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NAME
X − a portable, network-transparent window system

SYNOPSIS
The X Window System is a network transparent window system which runs on a wide range of com-
puting and graphics machines. It should be relatively straightforward to build the X Consortium soft-
ware distribution on most ANSI C and POSIX compliant systems. Commercial implementations are
also available for a wide range of platforms.

The X Consortium requests that the following names be used when referring to this software:

X
X Window System

X Version 11
X Window System, Version 11

X11

X Window Systemis a trademark of X Consortium, Inc.

DESCRIPTION
X Window System servers run on computers with bitmap displays. The server distributes user input to
and accepts output requests from various client programs through a variety of different interprocess
communication channels. Although the most common case is for the client programs to be running on
the same machine as the server, clients can be run transparently from other machines (including
machines with different architectures and operating systems) as well.

X supports overlapping hierarchical subwindows and text and graphics operations, on both mono-
chrome and color displays. For a full explanation of the functions that are available, see theXlib - C
Language X Interfacemanual, theX Window System Protocolspecification, theX Toolkit Intrinsics - C
Language Interfacemanual, and various toolkit documents.

The number of programs that useX is quite large. Programs provided in the core X Consortium distri-
bution include: a terminal emulator (xterm), a window manager (twm), a display manager (xdm), a con-
sole redirect program (xconsole), a mail interface (xmh), a bitmap editor (bitmap), resource list-
ing/manipulation tools (appres, editres), access control programs (xauth, xhost, andiceauth), user pref-
erence setting programs (xrdb, xcmsdb, xset, xsetroot, xstdcmap, and xmodmap), clocks (xclock and
oclock), a font displayer (xfd), utilities for listing information about fonts, windows, and displays (xls-
fonts, xwininfo, xlsclients, xdpyinfo, xlsatoms, and xprop), screen image manipulation utilities (xwd,
xwud, andxmag), a performance measurement utility (x11perf), a font compiler (bdftopcf), a font server
and related utilities (xfs, fsinfo, fslsfonts, fstobdf), an X Image Extension exerciser (xieperf), a display
server and related utilities (Xserver, rgb, mkfontdir), remote execution utilities (rstart andxon), a clip-
board manager (xclipboard), a keyboard description compiler (xkbcomp), a utility to terminate clients
(xkill), and a utility to cause part or all of the screen to be redrawn (xrefresh).

Many other utilities, window managers, games, toolkits, etc. are included as user-contributed software
in the X Consortium distribution, or are available using anonymous ftp on the Internet. See your site
administrator for details.

STARTING UP
There are two main ways of getting the X server and an initial set of client applications started. The
particular method used depends on what operating system you are running and whether or not you use
other window systems in addition to X.

xdm(the X Display Manager)
If you want to always have X running on your display, your site administrator can set your
machine up to use the X Display Managerxdm. This program is typically started by the sys-
tem at boot time and takes care of keeping the server running and getting users logged in. If
you are runningxdm, you will see a window on the screen welcoming you to the system and
asking for your username and password. Simply type them in as you would at a normal ter-
minal, pressing the Return key after each. If you make a mistake,xdmwill display an error
message and ask you to try again. After you have successfully logged in,xdmwill start up
your X environment. By default, if you have an executable file named.xsessionin your home
directory,xdmwill treat it as a program (or shell script) to run to start up your initial clients
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(such as terminal emulators, clocks, a window manager, user settings for things like the back-
ground, the speed of the pointer, etc.). Your site administrator can provide details.

xinit (run manually from the shell)
Sites that support more than one window system might choose to use thexinit program for
starting X manually. If this is true for your machine, your site administrator will probably
have provided a program named "x11", "startx", or "xstart" that will do site-specific initial-
ization (such as loading convenient default resources, running a window manager, displaying
a clock, and starting several terminal emulators) in a nice way. If not, you can build such a
script using thexinit program. This utility simply runs one user-specified program to start the
server, runs another to start up any desired clients, and then waits for either to finish. Since
either or both of the user-specified programs may be a shell script, this gives substantial flexi-
bility at the expense of a nice interface. For this reason,xinit is not intended for end users.

DISPLAY NAMES
From the user’s prospective, every X server has adisplay nameof the form:

hostname:displaynumber.screennumber

This information is used by the application to determine how it should connect to the server and which
screen it should use by default (on displays with multiple monitors):

hostname
The hostnamespecifies the name of the machine to which the display is physically con-
nected. If the hostname is not given, the most efficient way of communicating to a server on
the same machine will be used.

displaynumber
The phrase "display" is usually used to refer to collection of monitors that share a common
keyboard and pointer (mouse, tablet, etc.). Most workstations tend to only have one
keyboard, and therefore, only one display. Larger, multi-user systems, however, frequently
have sev eral displays so that more than one person can be doing graphics work at once. To
avoid confusion, each display on a machine is assigned adisplay number(beginning at 0)
when the X server for that display is started. The display number must always be given in a
display name.

screennumber
Some displays share a single keyboard and pointer among two or more monitors. Since each
monitor has its own set of windows, each screen is assigned ascreen number(beginning at 0)
when the X server for that display is started. If the screen number is not given, screen 0 will
be used.

On POSIX systems, the default display name is stored in your DISPLAY environment variable. This
variable is set automatically by thexterm terminal emulator. Howev er, when you log into another
machine on a network, you will need to set DISPLAY by hand to point to your display. For example,

% setenv DISPLAY myws:0
$ DISPLAY=myws:0; export DISPLAY

The xon script can be used to start an X program on a remote machine; it automatically sets the DIS-
PLAY variable correctly.

Finally, most X programs accept a command line option of-display displaynameto temporarily over-
ride the contents of DISPLAY. This is most commonly used to pop windows on another person’s
screen or as part of a "remote shell" command to start an xterm pointing back to your display. For
example,

% xeyes -display joesws:0 -geometry 1000x1000+0+0
% rsh big xterm -display myws:0 -ls </dev/null &

X servers listen for connections on a variety of different communications channels (network byte
streams, shared memory, etc.). Since there can be more than one way of contacting a given server, The
hostnamepart of the display name is used to determine the type of channel (also called a transport
layer) to be used. X servers generally support the following types of connections:
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local
The hostname part of the display name should be the empty string. For example::0, :1, and
:0.1. The most efficient local transport will be chosen.

TCP IP
The hostname part of the display name should be the server machine’s IP address name. Full
Internet names, abbreviated names, and IP addresses are all allowed. For example:x.org:0,
expo:0, 198.112.45.11:0, bigmachine:1, andhydra:0.1.

DECnet
The hostname part of the display name should be the server machine’s nodename, followed
by two colons instead of one. For example:myws::0, big::1, andhydra::0.1.

ACCESS CONTROL
An X server can use several types of access control. Mechanisms provided in Release 6 are:

Host Access Simple host-based access control.
MIT-MAGIC-COOKIE-1 Shared plain-text "cookies".
XDM-AUTHORIZATION-1 Secure DES based private-keys.
SUN-DES-1 Based on Sun’s secure rpc system.
MIT-KERBEROS-5 Kerberos Version 5 user-to-user.

Xdm initializes access control for the server and also places authorization information in a file accessi-
ble to the user. Normally, the list of hosts from which connections are always accepted should be
empty, so that only clients with are explicitly authorized can connect to the display. When you add
entries to the host list (withxhost), the server no longer performs any authorization on connections
from those machines. Be careful with this.

The file from whichXlib extracts authorization data can be specified with the environment variable
XAUTHORITY , and defaults to the file.Xauthority in the home directory.Xdmuses$HOME/.Xau-
thority and will create it or merge in authorization records if it already exists when a user logs in.

If you use several machines and share a common home directory across all of the machines by means
of a network file system, you never really have to worry about authorization files, the system should
work correctly by default. Otherwise, as the authorization files are machine-independent, you can sim-
ply copy the files to share them. To manage authorization files, usexauth. This program allows you to
extract records and insert them into other files. Using this, you can send authorization to remote
machines when you login, if the remote machine does not share a common home directory with your
local machine. Note that authorization information transmitted ‘‘in the clear’’ through a network file
system or usingftp or rcp can be ‘‘stolen’’ by a network eavesdropper, and as such may enable unau-
thorized access. In many environments, this level of security is not a concern, but if it is, you need to
know the exact semantics of the particular authorization data to know if this is actually a problem.

For more information on access control, see theXsecuritymanual page.

GEOMETRY SPECIFICATIONS
One of the advantages of using window systems instead of hardwired terminals is that applications
don’t hav e to be restricted to a particular size or location on the screen. Although the layout of win-
dows on a display is controlled by the window manager that the user is running (described below),
most X programs accept a command line argument of the form-geometry WIDTHx-
HEIGHT+XOFF+YOFF (whereWIDTH, HEIGHT, XOFF, andYOFF are numbers) for specifying a
preferred size and location for this application’s main window.

The WIDTH andHEIGHT parts of the geometry specification are usually measured in either pixels or
characters, depending on the application. TheXOFF andYOFF parts are measured in pixels and are
used to specify the distance of the window from the left or right and top and bottom edges of the
screen, respectively. Both types of offsets are measured from the indicated edge of the screen to the
corresponding edge of the window. The X offset may be specified in the following ways:

+XOFF The left edge of the window is to be placedXOFF pixels in from the left edge of the screen
(i.e., the X coordinate of the window’s origin will beXOFF). XOFF may be negative, in
which case the window’s left edge will be off the screen.

-XOFF The right edge of the window is to be placedXOFF pixels in from the right edge of the
screen.XOFF may be negative, in which case the window’s right edge will be off the screen.
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The Y offset has similar meanings:

+YOFF The top edge of the window is to beYOFFpixels below the top edge of the screen (i.e., the Y
coordinate of the window’s origin will beYOFF). YOFFmay be negative, in which case the
window’s top edge will be off the screen.

-YOFF The bottom edge of the window is to beYOFF pixels above the bottom edge of the screen.
YOFFmay be negative, in which case the window’s bottom edge will be off the screen.

Offsets must be given as pairs; in other words, in order to specify eitherXOFF or YOFFboth must be
present. Windows can be placed in the four corners of the screen using the following specifications:

+0+0 upper left hand corner.

-0+0 upper right hand corner.

-0-0 lower right hand corner.

+0-0 lower left hand corner.

In the following examples, a terminal emulator is placed in roughly the center of the screen and a load
av erage monitor, mailbox, and clock are placed in the upper right hand corner:

xterm -fn 6x10 -geometry 80x24+30+200 &
xclock -geometry 48x48-0+0 &
xload -geometry 48x48-96+0 &
xbiff -geometry 48x48-48+0 &

WINDOW MANAGERS
The layout of windows on the screen is controlled by special programs calledwindow managers.
Although many window managers will honor geometry specifications as given, others may choose to
ignore them (requiring the user to explicitly draw the window’s region on the screen with the pointer,
for example).

Since window managers are regular (albeit complex) client programs, a variety of different user inter-
faces can be built. The X Consortium distribution comes with a window manager namedtwm which
supports overlapping windows, popup menus, point-and-click or click-to-type input models, title bars,
nice icons (and an icon manager for those who don’t like separate icon windows).

See the user-contributed software in the X Consortium distribution for other popular window managers.

FONT NAMES
Collections of characters for displaying text and symbols in X are known asfonts. A font typically
contains images that share a common appearance and look nice together (for example, a single size,
boldness, slant, and character set). Similarly, collections of fonts that are based on a common type face
(the variations are usually called roman, bold, italic, bold italic, oblique, and bold oblique) are called
families.

Fonts come in various sizes. The X server supportsscalablefonts, meaning it is possible to create a
font of arbitrary size from a single source for the font. The server supports scaling fromoutline fonts
andbitmap fonts. Scaling from outline fonts usually produces significantly better results than scaling
from bitmap fonts.

An X server can obtain fonts from individual files stored in directories in the file system, or from one or
more font servers, or from a mixtures of directories and font servers. The list of places the server looks
when trying to find a font is controlled by itsfont path. Although most installations will choose to have
the server start up with all of the commonly used font directories in the font path, the font path can be
changed at any time with thexsetprogram. However, it is important to remember that the directory
names are on theserver’s machine, not on the application’s.

Bitmap font files are usually created by compiling a textual font description into binary form, using
bdftopcf. Font databases are created by running themkfontdirprogram in the directory containing the
source or compiled versions of the fonts. Whenever fonts are added to a directory,mkfontdirshould be
rerun so that the server can find the new fonts. To make the server reread the font database, reset the
font path with thexsetprogram. For example, to add a font to a private directory, the following com-
mands could be used:
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% cp newfont.pcf ˜/myfonts
% mkfontdir ˜/myfonts
% xset fp rehash

Thexfontselandxlsfontsprograms can be used to browse through the fonts available on a server. Font
names tend to be fairly long as they contain all of the information needed to uniquely identify individ-
ual fonts. However, the X server supports wildcarding of font names, so the full specification

-adobe-courier-medium-r-normal--10-100-75-75-m-60-iso8859-1

might be abbreviated as:

-*-courier-medium-r-normal--*-100-*-*-*-*-iso8859-1

Because the shell also has special meanings for* and?, wildcarded font names should be quoted:

% xlsfonts -fn ’-*-courier-medium-r-normal--*-100-*-*-*-*-*-*’

Thexlsfontsprogram can be used to list all of the fonts that match a given pattern. With no arguments,
it lists all available fonts. This will usually list the same font at many different sizes. To see just the
base scalable font names, try using one of the following patterns:

-*-*-*-*-*-*-0-0-0-0-*-0-*-*
-*-*-*-*-*-*-0-0-75-75-*-0-*-*
-*-*-*-*-*-*-0-0-100-100-*-0-*-*

To convert one of the resulting names into a font at a specific size, replace one of the first two zeros
with a nonzero value. The field containing the first zero is for the pixel size; replace it with a specific
height in pixels to name a font at that size. Alternatively, the field containing the second zero is for the
point size; replace it with a specific size in decipoints (there are 722.7 decipoints to the inch) to name a
font at that size. The last zero is an average width field, measured in tenths of pixels; some servers will
anamorphically scale if this value is specified.

FONT SERVER NAMES
One of the following forms can be used to name a font server that accepts TCP connections:

tcp/hostname:port
tcp/hostname:port/cataloguelist

Thehostnamespecifies the name (or decimal numeric address) of the machine on which the font server
is running. Theport is the decimal TCP port on which the font server is listening for connections. The
cataloguelistspecifies a list of catalogue names, with ’+’ as a separator.

Examples:tcp/x.org:7100, tcp/198.112.45.11:7100/all.

One of the following forms can be used to name a font server that accepts DECnet connections:

decnet/nodename::font$objname
decnet/nodename::font$objname/cataloguelist

The nodenamespecifies the name (or decimal numeric address) of the machine on which the font
server is running. Theobjnameis a normal, case-insensitive DECnet object name. Thecataloguelist
specifies a list of catalogue names, with ’+’ as a separator.

Examples:DECnet/SRVNOD::FONT$DEFAULT, decnet/44.70::font$special/symbols.

COLOR NAMES
Most applications provide ways of tailoring (usually through resources or command line arguments)
the colors of various elements in the text and graphics they display. A color can be specified either by
an abstract color name, or by a numerical color specification. The numerical specification can identify
a color in either device-dependent (RGB) or device-independent terms. Color strings are case-insensi-
tive.

X supports the use of abstract color names, for example, "red", "blue". A value for this abstract name
is obtained by searching one or more color name databases.Xlib first searches zero or more client-side
databases; the number, location, and content of these databases is implementation dependent. If the
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name is not found, the color is looked up in the X server’s database. The text form of this database is
commonly stored in the file<XRoot>/lib/X11/rgb.txt, where <XRoot> is replaced by the root of the
X11 install tree.

A numerical color specification consists of a color space name and a set of values in the following syn-
tax:

<color_space_name>:<value>/.../<value>

An RGB Device specification is identified by the prefix "rgb:" and has the following syntax:

rgb:<red>/<green>/<blue>

<red>, <green>, <blue> := h | hh | hhh | hhhh
h := single hexadecimal digits

Note thath indicates the value scaled in 4 bits,hh the value scaled in 8 bits,hhh the value scaled in 12
bits, andhhhhthe value scaled in 16 bits, respectively. These values are passed directly to the X server,
and are assumed to be gamma corrected.

The eight primary colors can be represented as:

black rgb:0/0/0
red rgb:ffff/0/0
green rgb:0/ffff/0
blue rgb:0/0/ffff
yellow rgb:ffff/ffff/0
magenta rgb:ffff/0/ ffff
cyan rgb:0/ffff/ffff
white rgb:ffff/ffff/ffff

For backward compatibility, an older syntax for RGB Device is supported, but its continued use is not
encouraged. The syntax is an initial sharp sign character followed by a numeric specification, in one of
the following formats:

#RGB (4 bits each)
#RRGGBB (8 bits each)
#RRRGGGBBB (12 bits each)
#RRRRGGGGBBBB (16 bits each)

The R, G, and B represent single hexadecimal digits. When fewer than 16 bits each are specified, they
represent the most-significant bits of the value (unlike the "rgb:" syntax, in which values are scaled).
For example, #3a7 is the same as #3000a0007000.

An RGB intensity specification is identified by the prefix "rgbi:" and has the following syntax:

rgbi:<red>/<green>/<blue>

The red, green, and blue are floating point values between 0.0 and 1.0, inclusive. They represent linear
intensity values, with 1.0 indicating full intensity, 0.5 half intensity, and so on. These values will be
gamma corrected byXlib before being sent to the X server. The input format for these values is an
optional sign, a string of numbers possibly containing a decimal point, and an optional exponent field
containing an E or e followed by a possibly signed integer string.

The standard device-independent string specifications have the following syntax:

CIEXYZ:<X>/<Y>/<Z> (none, 1,none)
CIEuvY:<u>/<v>/<Y> (˜.6, ˜.6, 1)
CIExyY:<x>/<y>/<Y> (˜.75, ˜.85, 1)
CIELab:<L>/<a>/<b> (100,none, none)
CIELuv:<L>/<u>/<v> (100,none, none)
TekHVC:<H>/<V>/<C> (360, 100, 100)

All of the values (C, H, V, X, Y, Z, a, b, u, v, y, x) are floating point values. Some of the values are con-
strained to be between zero and some upper bound; the upper bounds are given in parentheses above.
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The syntax for these values is an optional ’+’ or ’-’ sign, a string of digits possibly containing a decimal
point, and an optional exponent field consisting of an ’E’ or ’e’ followed by an optional ’+’ or ’-’ fol-
lowed by a string of digits.

For more information on device independent color, see theXlib reference manual.

KEYBOARDS
The X keyboard model is broken into two layers: server-specific codes (calledkeycodes) which repre-
sent the physical keys, and server-independent symbols (calledkeysyms) which represent the letters or
words that appear on the keys. Two tables are kept in the server for converting keycodes to keysyms:

modifier list
Some keys (such as Shift, Control, and Caps Lock) are known asmodifierand are used to
select different symbols that are attached to a single key (such as Shift-a generates a capital
A, and Control-l generates a control character ˆL). The server keeps a list of keycodes corre-
sponding to the various modifier keys. Whenever a key is pressed or released, the server gen-
erates aneventthat contains the keycode of the indicated key as well as a mask that specifies
which of the modifier keys are currently pressed. Most servers set up this list to initially con-
tain the various shift, control, and shift lock keys on the keyboard.

keymap table
Applications translate event keycodes and modifier masks into keysyms using akeysym table
which contains one row for each keycode and one column for various modifier states. This
table is initialized by the server to correspond to normal typewriter conventions. The exact
semantics of how the table is interpreted to produce keysyms depends on the particular pro-
gram, libraries, and language input method used, but the following conventions for the first
four keysyms in each row are generally adhered to:

The first four elements of the list are split into two groups of keysyms. Group 1 contains the first and
second keysyms; Group 2 contains the third and fourth keysyms. Within each group, if the first ele-
ment is alphabetic and the the second element is the special keysymNoSymbol, then the group is
treated as equivalent to a group in which the first element is the lowercase letter and the second element
is the uppercase letter.

Switching between groups is controlled by the keysym named MODE SWITCH, by attaching that
keysym to some key and attaching that key to any one of the modifiers Mod1 through Mod5. This
modifier is called the ‘‘group modifier.’’ Group 1 is used when the group modifier is off, and Group 2
is used when the group modifier is on.

Within a group, the modifier state determines which keysym to use. The first keysym is used when the
Shift and Lock modifiers are off. The second keysym is used when the Shift modifier is on, when the
Lock modifier is on and the second keysym is uppercase alphabetic, or when the Lock modifier is on
and is interpreted as ShiftLock. Otherwise, when the Lock modifier is on and is interpreted as Cap-
sLock, the state of the Shift modifier is applied first to select a keysym; but if that keysym is lowercase
alphabetic, then the corresponding uppercase keysym is used instead.

OPTIONS
Most X programs attempt to use the same names for command line options and arguments. All appli-
cations written with the X Toolkit Intrinsics automatically accept the following options:

−display display
This option specifies the name of the X server to use.

−geometrygeometry
This option specifies the initial size and location of the window.

−bg color, −background color
Either option specifies the color to use for the window background.

−bd color, −bordercolor color
Either option specifies the color to use for the window border.

−bw number, −borderwidth number
Either option specifies the width in pixels of the window border.
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−fg color, −foreground color
Either option specifies the color to use for text or graphics.

−fn font, -font font
Either option specifies the font to use for displaying text.

−iconic
This option indicates that the user would prefer that the application’s windows initially not be
visible as if the windows had be immediately iconified by the user. Window managers may
choose not to honor the application’s request.

−name
This option specifies the name under which resources for the application should be found.
This option is useful in shell aliases to distinguish between invocations of an application,
without resorting to creating links to alter the executable file name.

−rv , −rev erse
Either option indicates that the program should simulate reverse video if possible, often by
swapping the foreground and background colors. Not all programs honor this or implement
it correctly. It is usually only used on monochrome displays.

+rv
This option indicates that the program should not simulate reverse video. This is used to
override any defaults since reverse video doesn’t always work properly.

−selectionTimeout
This option specifies the timeout in milliseconds within which two communicating applica-
tions must respond to one another for a selection request.

−synchronous
This option indicates that requests to the X server should be sent synchronously, instead of
asynchronously. SinceXlib normally buffers requests to the server, errors do not necessarily
get reported immediately after they occur. This option turns off the buffering so that the
application can be debugged. It should never be used with a working program.

−title string
This option specifies the title to be used for this window. This information is sometimes used
by a window manager to provide some sort of header identifying the window.

−xnllanguagelanguage[_territory][.codeset]
This option specifies the language, territory, and codeset for use in resolving resource and
other filenames.

−xrm resourcestring
This option specifies a resource name and value to override any defaults. It is also very use-
ful for setting resources that don’t hav e explicit command line arguments.

RESOURCES
To make the tailoring of applications to personal preferences easier, X provides a mechanism for stor-
ing default values for program resources (e.g. background color, window title, etc.) Resources are
specified as strings that are read in from various places when an application is run. Program compo-
nents are named in a hierarchical fashion, with each node in the hierarchy identified by a class and an
instance name. At the top level is the class and instance name of the application itself. By convention,
the class name of the application is the same as the program name, but with the first letter capitalized
(e.g.Bitmapor Emacs) although some programs that begin with the letter ‘‘x’’ also capitalize the sec-
ond letter for historical reasons.

The precise syntax for resources is:

ResourceLine = Comment | IncludeFile | ResourceSpec | <empty line>
Comment = "!" {<any character except null or newline>}
IncludeFile = "#" WhiteSpace "include" WhiteSpace FileName WhiteSpace
FileName = <valid filename for operating system>
ResourceSpec = WhiteSpace ResourceName WhiteSpace ":" WhiteSpace Value
ResourceName = [Binding] {Component Binding} ComponentName
Binding = "." | "*"
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WhiteSpace = {<space> | <horizontal tab>}
Component = "?" | ComponentName
ComponentName = NameChar {NameChar}
NameChar = "a"−"z" | "A"−"Z" | "0"−"9" | "_" | "-"
Value = {<any character except null or unescaped newline>}

Elements separated by vertical bar (|) are alternatives. Curly braces ({...}) indicate zero or more repeti-
tions of the enclosed elements. Square brackets ([...]) indicate that the enclosed element is optional.
Quotes ("...") are used around literal characters.

IncludeFile lines are interpreted by replacing the line with the contents of the specified file. The word
"include" must be in lowercase. The filename is interpreted relative to the directory of the file in which
the line occurs (for example, if the filename contains no directory or contains a relative directory speci-
fication).

If a ResourceName contains a contiguous sequence of two or more Binding characters, the sequence
will be replaced with single "." character if the sequence contains only "." characters, otherwise the
sequence will be replaced with a single "*" character.

A resource database never contains more than one entry for a given ResourceName. If a resource file
contains multiple lines with the same ResourceName, the last line in the file is used.

Any whitespace character before or after the name or colon in a ResourceSpec are ignored. To allow a
Value to begin with whitespace, the two-character sequence ‘‘\space’’ (backslash followed by space) is
recognized and replaced by a space character, and the two-character sequence ‘‘\tab’’ (backslash fol-
lowed by horizontal tab) is recognized and replaced by a horizontal tab character. To allow a Value to
contain embedded newline characters, the two-character sequence ‘‘\ n’’ is recognized and replaced by a
newline character. To allow a Value to be broken across multiple lines in a text file, the two-character
sequence ‘‘\newline’’ (backslash followed by newline) is recognized and removed from the value. To
allow a Value to contain arbitrary character codes, the four-character sequence ‘‘\nnn’’, where eachn is
a digit character in the range of ‘‘0’’−‘‘7’’, is recognized and replaced with a single byte that contains
the octal value specified by the sequence. Finally, the two-character sequence ‘‘\\’’ is recognized and
replaced with a single backslash.

When an application looks for the value of a resource, it specifies a complete path in the hierarchy, with
both class and instance names. However, resource values are usually given with only partially specified
names and classes, using pattern matching constructs. An asterisk (*) is a loose binding and is used to
represent any number of intervening components, including none. A period (.) is a tight binding and is
used to separate immediately adjacent components. A question mark (?) is used to match any single
component name or class. A database entry cannot end in a loose binding; the final component (which
cannot be "?") must be specified. The lookup algorithm searches the resource database for the entry
that most closely matches (is most specific for) the full name and class being queried. When more than
one database entry matches the full name and class, precedence rules are used to select just one.

The full name and class are scanned from left to right (from highest level in the hierarchy to lowest),
one component at a time. At each level, the corresponding component and/or binding of each matching
entry is determined, and these matching components and bindings are compared according to prece-
dence rules. Each of the rules is applied at each level, before moving to the next level, until a rule
selects a single entry over all others. The rules (in order of precedence) are:

1. An entry that contains a matching component (whether name, class, or "?") takes precedence
over entries that elide the level (that is, entries that match the level in a loose binding).

2. An entry with a matching name takes precedence over both entries with a matching class and
entries that match using "?". An entry with a matching class takes precedence over entries that
match using "?".

3. An entry preceded by a tight binding takes precedence over entries preceded by a loose binding.

Programs based on the X Tookit Intrinsics obtain resources from the following sources (other programs
usually support some subset of these sources):

RESOURCE_MANAGER root window property
Any global resources that should be available to clients on all machines should be stored in
the RESOURCE_MANAGER property on the root window of the first screen using thexrdb
program. This is frequently taken care of when the user starts up X through the display
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manager orxinit.

SCREEN_RESOURCES root window property
Any resources specific to a given screen (e.g. colors) that should be available to clients on all
machines should be stored in the SCREEN_RESOURCES property on the root window of
that screen. Thexrdb program will sort resources automatically and place them in
RESOURCE_MANAGER or SCREEN_RESOURCES, as appropriate.

application-specific files
Directories named by the environment variable XUSERFILESEARCHPATH or the environ-
ment variable XAPPLRESDIR (which names a single directory and should end with a ’/’ on
POSIX systems), plus directories in a standard place (usually under <XRoot>/lib/X11/, but
this can be overridden with the XFILESEARCHPATH environment variable) are searched for
for application-specific resources. For example, application default resources are usually
kept in <XRoot>/lib/X11/app-defaults/. See theX Toolkit Intrinsics - C Language Interface
manual for details.

XENVIRONMENT
Any user- and machine-specific resources may be specified by setting the XENVIRON-
MENT environment variable to the name of a resource file to be loaded by all applications.
If this variable is not defined, a file named$HOME/.Xdefaults-hostnameis looked for
instead, wherehostnameis the name of the host where the application is executing.

−xrm resourcestring
Resources can also be specified from the command line. Theresourcestringis a single
resource name and value as shown above. Note that if the string contains characters inter-
preted by the shell (e.g., asterisk), they must be quoted. Any number of−xrm arguments
may be given on the command line.

Program resources are organized into groups calledclasses, so that collections of individual resources
(each of which are calledinstances) can be set all at once. By convention, the instance name of a
resource begins with a lowercase letter and class name with an upper case letter. Multiple word
resources are concatenated with the first letter of the succeeding words capitalized. Applications writ-
ten with the X Toolkit Intrinsics will have at least the following resources:

background (classBackground)
This resource specifies the color to use for the window background.

borderWidth ( classBorderWidth)
This resource specifies the width in pixels of the window border.

borderColor (classBorderColor)
This resource specifies the color to use for the window border.

Most applications using the X Toolkit Intrinsics also have the resourceforeground (class Fore-
ground), specifying the color to use for text and graphics within the window.

By combining class and instance specifications, application preferences can be set quickly and easily.
Users of color displays will frequently want to set Background and Foreground classes to particular
defaults. Specific color instances such as text cursors can then be overridden without having to define
all of the related resources. For example,

bitmap*Dashed: off
XTerm*cursorColor: gold
XTerm*multiScroll: on
XTerm*jumpScroll: on
XTerm*reverseWrap: on
XTerm*curses: on
XTerm*Font: 6x10
XTerm*scrollBar: on
XTerm*scrollbar*thickness: 5
XTerm*multiClickTime: 500
XTerm*charClass: 33:48,37:48,45-47:48,64:48
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XTerm*cutNewline: off
XTerm*cutToBeginningOfLine: off
XTerm*titeInhibit: on
XTerm*ttyModes: intr ˆc erase ˆ? kill ˆu
XLoad*Background: gold
XLoad*Foreground: red
XLoad*highlight: black
XLoad*borderWidth: 0
emacs*Geometry: 80x65-0-0
emacs*Background: rgb:5b/76/86
emacs*Foreground: white
emacs*Cursor: white
emacs*BorderColor: white
emacs*Font: 6x10
xmag*geometry: -0-0
xmag*borderColor: white

If these resources were stored in a file called.Xresourcesin your home directory, they could be added
to any existing resources in the server with the following command:

% xrdb -merge $HOME/.Xresources

This is frequently how user-friendly startup scripts merge user-specific defaults into any site-wide
defaults. All sites are encouraged to set up convenient ways of automatically loading resources. See
theXlib manual sectionResource Manager Functionsfor more information.

EXAMPLES
The following is a collection of sample command lines for some of the more frequently used com-
mands. For more information on a particular command, please refer to that command’s manual page.

% xrdb $HOME/.Xresources
% xmodmap -e "keysym BackSpace = Delete"
% mkfontdir /usr/local/lib/X11/otherfonts
% xset fp+ /usr/local/lib/X11/otherfonts
% xmodmap $HOME/.keymap.km
% xsetroot -solid ’rgbi:.8/.8/.8’
% xset b 100 400 c 50 s 1800 r on
% xset q
% twm
% xmag
% xclock -geometry 48x48-0+0 -bg blue -fg white
% xeyes -geometry 48x48-48+0
% xbiff -update 20
% xlsfonts ’*helvetica*’
% xwininfo -root
% xdpyinfo -display joesworkstation:0
% xhost -joesworkstation
% xrefresh
% xwd | xwud
% bitmap companylogo.bm 32x32
% xcalc -bg blue -fg magenta
% xterm -geometry 80x66-0-0 -name myxterm $*
% xon filesysmachine xload

DIAGNOSTICS
A wide variety of error messages are generated from various programs. The default error handler in
Xlib (also used by many toolkits) uses standard resources to construct diagnostic messages when errors
occur. The defaults for these messages are usually stored in<XRoot>/lib/X11/XErrorDB. If this file is
not present, error messages will be rather terse and cryptic.

When the X Toolkit Intrinsics encounter errors converting resource strings to the appropriate internal
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format, no error messages are usually printed. This is convenient when it is desirable to have one set of
resources across a variety of displays (e.g. color vs. monochrome, lots of fonts vs. very few, etc.),
although it can pose problems for trying to determine why an application might be failing. This behav-
ior can be overridden by the setting theStringConversionsWarningresource.

To force the X Toolkit Intrinsics to always print string conversion error messages, the following
resource should be placed in the file that gets loaded onto the RESOURCE_MANAGER property using
thexrdbprogram (frequently called.Xresourcesor .Xresin the user’s home directory):

*StringConversionWarnings: on

To hav e conversion messages printed for just a particular application, the appropriate instance name can
be placed before the asterisk:

xterm*StringConversionWarnings: on

SEE ALSO
XConsortium(1), XStandards(1), Xsecurity(1),

appres(1), bdftopcf(1), bitmap(1), editres(1), fsinfo(1), fslsfonts(1), fstobdf(1), iceauth(1), imake(1),
makedepend(1), mkfontdir(1), oclock(1), rgb(1), resize(1), rstart(1), twm(1), x11perf(1), x11perf-
comp(1), xauth(1), xclipboard(1), xclock(1), xcmsdb(1), xconsole(1), xdm(1), xdpyinfo(1), xfd(1),
xfs(1), xhost(1), xieperf(1), xinit(1), xkbcomp(1), xkill(1), xlogo(1), xlsatoms(1), xlsclients(1), xls-
fonts(1), xmag(1), xmh(1), xmodmap(1), xon(1), xprop(1), xrdb(1), xrefresh(1), xset(1), xsetroot(1),
xstdcmap(1), xterm(1), xwd(1), xwininfo(1), xwud(1), Xserver(1), Xdec(1), XmacII(1), Xsun(1),
Xnest(1), Xvfb(1), XF86_Acc(1), XF86_Mono(1), XF86_SVGA(1), XF86_VGA16(1), XFree86(1),
kbd_mode(1),Xlib − C Language X Interface, andX Toolkit Intrinsics − C Language Interface

TRADEMARKS
X Window System is a trademark of X Consortium, Inc. Fresco is a registered trademark of X Consor-
tium, Inc.

AUTHORS
A cast of thousands, literally. The Release 6 distribution is brought to you by X Consortium, Inc. The
names of all people who made it a reality will be found in the individual documents and source files.
The staff members at the X Consortium responsible for this release are: Donna Converse, Gary Cutbill,
Stephen Gildea, Jay Hersh, Kaleb Keithley, Matt Landau, Ralph Mor, Janet O’Halloran, Bob Scheifler,
Ralph Swick, and Dave Wiggins.

The X Window System standard was originally developed at the Laboratory for Computer Science at
the Massachusetts Institute of Technology, and all rights thereto were assigned to the X Consortium on
January 1, 1994.
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