in Version 5. Section
5 describes the implementation of Version 5 and support for converting existing applications from Version
4. The paper concludes with status and plans for future work.

Terminology and conventions

A principal is the basic entity that participates in authentication. In most cases a principal represents a user
or an instantiation of a network service on a particular host. Each principal is uniquely named by itsprinci-
pal identifier.

Encryption is the process of transforming data into a form that cannot be understood without applying a
second transformation. The transformation is affected by anencryption keyin such a manner that the
hhhhhhhhhhhhhhhhhh
This paper is a revision of a paper presented at the Spring 1991 EurOpen Conference, in Tromsø, Norway, and will appear
in an upcoming IEEE Computer Society Press book edited by Frances Brazier and Dag Johansen.

The work described here was done while Kohl was atMIT, and in part while Neuman was at the University of Washington.

-- --

- 2 -

second transformation can only be applied by someone in possession of the correspondingdecryption key.

A secret-key cryptosystemsuch as that defined by the Data Encryption Standard (DES) [FIPS46] uses a sin-
gle key for both encryption and decryption. Such an encryption key is called asecretkey.

A public-key cryptosystemsuch asRSA [Riv78] uses different keys for encryption and decryption. One of
the keys in the pair can be publicly known while the other must be kept private. These keys are referred to
aspublic andprivate keys respectively.

Plaintext is a message in its unencrypted form, either before the encryption transformation has been
applied, or after the corresponding decryption transformation is complete.Ciphertext is the encrypted
form of a message, the output of the encryption transformation.

In figures, encryption is denoted by showing the plaintext surrounded by curly braces ({}) followed by a
key (K) whose subscript denotes the principals who possess or have access to that key. Thus, "abc"
encrypted under c’s key is represented as {abc}Kc.

2. The Kerberos Model

Kerberos was developed to enable network applications to securely identify their peers. To achieve this,
the client (initiating party) conducts a three-party message exchange to prove its identity to the server (the
contacted party). The client proves its identity by presenting to the server aticket (shown in figures as Tc,s)
which identifies a principal and establishes a temporary encryption key that may be used to communicate
with that principal, and anauthenticator(shown in figures as Ac,s) which proves that the client is in posses-
sion of the temporary encryption key that was assigned to the principal identified by the ticket. The
authenticator prevents an intruder from replaying the same ticket to the server in a future session.

Tickets are issued by a trusted third partyKey Distribution Center(KDC). TheKDC, proposed by Needham
and Schroeder [Nee78], is trusted to hold in confidence secret keys known by each client and server on the
network (the secret keys are established out-of-band or through an encrypted channel). The key shared
with the KDC forms the basis upon which a client or server believes the authenticity of the tickets it
receives. A Kerberos ticket is valid for a finite interval called itslifetime. When the interval ends, the
ticket expires; any later authentication exchanges require a new ticket from theKDC.

Each installation comprises an autonomously administeredrealm and establishes its ownKDC. Most
currently-operating sites have chosen realm names that parallel their names under the Internet domain
name system (e.g. Project Athena’s realm isATHENA.MIT.EDU). Clients in separate realms can authen-
ticate to each other if the administrators of those realms have previously arranged a shared secret.

2.1. The initial ticket exchange

Figure 1 shows the messages† required for a client to prove its identity to a server. The basic messages are
the same for Versions 4 and 5 of Kerberos though the details of the encoding differ. A typical application
uses this exchange when it first establishes a connection to a server. Subsequent connections to the same
server require only the final message in the exchange (client caching eliminates the need for the first two
messages until the ticket expires).

In the first message the client contacts theKDC, identifies itself, presents a nonce (a timestamp or other
non-repeating identifier for the request), and requests credentials for use with a particular server.

Upon receipt of the message theKDC selects a random encryption key Kc,s, called thesession key,and gen-
erates the requested ticket. The ticket identifies the client, specifies the session key Kc,s, lists the start and
expiration times, and is encrypted in the key Ks shared by theKDC and the server. Because the ticket is
encrypted in a key known only by theKDC and the server, nobody else can read it or change the identity of
the client specified within it. TheKDC next assembles a response, the second message, which it sends to the
client. The response includes the session key, the nonce, and the ticket. The session key and nonce are
encrypted with the client’s secret key Kc (in Version 4 all fields are encrypted in Kc).
hhhhhhhhhhhhhhhhhh
† For clarity, the figures show a simplified version of the messages. Other message fields present in the actual messages are
less relevant to the present discussion.

-- --

- 3 -

KDC

1 2

Client
3hhhhhhhhhhhh Server

1. Client→ KDC: c, s, n
2. KDC → Client: {Kc,s,n}Kc ,{Tc,s}K s
3. Client→ Server: {Ac}K c,s,{Tc,s}K s

(In version 4, message 2 is {Kc,s,n,{Tc,s} K s}K c)

Figure 1: Getting and using an Initial Ticket

Upon receiving the response the client decrypts it using its secret key (usually derived from a password).
After checking the nonce, the client caches the ticket and associated session key for future use.

In the third message the client presents the ticket and a freshly-generated authenticator to the server. The
authenticator contains a timestamp and is encrypted in the session key Kc,s. Upon receipt the server
decrypts the ticket using the key it shares with theKDC (this key is kept in secure storage on the server’s
host) and extracts the identity of the client and the session key Kc,s. To verify the identity of the client, the
sever decrypts the authenticator (using the session key Kc,s from the ticket) and verifies that the timestamp
is current.

Successful verification of the authenticator proves that the client possesses the session key Kc,s, which it
only could have obtained if it were able to decrypt the response from theKDC. Since the response from the
KDC was encrypted in Kc, the key of the user named in the ticket, the server may reasonably be assured that
identity of the client is in fact the principal named in the ticket.

If the client requests mutual authentication from the server, the server responds with a fresh message
encrypted using the session key. This proves to the client that the server possesses the session key, which it
could only have obtained if it was able to decrypt the ticket. Since the ticket is encrypted in a key known
only by theKDC and the server, the response proves the identity of the server.

For greater detail on the messages in Version 4 of Kerberos the reader is referred to [Ste88] and [Mil87].
Details about Version 5 can be found in [Koh92].

2.2. The additional ticket exchange

To reduce the risk of exposure of the client’s secret key Kc and to make the use of Kerberos more tran-
sparent to the user, the exchange above is used primarily to obtain a ticket for a specialticket-granting
server(TGS). The client erases its copy of the client’s secret key once this ticket-granting ticket (TGT) has
been obtained,

TheTGS is logically distinct from theKDC which provides the initial ticket service, but theTGS runs on the
same host and has access to the same database of clients and keys used by theKDC (see Figure 2). A client
presents itsTGT (along with other request data) to theTGS as it would present it to any other server (in an
application request); theTGS verifies the ticket, authenticator, and accompanying request, and replies with a
ticket for a new server. The protected part of the reply is encrypted with the session key from theTGT, so
the client need not retain the original secret key Kc to decrypt and use this reply. The client then uses these
new credentials as before to authenticate itself to the server, and perhaps to verify the identity of the server.

Once the authentication is established, the client and server share a common session key Kc,s, which has
never been transmitted over the network without being encrypted. They may use this key to protect subse-
quent messages from disclosure or modification. Kerberos provides message formats which an application
may generate as needed to assure the integrity or both the integrity and privacy of a message.

-- --

- 4 -

KDC TGS

usually co-located.........................

Client Server

1

c
c
c
c

2 3
4

5hhhhhhhhhhhhhhh

1. Client→ KDC: c, tgs, n
2. KDC → Client: {Kc,tgs,n}Kc ,{Tc,tgs}K tgs
3. Client→ TGS: {Ac}K c,tgs,{Tc,tgs}K tgs , s, n
4. TGS→ Client: {Kc,s,n}Kc,tgs,{Tc,s}K s
5. Client→ Server: {Ac}K c,s,{Tc,s}K s

(In version 4, message2 is {K c,tgs,n,{Tc,tgs}K tgs}K c,
and message4 is {K c,s,n,{Tc,s}K s}K c,tgs)

Figure 2: Getting a service ticket

3. Limitations of Version 4

Version 4 of Kerberos is in widespread use, but some sites require functionality that it doesn’t provide,
while others have a computing environment or administrative procedures that differ from that atMIT. As a
result, work on Kerberos Version 5 commenced in 1989, fueled by discussions with Version 4 users and
administrators about their experiences with the protocol andMIT’s implementation.

3.1. Environmental shortcomings

Kerberos Version 4 was targeted primarily for Project Athena [Cha90], and as such in some areas it makes
assumptions and takes approaches that are not appropriate universally:

Encryption system dependence: The Version 4 protocol uses only the Data Encryption Standard (DES) to
encrypt messages. The export ofDES from theUSA is restricted by the U.S. Government, making
truly widespread use of Version 4 difficult.

Internet protocol dependence: Version 4 requires the use of Internet Protocol (IP) addresses, which
makes it unsuitable for some environments.

Message byte ordering: Version 4 uses a "receiver makes right" philosophy for encoding multi-byte
values in network messages, where the sending host encodes the value in its own natural byte order
and the receiver must convert this byte order to its own native order. While this makes communica-
tion between two hosts with the same byte order simple, it does not follow established conventions
and will preclude interoperability of a machine with an unusual byte order not understood by the
receiver.

Ticket lifetimes: The valid life of a ticket in Version 4 is encoded by aUNIX timestamp issue date and an
8-bit lifetime quantity in units of five minutes, resulting in a maximum lifetime of 211⁄4 hours. Some
environments require longer lifetimes for proper operation (e.g. a long-running simulation which
requires valid Kerberos credentials during its entire execution).

Authentication forwarding: Version 4 has no provision for allowing credentials issued to a client on one
host to be forwarded to some other host and used by another client. Support for this might be useful
if an intermediate server needs to access some resource with the rights of the client (e.g. a print
server needs access to the file server to retrieve a client’s file for printing), or if a user logs into
another host on the network and wishes to pursue activities there with the privileges and authentica-
tion available on the originating host.

Principal naming: In Version 4, principals are named with three components: name, instance, and realm,

-- --

- 5 -

each of which may be up to 39 characters long. These sizes are too short for some applications and
installation environments. In addition, due to implementation-imposed conventions the normal char-
acter set allowed for the name portion excludes the period (.), which is used in account names on
some systems. These same conventions dictate that the account name match the name portion of the
principal identifier, which is unacceptable in situations where Kerberos is being installed in an exist-
ing network with non-unique account names.

Inter-realm authentication: Version 4 provides cooperation between authentication realms by allowing
each pair of cooperating realms to exchange an encryption key to be used as a secondary key for the
ticket-granting service. A client can obtain tickets for services from a foreign realm’sKDC by first
obtaining a ticket-granting ticket for the foreign realm from its localKDC and then using thatTGT to
obtain tickets for the foreign application server (see Figure 3). This pair-wise key exchange makes
inter-realm ticket requests and verification easy to implement, but requiresO (n2) key exchanges to
interconnectn realms (see Figure 4). Even with only a few cooperating realms, the assignment and
management of the inter-realm keys is an expansive task.

3.2. Technical deficiencies

In addition to the environmental problems, there are some technical deficiencies in Version 4 and its imple-
mentation. Bellovin and Merritt [Bel90] provide detailed analyses of some of these issues.

Double Encryption: As shown in Figure 1, the ticket issued by the Kerberos server in Version 4 is
encrypted twice when transmitted to the client, and only once when sent to the application server.
There is no need to encrypt it in the message from theKDC to the client, and doing so can be wasteful
of processing time if encryption is computationally intensive (as will be the case for most software-
based encryption implementations; see [Mer90] for discussion of fast software-based encryption
methods).

PCBC encryption: Kerberos Version 4 uses a non-standard mode ofDES to encrypt its messages. FIPS 81
[FIPS81] describes the normal cipher-block-chaining (CBC) mode ofDES. Version 4 uses a modified
Version called plain- and cipher-block-chaining mode (PCBC). This mode was an attempt to provide
data encryption and integrity protection in one operation. Unfortunately, it allows an intruder to
modify a message with a special block-exchange attack which may not be detected by the recipient
[Koh89].

TGSlocal TGSremote

Client Serverremote

1

c
c
c
c

2 3
4

5hhhhhhhhhhhhhhhh

1. Client→ TGSlocal: {A c}K c,tgs,{Tc,tgs}K tgs , tgsrem
2. TGSlocal → Client: {Kc,tgsrem

}K c,tgs,{Tc,tgsrem
}K tgsrem

3. Client→ TGSremote: {A c}K c,tgsrem
,{Tc,tgsrem

}K tgsrem
, srem

4. TGSremote→ Client: {Kc,srem
}K c,tgsrem

,{Tc,srem
}K srem

5. Client→ Serverremote: {A c}K c,srem
,{Tc,srem

}K srem

(In version 4, message2 is {K c,tgsrem
,{Tc,tgsrem

}K tgsrem
}K c,tgs,

and message4 is {K c,srem
,{Tc,srem

}K srem
}K c,tgsrem

)

Figure 3: Getting a foreign realm service ticket

-- --

- 6 -

EDU
hhhhhhhhhhhh

hhhhhhhhhhhh

MIT.EDU
hhhhhhhhhhhh

hhhhhhhhhhhh

Berkeley.EDU
hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

UMICH.EDU
hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

IFS.UMICH.EDU
hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhh

Figure 4: Version 4 realm interconnections

Authenticators and replay detection: Kerberos Version 4 uses an encrypted timestamp to verify the
freshness of messages and prevent an intruder from staging a successful replay attack. If an authen-
ticator (which contains the timestamp) is out of date or is being replayed, the application server
rejects the authentication. However, maintaining a list of unexpired authenticators which have
already been presented to a service can be hard to implement properly (and indeed is not imple-
mented in the Version 4 implementation distributed byMIT).

Password attacks: The initial exchange with the Kerberos server encrypts the response with a client’s
secret key, which in the case of a user is algorithmically derived from a password. An intruder is
able to record an exchange of this sort and, without alerting any system administrators, attempt to
discover the user’s password by decrypting the response with each password guess. Since the
response from the Kerberos server includes verifiable plaintext [Lom89], the intruder can try as
many passwords as are available and will know when the proper password has been found (the
decrypted response will make sense).

Session keys: Each ticket issued by theKDC contains a key specific to that ticket, called a session key,
which may be used by the client and server to protect their communications once authentication has
been established. However, since many clients use a ticket multiple times during a user’s session, it
may be possible for an intruder to replay messages from a previous connection to clients or servers
which do not properly protect themselves (again,MIT’s Version 4 implementation does not fully
implement this protection for theKRB_SAFE andKRB_PRIV messages). Additionally, there are situa-
tions in which a client wishes to share a session key with several servers. This requires special non-
standard application negotiations in Version 4.

Cryptographic checksum: The cryptographic checksum (sometimes called a message authentication code
or hash or digest function) used in Version 4 is based on the quadratic algorithm described in
[Jue85]. TheMIT implementation does not perform this function as described; the suitability of the
modified version as a cryptographic checksum function is unknown.

4. Changes for Version 5

Version 5 of the protocol has evolved over the past two years based on implementation experience and dis-
cussions within the community of Kerberos users. Its final specification has reached closure, and a descrip-
tion of the protocol is available [Koh92]. Version 5 addresses the concerns described above and provides
additional functionality.

4.1. Changes between Versions 4 and 5

Use of encryption

To improve modularity and ease export-regulation considerations for Version 5, the use of encryption has
been separated into distinct software modules which can be replaced or removed by the programmer as
needed. When encryption is used in a protocol message, the ciphertext is tagged with a type identifier so
that the recipient can identify the appropriate decryption algorithm necessary to interpret the message.

-- --

- 7 -

Encryption keys are also tagged with a type and length when they appear in messages. Since it is conceiv-
able to use the same key type in multiple encryption systems (e.g. different variations onDES encryption),
the key type may not map one-to-one to the encryption type.

Each encryption algorithm is responsible for providing sufficient integrity protection for the plaintext so
that the receiver can verify that the ciphertext was not altered in transit. If the algorithm does not have
such properties, it can be augmented by including a checksum in the plaintext before encryption. By doing
this, we can discard thePCBC DESmode, and use the standardCBC mode with an embedded checksum over
the plaintext. It is important to consider the effects of chosen plaintext attacks when analyzing the message
integrity properties of candidate encryption algorithms. Some potential weaknesses were found with
encryption and checksum methods in initial drafts of the Version 5 protocol [Stu92]. These weaknesses
were corrected in subsequent revisions.

Network addresses

When network addresses appear in protocol messages, they are similarly tagged with a type and length
field so the recipient can interpret them properly. If a host supports multiple network protocols or has mul-
tiple addresses of a single type, all types and all addresses can be provided in a ticket.

Message encoding

Network messages in Version 5 are described using the Abstract Syntax Notation One (ASN.1) syntax
[ISO8824] and encoded according to the basic encoding rules [ISO8825]. This avoids the problem of
independently specifying the encoding for multi-byte quantities as was done in Version 4. It makes the
protocol description look quite different from Version 4, but it is primarily the presentation of the message
fields that changes; the essence of the Kerberos Version 4 protocol remains.

Ticket changes

The Kerberos Version 5 ticket has an expanded format to accommodate the required changes from the Ver-
sion 4 ticket. It is split into two parts, one encrypted and the other plaintext. The server’s name in the
ticket is plaintext since a server with multiple identities, e.g. an inter-realmTGS, may need the name to
select a key with which to decrypt the the remainder of the ticket (the name of the server is bookkeeping
information only and its protection is not necessary for secure authentication). Everything else remains
encrypted. The ticket lifetime is encoded as a starting time and an expiration time (rather than a specific
lifetime field), affording nearly limitless ticket lifetimes. The new ticket also contains a new flags field and
other new fields used to enable the new features described later.

Naming principals

Principal identifiers are multi-component names in Kerberos Version 5. The identifier is encoded in two
parts, the realm and the remainder of the name. The realm is separate to facilitate easy implementation of
realm-traversal routines and realm-sensitive access checks. The remainder of the name is a sequence of
however many components are needed to name the principal. The realm and each component of the
remainder are encoded as separateASN.1 GeneralStrings, so there are few practical restrictions on the
characters available for principal names.

EDU
hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

Berkeley.EDU
hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh
MIT.EDU

hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh
UMICH.EDU

hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

IFS.UMICH.EDU
hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

shortcut link

Figure 5: A Version 5 hierarchy of realms

-- --

- 8 -

Inter-realm support

In Version 5, Kerberos realms cooperate through a hierarchy based on the name of the realm (see Figure
5). A source realm is interoperable with a destination realm if it shares an inter-realm key directly with the
destination realm, or if it shares a key with an intermediate realm that is itself interoperable with the desti-
nation realm. Each realm exchanges a different pair of inter-realm keys with its parent node and each
child. These keys are used in a common encryption system to obtain tickets for each successive realm
along the path. This arrangement reduces the number of key exchanges toO (log(n)).

When an application needs to contact a server in a foreign realm, it "walks" up and down the tree toward
the destination realm, contacting each realm’sKDC in turn, asking for a ticket-granting ticket to the foreign
realm. In most cases, theKDC will issue a ticket for the next node in the proper direction on the tree. If a
realm has established a "shortcut" spanning link with some realm further in the path, it issues a ticket-
granting ticket for that realm instead. This way every realm can interoperate, and heavily-traveled paths
can be optimized with a direct link.

When a ticket for the end service is finally issued, it will contain an enumeration of all the realms consulted
in the process of requesting the ticket. An application server which applies strict authorization rules is per-
mitted to reject authentication which passes through certain untrusted realms.

4.2. New protocol features in Version 5

In addition to the changes discussed above, several new features are supported in Version 5.

Tickets

Version 5 tickets contain several additional timestamps and a flags field. These changes allow greater
flexibility in the use of tickets than was available in Version 4.

Each ticket issued by theKDC using the initial ticket exchange is flagged as such. This allows servers such
as a password changing server to require that a client present a ticket obtained by direct use of the client’s
secret key Kc instead of one obtained using aTGT. Such a requirement prevents an attacker from walking
up to an unattended but logged in workstation and changing another user’s password.

Tickets may be issued as renewable tickets with two expiration times, one for a time in the near future, and
one later. The ticket expires as usual at the earlier time, but if it is presented to theKDC in a renewal
request before this earlier expiration time, a replacement ticket is returned which is valid for an additional
period of time. TheKDC will not renew a ticket beyond the second expiration indicated in the ticket. This
mechanism has the advantage that although the credentials can be used for long periods of time, theKDC

may refuse to renew tickets which are reported as stolen and thereby thwart their continued use.

A similar mechanism is available to assist authentication during batch processing. A ticket issued as post-
dated and invalid will not be valid until its post-dated starting time passes and it is replaced with a validated
ticket. The client validates the ticket by presenting it to theKDC as described above for renewable tickets.

Authentication forwarding can be implemented by contacting theKDC with the additional ticket exchange
and requesting a ticket valid for a different set of addresses than theTGT used in the request. TheKDC will
not issue such tickets unless the presentedTGT has a flag set indicating that this is a permissible use of the
ticket. When the entity on the remote host is granted only limited rights to use the authentication, the for-
warded credentials are referred to as aproxy (after the proxy used in legal and financial affairs). Proxies
are handled similarly to forwarded tickets, except that new proxy tickets will not be issued for a ticket-
granting service; they will only be issued for application server tickets.

In certain situations, an application server (such as an X Window System server) will not have reliable,
protected access to an encryption key necessary for normal participation as a server in the authentication
exchanges. In such cases, if the server has access to a user’s ticket-granting ticket and associated session
key (which in the case of single-user workstations may well be the case), it can send this ticket-granting
ticket to the client, who presents it and the user’s own ticket-granting ticket to theKDC. The KDC then
issues a ticket encrypted in the session key from the server’s ticket-granting ticket; the application server
has the proper key to decrypt and process this ticket. The details of such an exchange are presented in
[Dav90].

-- --

- 9 -

Authorization data

Kerberos is concerned primarily with authentication; it is not directly concerned with the related security
functions of authorization and accounting. To support the implementation of these related functions by
other services, Version 5 of Kerberos provides a mechanism for the tamper-proof transmission of authori-
zation and accounting information as part of a ticket. This information takes the form of restrictions on the
use of a ticket. The encoding of each restriction is not a concern of the Kerberos protocol, but is instead
defined by the authorization or accounting mechanism in use. Restrictions are carried in theauthorization
datafield of the ticket.

When a ticket is requested, restrictions are sent to theKDC where they are inserted into the ticket,
encrypted, and thus protected from tampering. In the protocol’s most general form, a client may request
that theKDC include or add such data to a new ticket. TheKDC does not remove any authorization data
from a ticket; theTGS always copies it from theTGT into the new ticket, and then adds any requested addi-
tional authorization data. Upon decryption of a ticket, the authorization data is available to the application
server. While Kerberos makes no interpretation of the data, the application server is expected to use the
authorization data to appropriately restrict the client’s access to its resources.

Among other uses, theauthorization datafield can be used in a proxy ticket to create a capability. The
client requesting the proxy from theKDC specifies any authorization restrictions in the authorization data,
then securely transmits the proxy and session key to another party, which uses the ticket to obtain limited
service from an application server. Neuman [Neu91] discusses possible uses of theauthorization data
field in detail.

The Open Software Foundation’s Distributed Computing Environment uses theauthorization datafield for
the generation of privilege attribute certificates (PACs). Privilege information is maintained by a privilege
server. When aPAC is requested by a client the privilege server requests a Kerberos ticket identifying the
privilege server itself, but restricting the groups to which the client belongs and specifying aDCE specific
userID. The ticket is then returned to the client which uses it to assert itsDCE userID and prove member-
ship in the listed groups. In essence, the privilege server grants the client a proxy authorizing the client to
act as the privilege server to assert the listedDCE userID and membership in the listed groups. If the ticket
did not include restrictions, it would indicate that the client was the privilege server, allowing the client to
assert any userID and membership in any group.

Pre-authentication data

In an effort to complicate the theft of passwords, the Kerberos Version 5 protocol provides fields in the
initial- and additional-ticket exchanges to support password alternatives such as hand-held authenticators
(devices which have internal circuitry used to generate a continually changing password). In the initial
ticket exchange, these fields can be used to alter the key Kc in which the reply is encrypted. This makes a
stolen password useless since fresh information from a physical device is needed to decrypt a response.
The field can also be used to prove the client’s identity to theKDC before any ticket is issued. Doing this
makes it a little more difficult for an attacker to obtain a message that can be used to verify password
guesses.

This pre-authentication data field is used by the client in the additional ticket exchange to pass the ticket-
granting ticket to theKDC; since it is a variable-length array, other values may be sent in the additional-
ticket exchange.

Subsession key negotiation

Tickets are cached by clients for later use. To avoid problems caused by the reuse of a ticket’s session key
across multiple connections, a server and client can cooperate to choose a newsubsession keywhich is
used to protect a single connection. This subsession key is discarded once the connection is closed.

Negotiation of subsession keys allows an application to protect the privacy of messages broadcast to
several recipients. The application can individually negotiate with each recipient to use a common subses-
sion key before beginning the broadcasts.

-- --

- 10 -

Sequence numbers

Kerberos provides two message formats for applications to protect their communications. TheKRB_SAFE

message uses a cryptographic checksum to insure data integrity. TheKRB_PRIV message uses encryption to
insure integrity and privacy. In Version 4 these messages included as control information a timestamp and
the sender’s network address. With Version 5, an application may elect to use a timestamp (as before) or a
sequence number. If the timestamp is used, the receiver must record the known timestamps to avoid replay
attacks; if a sequence number is used the receiver must verify that the messages arrive in the proper order
without gaps. There are situations where one choice makes applications simpler (or even possible) to
implement; see the discussions in [Koh92].

5. Implementation features

5.1. The base implementation

TheMIT implementation of the Version 5 protocols is composed of several run-time libraries with which a
program may link. The core library functions will probably be used by all applications; other libraries or
subsystems may be replaced or omitted as needed by an application programmer. All code is currently
written in "C."

The base functions: The core Kerberos library contains the routines which assemble, disassemble and
interpret the network messages. This includesASN.1 encoding and decoding functions which convert
from a machine’s native format to the network encoding (currently based on theISODE package, but
anotherASN.1 support package may be substituted), routines which verify that requests are answered
as expected, and routines to determine which messages are necessary. This core set of routines calls
out to the remaining portions of the library as required. A programmer may replace those portions at
certain specified interfaces.

Encryption routines: Since multiple encryption types may be in use simultaneously, the core functions
call encryption routines through a function table which has entries provided by each encryption sys-
tem implementation. The core library provides a default cryptosystem table, initialized to list the
known encryption types. A programmer may load his own cryptosystem table to replace the default
table and avoid linking with the default encryption libraries.

In an attempt to alleviate some possible export restrictions,MIT’s implementation distributes its
encryption systems separately from the remainder of the system. OnlyDES is currently available
from MIT.

Checksum routines: In a similar fashion to the encryption routines, the core routines call any needed
checksum functions through a function table, and compute any necessary sizes based on the informa-
tion in the table. Certain applications of checksum technology require that the checksum have cer-
tain properties. The table entry indicates whether the checksum is keyed (its algorithm is perturbed
by an encryption key which cannot be discovered with knowledge only of the algorithm and the
checksummed text) and whether the checksum is collision proof (it is computationally infeasible to
discover a different checksum text which has the same checksum). The core library provides a
replaceable default checksum table.

Four checksums are currently available fromMIT: the CRC-32, which is neither keyed nor collision
proof (but it is useful for integrity checks within encryption systems); theDESmessage authentication
code (MAC), which is both keyed and collision proof, andMD4 [Riv92a] andMD5 [Riv92b], both of
which are collision proof but not keyed.

Credentials cache and key table routines: When clients store tickets and credentials in a cache, the core
routines call out through a credentials cache table entry to a separate library module which imple-
ments the storing and searching routines for credentials caches. An environment variable can be
used to specify the default type and location of a credentials cache, so a user can switch between dif-
ferent types and locations of caches as needed (perhaps to keep the credentials for two roles
separate).MIT’s implementation provides two credentials cache implementations, one built on C

-- --

- 11 -

"stdio" routines and the other built onUNIX file-descriptor semantics. Other implementations
could provide shared-memory or kernel-resident caches.

Servers likewise store their secret keys Ks in key tables accessed by the core routines through a func-
tion table. MIT’s implementation provides a key table library built on C "stdio" routines.

KDC database support: All accesses to theKDC’s principal database by theKDC and administrative pro-
grams are mediated by a database library which can be replaced if needed.MIT’s implementation
uses theUNIX dbm database system. Sincedbm does not provide any record or database locking, its
use is augmented with separate locking code to mediate between writers and readers. Administrative
requests (e.g. adding entries, changing keys or passwords) can be handled on-line.

Operating system support: Although it is targeted forUNIX systems, theMIT implementation is careful to
access operating system features only from a few well-contained modules. An operating system sup-
port library performs all the accesses required by the rest of the code, such as transmitting and
receiving network messages, examining configuration files, checking the system’s time-of-day,
translating from account names to Kerberos names (andvice versa), and performing rudimentary
account access checks.

5.2. User interaction

If all parts of Kerberos are working properly, users will not normally be aware that Kerberos authentication
is in use by their applications. The normal login process obtains and caches an initial ticket-granting ticket,
and applications automatically obtain and cache service tickets as required. Only when authentication fails
will users become aware of the underlying use of Kerberos.

If users need to refresh tickets (e.g., if they expire), then they can use thekinit program, which will get a
new ticket-granting ticket after reading a password from the keyboard. Users examine the cached tickets
with klist and destroy the cache withkdestroy.

When principal names need to be displayed to human users, by convention† they are represented as the
sequence of name components separated by slashes (/), followed by an at-sign (@), and the realm name.
Thus, a principal with two name componentsuserX and role2 in the realm ATHENA.MIT.EDU
would be represented asuserX/role2@ATHENA.MIT.EDU.

Password to key conversion

Since users are not good at remembering binary encryption keys, Kerberos provides routines which convert
passwords into keys. The algorithm used to convert a password into an encryption key performs a non-
invertible transformation, so that an attacker cannot discover a user’s password knowing only Kc. In Ver-
sion 5, the conversion can be seeded with an additional string (often the realm name) which perturbs the
output key, so that a user who is registered in multiple realms and uses the same password in two of those
realms will have a different Kc in each realm. Without this perturbation, an attacker discovering the user’s
key in one realm could impersonate that user in the other realm, without needing to know the user’s pass-
word. When no additional perturbation string is supplied, the resulting key is the same as the key produced
by the Version 4 algorithm.

5.3. Compatibility support for Version 4

There is a small but growing base of Kerberos Version 4 applications, and a number of sites running a Ker-
beros Version 4 authentication server.MIT’s implementation of Version 5 provides several compatibility
features which can help sites and programmers convert to Version 5.

Interface compatibility: MIT’s implementation of Version 5 includes a "glue library" which presents a
Kerberos Version 4 application programming interface (API) but which uses Version 5 protocol
messages and routines. This library converts data structures as much as possible between the differ-
ing Version 4 and Version 5 data structures. In many cases (especially those that use only a common

hhhhhhhhhhhhhhhhhh
† Please note that this is only aconvention,and other implementations may display the principal names differently.

-- --

- 12 -

subset of the Version 4 library functions), an application originally written for Kerberos Version 4
need only be re-linked with this library and the remainder of the Version 5 code to use Version 5
protocols. However, such applications will no longer be compatible with older peer processes,
which would still expect the Version 4 messages, and continued maintenance may be made more
difficult.

A generic authentication interface: The Generic Security Services API (GSSAPI) [Lin91] is an
authentication-system independent programming interface which is currently being developed by the
Common Authentication Technology Working Group within the Internet Engineering Task Force.
The GSSAPI provides a convenient abstraction boundary for applications writers who wish to take
advantage of multiple authentication systems (even ones not yet invented), without needing to be
aware of any of the details of those systems. Since the GSSAPI only provides access to those basic
authentication services which form a common denominator across different authentication systems,
applications which need access to specialized features provided by a particular authentication system
will still need to code to that system’s native interface. However, the basic functionality to which
the GSSAPI provides access should be sufficient for the majority of applications.MIT provides a
binding of this interface to the Kerberos Version 5 implementation.

Protocol compatibility: For those sites which wish to convert the Kerberos server to provide the features
of Version 5, a compatibility mode may be enabled on theKDC which causes it to accept Version 4
format KDC requests and respond with Version 4 format tickets and messages, as well as accepting
Version 5 format requests. This allows an administrator to convert a Version 4 installation to Ver-
sion 5 slowly, by supporting the old users with the compatibility code. After some grace period, the
Version 4 compatibility would be turned off. If a user wishes to use both Version 4 and Version 5
programs simultaneously, the user’s key must be encoded using the Version 4 style string-to-key
algorithm; the Version 5 response will include information in the pre-authentication data of the ticket
response to indicate which string-to-key algorithm should be used by the Version 5 client.

Interface coexistence: The MIT Version 5 libraries were purposely designed to allow an application to
simultaneously support both Versions 4 and 5, and this is the suggested compatibility mode. The tel-
net [Pos83] program distributed with theMIT code can automatically choose an authentication system
to use when it connects to a remote system, based on what credentials the user holds and what Ver-
sions of authentication the remote telnet server will accept. It implements the current draft
specifications of the authentication [Bor92a] and encryption [Bor91] options for both Kerberos Ver-
sion 5 [Bor92b] and Kerberos Version 4 [Bor92c] authentication systems.

Program compatibility: Another possible compatibility mode can be fabricated by maintaining separate
copies of network applications which use Version 4 and Version 5 protocol messages. The user
would use a generic name for the application, and the application would try each authentication sys-
tem in turn, by executing a separate copy of the program for each system (see Figure 6). When
authentication is successfully completed, the application would proceed as normal. On both the
client and server sides of the application, this approach requires two copies of the same program,
each linked with a different authentication system. The different versions of the server would each
accept requests at different network ports, and the different clients would only send a request to the
server which supports its authentication type.

This approach could be mixed with the glue library and/or single-server approaches, by creating the
separate clients using the glue library and/or using a single server program which understands both
protocols.

-- --

- 13 -

Client A
try protocol Ahhhhhhhhhhhhhhhhhh Server A

(execute B if A fails)

Client B
try protocol Bhhhhhhhhhhhhhhhhhh Server B

(might be the same program)

Figure 6: Implementing protocol compatibility by executing separate programs

6. Future work

Version 5 of Kerberos is a step toward the design of an authentication system that is widely applicable. We
believe the framework is flexible enough to accommodate future requirements. Some items we expect to
add to Kerberos in the near future include:

Public-key cryptosystems: The encryption specifications in Kerberos Version 5 are designed primarily for
secret-key cryptosystems, but we are considering support for public-key cryptosystems. One advan-
tage of such support will be the ability to interoperate with the evolving certificate infrastructure for
Privacy Enhanced Mail. There is also work proceeding on the development of a hybrid Internet
Authentication System (IAS) that will provide interoperability between Kerberos and public key
based systems such as Digital Equipment Corporation’s DASS [Tar91].

“Smartcards”: Several companies manufacture hand-held devices which can be used to augment normal
password security methods, and there is strong interest within the industry to integrate one or more of
these systems with Kerberos. Work is underway to use the pre-authentication data field to pass the
additional information needed to use such devices.

In the more distant future it might also be possible to program a smartcard to directly take part in the
Kerberos protocol. To do so would require special hardware to support communication between the
smartcard and the workstation (so that the smartcard could communicate with theKDC). The advan-
tage of such an approach is that the initial Kerberos exchange could take place without making the
user’s password available to a potentially untrusted workstation.

Remote administration: The current protocol specifications do not specify an administrative interface to
the KDC database.MIT’s implementation provides a sample remote administration program which
allows administrators to add and modify entries and users to change their keys. We would like to
standardize such a protocol. Some features we would like to add include remote extraction of server
key tables, password "quality checks," and a provision for servers to change their secret keys
automatically every so often.

Database propagation: The current implementation provides reliableKDC service by a periodic bulk-copy
of theKDC database to slaveKDC machines. It might be more convenient and/or efficient to build the
KDC on distributed database technologies. However, to insure that an attacker cannot illegitimately
obtain any database entry, the technology must provide for private secure transmission of the data-
base elements to each server,

Validation suites: The current implementation does not include a complete validation suite to verify that
the protocol is properly implemented. Such a suite could prevent future security problems in the
case of a faulty implementation, and would help facilitate interoperation of diverse implementations.

Applications: There are many network applications that would benefit from the addition of authentication.
Among the highly visible examples are electronic mail, popular bulletin-board systems (such as
Usenet), and distributed file systems. It is hoped that application designers will consider authentica-
tion and related security services when designing their protocols. The generic application

-- --

- 14 -

programming interface should go a long way toward making it possible to do so.

Acknowledgements

The work described here has been the result of manyMIT Project Athena andMIT Network Services staff
members’ visions, ideas, and hard work.

The authors would especially like to thank Steve Bellovin, Jennifer Steiner, and Ralph Swick for their com-
ments on early drafts of this paper.

REFERENCES

Bel90. S. M. Bellovin and M. Merritt, ‘‘Limitations of the Kerberos Authentication System,’’Computer
Communications Review20(5), pp. 119-132 (October 1990).

Cha90. George A. Champine, Daniel E. Geer, and William N. Ruh, ‘‘Project Athena as a Distributed
Computer System,’’IEEE Computer23(9), pp. 40-50 (September 1990).

Bor91. D. Borman, Editor, ‘‘Telnet Encryption Option,’’ Internet-Draft, Internet Engineering Task
Force, Telnet Working Group (July 1991).

Bor92a. D. Borman, Editor, ‘‘Telnet Authentication Option,’’ Internet-Draft, Internet Engineering Task
Force, Telnet Working Group (February 1992).

Bor92b. D. Borman, Editor, ‘‘Telnet Authentication: Kerberos Version 5,’’ Internet-Draft, Internet
Engineering Task Force, Telnet Working Group (February 1992).

Bor92c. D. Borman, Editor, ‘‘Telnet Authentication: Kerberos Version 4,’’ Internet-Draft, Internet
Engineering Task Force, Telnet Working Group (February 1992).

Dav90. Don Davis and Ralph Swick, ‘‘Workstation Services and Kerberos Authentication at Project
Athena,’’ Technical Memorandum TM-424, MIT Laboratory for Computer Science (February
1990).

Jue85. R. R. Jueneman, S. M. Matyas, and C. H. Meyer, ‘‘Message Authentication,’’IEEE Communi-
cations23(9), pp. 29-40 (September 1985).

Koh89. John T. Kohl, ‘‘The Use of Encryption in Kerberos for Network Authentication,’’ inCrypto ’89
Conference Proceedings, International Association for Cryptologic Research, Santa Barbara, CA
(August 1989).

Koh92. John T. Kohl and B. Clifford Neuman, ‘‘The Kerberos Network Authentication Service,’’ Ver-
sion 5 Revision 5, Project Athena, Massachusetts Institute of Technology (April 1992).

Lin91. John Linn, ‘‘Generic Security Service Application Program Interface,’’ Internet-Draft, Internet
Engineering Task Force, Common Authentication Technology Working Group (June 1991).

Lom89. T. Mark A. Lomas, Li Gong, Jerome H. Saltzer, and Roger M. Needham, ‘‘Reducing Risks from
Poorly Chosen Keys,’’Operating Systems Review23(5), pp. 14-18 (December 1989).

Mer90. Ralph C. Merkle, ‘‘Fast Software Encryption Functions,’’ inCrypto ’90 Conference Proceed-
ings, International Association for Cryptologic Research, Santa Barbara, CA (August 1990).

Mil87. S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer,Section E.2.1: Kerberos Authentica-
tion and Authorization System,M.I.T. Project Athena, Cambridge, Massachusetts (December 21,
1987).

FIPS46. National Bureau of Standards, U.S. Department of Commerce, ‘‘Data Encryption Standard,’’
Federal Information Processing Standards Publication 46, Washington, DC (1977).

FIPS81. National Bureau of Standards, U.S. Department of Commerce, ‘‘DES Modes of Operation,’’
Federal Information Processing Standards Publication 81, Springfield, VA (December 1980).

Nee78. Roger M. Needham and Michael D. Schroeder, ‘‘Using Encryption for Authentication in Large
Networks of Computers,’’Communications of the ACM21(12), pp. 993-999 (December, 1978).

Neu91. B. Clifford Neuman, ‘‘Proxy-Based Authorization and Accounting for Distributed Systems,’’
Technical Report 91-02-01, Department of Computer Science and Engineering, University of

-- --

- 15 -

Washington (March 1991).

Pos83. J. Postel and J. Reynolds, ‘‘TELNET Protocol Specification,’’ RFC 854, University of Southern
California, Information Sciences Institute (May 1983).

Riv92a. R. Rivest, ‘‘The MD4 Message Digest Algorithm,’’ RFC 1320, MIT Laboratory for Computer
Science (April 1992).

Riv92b. R. Rivest, ‘‘The MD5 Message Digest Algorithm,’’ RFC 1321, MIT Laboratory for Computer
Science (April 1992).

Riv78. R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems,’’Communications of the ACM21(2), pp. 120-126 (February 1978).
See also U.S. Patent 4,405,829.

ISO8824. International Organization for Standardization, ‘‘Information Processing Systems - Open Sys-
tems Interconnection - Specification of Abstract Syntax Notation One (ASN.1),’’ IS 8824
(December 1987). First Edition.

ISO8825. International Organization for Standardization, ‘‘Information Processing Systems - Open Sys-
tems Interconnection - Specification of Basic Encoding Rules for Abstract Syntax Notation One
(ASN.1),’’ IS 8825 (November 1987). First Edition.

Ste88. J. G. Steiner, B. C. Neuman, and J. I. Schiller, ‘‘Kerberos: An Authentication Service for Open
Network Systems,’’ pp. 191-202 inUsenix Conference Proceedings, Dallas, Texas (February,
1988).

Stu92. Stuart G. Stubblebine and Virgil D. Gligor, ‘‘On Message Integrity in Cryptographic Protocols,’’
in Proceedings of the IEEE Symposium on Research in Security and Privacy, Oakland, Califor-
nia (May 1992).

Tar91. Joseph J. Tardo and Kannan Alagappan, ‘‘SPX: Global Authentication Using Public Key
Certificates,’’ inProceedings of the IEEE Symposium on Research in Security and Privacy, Oak-
land, California (May 1991).

Kohl may be reached at UC Berkeley, Computer Science Division, 571 Evans Hall, Berkeley, CA 94720,
USA. Email: jtkohl@cs.berkeley.edu.

Neuman may be reached at USC/ISI, 4676 Admiralty Way, Marina del Rey, CA 90292-6695, USA. Tele-
phone +1 (310) 822-1511. Email: bcn@isi.edu.

Ts’o may be reached at MIT Room E40-342b, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Email: tytso@mit.edu.

Project Athena, Athena, Athena MUSE, Discuss, Hesiod, Kerberos, Moira, and Zephyr are trademarks of
the Massachusetts Institute of Technology (MIT). No commercial use of these trademarks may be made
without prior written permission ofMIT.
X Window System is a trademark ofMIT.
UNIX is a registered trademark of Unix System Laboratories, Inc. in theUSA and other countries.

