
-- --

Engineering Excellence: DEC OSF/1 Symmetric Multi-Processing

Jon A. Hall
Senior Manager

UNIX Software Group
maddog@zk3.dec.com

Digital Equipment Corporation
Nashua, New Hampshire

In this paper, the term "SMP" will refer to "Tightly
Coupled" systems, where CPUs can share all or a part of
main memory with other CPUs, and have equal access to
all peripherals. There are also "Loosely Coupled SMP"
systems and "Closely Coupled SMP" systems, but these
will not be discussed.

The specific implementation of SMP in DEC OSF/1 V3.0
will be discussed and why it is a superb implementation
of SMP.

1. What is SMP, and what are its uses?

Multiprocessing (MP) is the ability for an operating
system to use multiple processors (which usually means
multiple CPUs) in a single enclosure and sharing all or
part of main memory and access to peripherals. There
are two kinds: Asymmetric MP (ASMP) and Symmetric
MP (SMP).

Typically under ASMP one CPU does all of a certain
kind of work. For example, one CPU (usually called the
"master") may execute all of the system calls, scheduling
and I/O. When any of the other CPUs want to do I/O or
a system call they are blocked, and the master CPU will
schedule another process for them. Then the master CPU
must do the rest of the I/O or system call. The problem
with ASMP is that under most types of loads, the
"master" CPU becomes too busy to schedule all of the
other processors. Not only can it not keep all of the
other processors busy, but it can not even do all of its
own work or its own share of user code. The master
CPU becomes a bottleneck for total throughput of the
system.

In SMP any of the CPUs can do any task, including
scheduling work inside the kernel. All processors have
equal access to the operating system services. This way,
no one single processor becomes overloaded.

SMP is particularly valuable in CPU bound systems
where there are a large number of individual processes or
333333333333333333
† UNIX is a registered trademark licensed exclusively by X/Open Company Ltd.
† Alpha AXP is a trademark of Digital Equipment Corporation

threads of execution. A process in DEC OSF/1 is
actually a single thread of execution which is associated
with a piece of virtual memory. In DEC OSF/1, more
threads of execution may be spawned from the original
thread of execution, and each thread may have its own
priority and scheduling algorithm.

SMP is useful to the customer, since a CPU-bound
system may easily be given extra capacity by adding
additional CPU boards. Thus if a customer sizes and
purchases a system, but later needs additional CPU
capacity, it is normally very easy and cost-effective to
add another CPU to an already existing SMP system.

It is important to note, however, that CPU-bound systems
with a single-threaded application bottleneck will
typically not benefit from an SMP solution. Therefore
SMP implementations usually benefit servers and time-
sharing machines more than they benefit the traditional
single-user workstation.

Only when the CPU bound application in a single-user
workstation has been decomposed into multiple threads
of execution will that application benefit from SMP.
Some sophisticated current-day applications do benefit
from SMP on a workstation. These applications may be
doing some sophisticated work with the X Window
System, and keep their data in a distributed relational
database. For these applications, there are at least three
processes involved in the running of the application, and
therefore three threads of execution which can be
assigned to individual CPUs.

In UNIX there has traditionally been the use of fork(2) to
create another thread of execution in "C" programs, and
now the advent of FORTRAN 90 language directives
(part of the High Performance FORTRAN industry
standard extensions to FORTRAN 90) which enhance
semi-automatic decomposition of FORTRAN programs.
Therefore SMP becomes even more valuable as a means
of obtaining additional CPU resources.

August 10, 1994



-- --

- 2 -

2. Issues in Implementing SMP

Customers question why implementing SMP is so hard.
Why do computer companies make such a big deal over
it, and why are some implementations considered better
than others.

The main reason for implementing SMP is to get extra
system performance out of adding an additional CPU.
The amount of extra performance that you get out of
adding an extra CPU is an indication of how well the
system "scales". If by adding an extra CPU, you were
able to put twice the number of processes on the system
and run them in the same wall-clock time, you would say
that you have "100% scaling". Or if you put in a second
CPU, and the amount of time that it took to run a
program in a CPU-bound system was only 1/2 the time,
you would say that you received "100% scaling".

There may be reasons why you would not see this type
of performance increase. Perhaps by adding the second
CPU you relieved your CPU bottleneck, but your I/O
subsystem was now at saturation. Or perhaps by adding
the second CPU (and the additional processes) you now
were bottlenecked by the amount of main memory you
have, and your system will start paging and swapping.
But given that you have enough memory, and given that
your I/O subsystem can feed data to the programs fast
enough, by adding a second CPU to the first, you should
be able to double your load at 100% scaling.

However, now there are two CPUs which are looking at
the same data in the kernel, executing the same code,
trying to use the same devices. These CPUs will be
trying to update the same tables, and they may interfere
with each other. To keep the two CPUs from interfering
with each other, different techniques are used, and these
techniques reduce the efficiency of the total system but
are required to maintain system integrity. In fact, you
will see always less than 100% improvement. Perhaps it
will be 99.9%, or 95%, or even as low as 80%, but it will
always be less than 100%, due to the overhead of
managing it.

It is also true that different types of loads will see
different scalings. For example, highly CPU-bound
technical computing jobs which do very little I/O may
see very high scaling factors, while job streams which are
high in I/O may see very low scaling factors. In fact, in
at least one case which happened (fortunately) a long
time ago, adding a second CPU to a job load which was
high in I/O actually saw less performance from the
system than with a single CPU. In other words, the
system performed better when you turned the second
CPU off than when you had it turned on. This is

particularly true of ASMP implementations.

Another issue with SMP systems is that of "deadlock".
One of the ways that CPUs keep out of each other’s way
in an SMP implementation is by "locking" resources.
Devices and data all may be "locked" by a CPU in order
to update some table or control structure inside the
kernel. Unfortunately, if these devices are not allocated
and de-allocated properly, one CPU may have devices
that a second CPU needs, and vice versa. Neither CPU
will give up what they have, and neither can proceed
forward until they have what is being held by the other
CPU. This is known as "deadlock", and in worst cases
all throughput in the system eventually halts, requiring a
re-boot.

In the early days of UNIX operating systems, UNIX
kernels were single CPU, and non-preemptive. The
second term means that the kernel would not be
interrupted from whatever it was doing until that process
or thread was done. This made kernel writing "simple"
(or at least as simple as kernel writing ever would be),
since as soon as the kernel was entered, the interrupt
level was raised very high, and remained high until the
kernel was exited. Therefore all the table updates inside
the kernel would be completed without some other thread
of control coming along and interfering. Unfortunately
this meant that real-time activity or high-priority tasks
could not be scheduled until the thread that was already
inside the kernel was finished, and had returned to user
space.

Later in UNIX history, a second CPU was added in what
was known as "Asymmetric Multiprocessing". Using
this technique, one CPU did all the scheduling of tasks,
devices, I/O and "kernel" things, while the second (or
third or fourth) CPU worked strictly on user-level
processes. Unfortunately in a lot of cases, the "master"
CPU became hopelessly overloaded very quickly and the
throughput of the system rarely scaled past two or three
processors (and in many cases actually decreased as
mentioned above). The "master" CPU was also
practicing a technique known as "funneling", which
meant that certain tasks inside the kernel (such as
scheduling or I/O) are always performed by one CPU.

In recent years some UNIX kernels have become
preemptive in order to do realtime work. This means
that a stream of execution going through the kernel
*could* be interrupted from what it is doing, and have to
return to that place later to finish what it was doing. In
these cases (with a single CPU) there are "must finish"
places inside the kernel where certain work must be done
before the CPU can be interrupted. These places have to

August 10, 1994



-- --

- 3 -

be identified, and locks executed to make sure that the
tables will not be updated until the first thread of
execution has a chance to finish what it was doing.

However tricky the preemptive kernels are to code, SMP
is an order of magnitude above that. First of all, in a
single-CPU system, you are guaranteed of not having
cache consistency problems between CPUs. After all,
you only have one CPU, and its cache is always
consistent with itself. However, with multiple CPUs,
you may have one CPU which has a piece of critical data
in its cache, and another CPU is looking at bad data.
Secondly, there are now multiple CPUs trying to access
the same sets of data structures inside the kernel "at one
time", and the ability to keep all of them coordinated is
strained.

In addition, over the years the separation between CPU
speed, memory speed and I/O speed has grown larger.
Techniques which were practical when CPUs were 1
SPEC, memories 4 MByte and disks 2 MByte/second are
suspect when CPUs are 110 SPEC, memories are 96
MByte and disks (on a good day, with the wind at their
back, and going downhill) are still only 20
MBytes/second†. Therefore it takes a good deal of study
and analysis to engineer the type of locks which will give
optimum performance in today’s multiple CPU systems
which can easily aggregate close to 1000 SPECs or
beyond, when disks and main memory are "slow" and
"small".

One item that makes it a lot easier (or looking at it
another way, without this it would be a lot harder) to
implement SMP is a highly structured, modern kernel.
By having modularity in the kernel where messages are
passed and locking points are well defined, it is a lot
easier to implement SMP than with the older style of
"onion-skin" kernel. The problem with an "onion-skin"
kernel is that it is difficult to see how many threads of
execution will be going through a section at one time,
and where they will be coming from. With a modern
kernel, and one that was designed for SMP, it is a lot
easier for the engineering staff to identify locking points
and areas of contention, then to have to retrofit this to an
older style of kernel.

So what makes up a "good" SMP solution? Normally it
is the proper application of a series of coding techniques
after a long time studying a well-structured code over a
333333333333333333
† Unless, of course you buy Velocitor disk subsystems from
Digital, which can sustain data rates of 30 Megabytes/second or
more. But this comment was aimed at the use of the fastest "fast"
wide SCSI disks today.

wide variety of load conditions.

Let’s look at some of these techniques, and see how they
may be used.

3. Techniques of SMP

Some of the techniques used in developing an SMP
system are:

o Funneling vs Locking

o Coarse Granularity vs Fine Granularity

o Simple Locks vs Complex Locks

o Algorithm replacement or change

We will study each one in turn, but the reader should
understand that in a good SMP system, all of these
techniques may be used in one part of the kernel or
another. The secret of a well-designed and implemented
SMP system is using the right technique in the right
place.

3.1. Funneling

Funneling is the technique of forcing execution of a
particular set of code to one CPU. Funneling is the
exclusive technique used in ASMP systems. Normally
funneling is thought of as "bad", but in some cases
funneling can actually be good, or at least "low impact".

Funneling is usually satisfactory for slow devices of low
usage. As an example, the ISO 9660 file system (used
with CDROMs) is funneled, since there typically are few
of these devices on a system, and they are slow devices.
The overhead of making this file system "SMP safe"
would probably cause more CPU usage than would have
been returned. Therefore the ISO 9660 file system was
"funneled".

Another case of funneling is in the "reboot" system call.
For reasons which are intuitively obvious, there was no
"return on investment" of making this system call "SMP
safe".

One additional area of funneling is interrupt handling.
All interrupts are handled by one processor. However,
immediately after fielding the interrupt, the processor
schedules a thread to process that interrupt which may be
run on any other processor (including the one that fielded
the interrupt).

While some people in the field maintain that all interrupts
being handled by one processor will degrade the system,
Digital’s engineering group did exhaustive study under
different loads, and found no degradation to the over-all
system performance by having one processor field all

August 10, 1994



-- --

- 4 -

interrupts. To ensure that funneling interrupts to one
processor will not degrade system throughput, the load
balancing algorithm adjusts to reduce the tasks that the
processor which is fielding the interrupts has to do based
on the number of CPUs in the system, thus guaranteeing
the CPU handling the interrupts the capacity it needs.

In addition, Digital’s UNIX engineering group found that
by distributing the interrupts, there was significant
disruption of the warm cache in the CPUs between
scheduling of threads. In other words, distributing the
interrupts would have degraded over-all performance
more than funneling does.

3.2. Locking

The "opposite" of funneling is locking. Here is where
multiple threads of execution are allowed into the code,
but certain areas of code or data are "locked" from
another CPU updating (or in some cases even reading) it
until the first CPU is finished.

Various types of locks are used for different purposes,
and different "granularities" are also used. Let’s speak of
granularity first.

3.2.1. Fine-grain versus coarse-grain granularity

Inside the kernel are data structures which have to be
shared between all of these CPUs. Sometimes these
pieces of data are arranged in a table or inside some other
structure (a linked list, for instance) and these data
structures have to be updated all at one time. For
instance, it would not do to have a linked list only
partially linked before a second processor moved in to
also manipulate that linked list.

The reader at this point also has to understand the
difference between an "outdated" piece of data, and an
"invalid" piece of data. An outdated piece of data is one
that was correct at one time, but now is technically
incorrect, but still a valid number (such as a timestamp).
Perhaps our linked-list data structure is being updated
which makes the data value in question "outdated". The
timestamp is still a valid number, and useful to report
status to human beings, but from the view of the
operating system, it is not "up to date". An example of
an invalid piece of data would be a timestamp that was in
the middle of being updated by one CPU when a second
CPU comes along to read it. The second CPU would see
a timestamp that was never correct, and if this time was
reported (even to a human being), it would be useless.

In some cases it is not necessary to prevent two CPUs
from "treating" the data. If one CPU is updating the
data, and another is only reading it, it may be perfectly

all right for the second CPU to get an "outdated" piece of
data as long as it is a valid one. For example, the
modification time of a file might be outdated by a
microsecond, but since the granularity of the timestamp
on the file is seconds, it may be all right for the system
to get an "outdated" piece of data to use, as long as it
was a valid time (e.g. not a negative number). Likewise
it may be all right for a second CPU to read or
manipulate some other part of a data structure while the
first CPU is manipulating some other part.

The ability of a data structure to be manipulated by more
than one CPU is called the "granularity" of the structure,
or the "granularity" of the locking. This really refers to
the parallelism which will be allowed through a
subsystem that is manipulating these data structures.
Typically the finer the "granularity", the greater the
parallelism which can occur. However the finer the
granularity, the more time spent locking and unlocking
locks.

If a CPU is blocked from looking at a particular data
structure, it can only do one of two things; either "wait"
for that data structure to become available to it, or try to
go off and do something else while the data structure is
being updated (if there is something else the CPU can
do).

Therefore it would seem best if the data structure was
broken down into very, very small parts and each part
was locked and unlocked as needed. This is known as
"fine granularity". However, "fine granularity" has the
issue that locking and unlocking locks uses CPU time
that basically adds nothing to the solution of the end-
user’s problem. The finer the granularity, the more the
CPUs spend time in locking and unlocking locks, and the
SMP system becomes less efficient.

Course granularity is having few locks per data structure,
therefore freeing up CPUs from locking and unlocking as
many locks in doing their work, thus cutting down on
overhead. So "coarse granularity" seems attractive.
However, coarse granularity has the issue that large
sections of code may be blocked from having a second,
third, fourth or more CPUs accessing it. If that data
structure is used a great deal inside the operating system
and if the update is relatively slow with respect to wall-
clock time then the other CPUs may be idle, and once
again total system throughput suffers.

Therefore it is best to study the data structures inside the
kernel, and use the correct granularity. Locks should
allow read-access when permissible, even to re-designing
data structures for better granularity with less locking

August 10, 1994



-- --

- 5 -

overhead.

Which brings us to the topic of Locks, their types and
efficiencies.

3.2.2. Types of Locks

The different types of locks are (engineers, please pardon
the simplicity of this section) "spin locks" and
"semaphores". Under semaphores (also known as
"Mutexes") are "Fast Mutex", "Recursive Mutex" and
"Blocking Mutex". Each one of these locks has its place
inside the kernel.

3.2.2.1. Spin Lock

The simplest lock is the spin lock. When a CPU is
starting to look at the data structure, it tests a piece of
data common to all the CPUs to see if any of the other
CPUs are looking at the data structure also. If none are,
it sets that piece of data (the lock) to "set", and starts to
manipulate the data. When another CPU starts to look at
the data it sees the lock is set, and then loops, constantly
looking at the lock to see if it is unlocked by the first
CPU. When the first CPU is done, it clears the lock, and
continues on. The waiting CPU then sees that the lock is
cleared, sets the lock to indicate that the data structure is
"busy", and accesses the data.

Spin Locks are very simple to implement, and are the
least overhead of all the locks for data structures where
the update time is very short. These are typically
structures which reside completely in semiconductor
main memory (not out on the disk) and will only take a
machine cycle or two to update. Therefore they can be
very efficient. However the efficiency of these locks has
changed over the years. As was pointed out earlier, as
CPUs got hundreds of times faster and disks were only
two or three times faster, areas that had been locked with
spin locks before now demanded a lock that would allow
less idle CPU time. With a spin lock, the waiting CPU is
idle. It would be nice if the waiting CPU could go off
and do other useful work if it had to wait longer than a
certain period of time, or a certain number of CPU
cycles.

Enter the Mutex.

3.2.2.2. Mutexes

Mutexes allow the waiting CPU to re-schedule itself by
"blocking", and going off to do other types of work.
Later, when the data structure is unlocked, the CPU goes
back and continues its work. In the case of threads
waiting to unlock for updating the structure versus
threads waiting to unlock for reading the structure, the
threads which are waiting to read are given preference.

It is obvious that any mutex will take more overhead to
set up than a simple spin lock. First the same type of
lock testing has to be done to see if the data structure is
free. Secondly the thread that is blocked has to re-
schedule itself to do other work. Finally that thread has
to come back and be re-scheduled again to complete the
task it tried to do when it was blocked.

In order to cut down on this overhead, several different
Mutexes were used: "Fast", "Recursive" and "Non-
blocking". There are different names for these, but we
will use these names for ease of understanding.

3.2.2.3. Fast Mutex

The Fast Mutex allows a single thread to lock the data
structure. A second thread coming along will block as it
tries to access the data structure by calling the same
Mutex code. This Mutex has very little overhead, and is
relatively "fast".

Unfortunately it has a problem. If the thread that
executed the Fast Mutex in the first place (the one
updating the data structure) for some reason calls the
same Mutex code again before unlocking it, the entire
thread will stop. Deadlock will occur. In situations
where a thread *might* call a Mutex without unlocking it
first, this is not acceptable.

3.2.2.4. Non-Blocking

To answer the issue that exists with the Fast Mutex, a
non-blocking Mutex was created. Using slightly more
overhead than the Fast Mutex, the Non-Blocking Mutex
will simply deliver an error message if a thread of
execution tries to enter an area already locked by that
thread. Thus the thread can test for this error condition.

3.2.2.5. Recursive

From time to time it is desirable to have a Mutex that
allows a thread to call itself, and to not allow any other
thread to enter a section of a data structure until the first
thread "returns" as many times as it was called. This is
especially useful for traversing lists, strings, etc. A
"Recursive Mutex" was created for this purpose.

While the overhead difference of these Mutexes may not
seem significant, when executed hundreds of thousands
of times each second the overhead can become
considerable, perhaps even consuming a CPU of time in
executing this "overhead code" which (in most cases) is
not necessary except in an SMP environment. For
example, the overhead of a Mutex is greater than two
times the overhead of a spin lock, assuming that the
waiting CPU does not "spin" very much.

August 10, 1994



-- --

- 6 -

Therefore good mutex selection is critical.

3.3. Algorithm Replacement

Even better than good lock selection in an SMP
implementation is to re-design a kernel algorithm to
reduce the lock overhead, or even eliminate a lock
altogether.

As an example of lock elimination, the time structure in
UNIX systems (used by the operating system many times
each second) is called "timeval". On Alpha systems this
happens to be a 64-bit structure. The Alpha architecture
ensures atomic operations on 32 and 64-bit data
structures. It was impossible for a CPU to pick up "half"
of the timeval structure while another CPU was updating
it. Therefore the necessity of having to lock the timeval
structure while the CPU manipulated it disappeared.

In an example of algorithm replacement the process
control structures and the methods of transversing them,
were scattered between many tables. This made it
difficult to allow fine preemption in a real-time
environment, and also had a lot of overhead in an SMP
environment. By re-designing the process control
structures many of the fields used to "navigate" between
the structures were eliminated, the structures had better
"locality" (i.e. were closer together in main memory,
therefore more likely to be in a cache of some type) and
eliminated the need for several locks.

A final example of algorithm replacement is in the PID
table. The PID table is used to find processes (and stands
for "Process ID"). In most UNIX systems this table is
static, and tends to be fairly large, with linked lists
providing the method of searching. In DEC OSF/1 V3.0
this table was made to be dynamic, with the table to be
searched being a much smaller "pidtab" array. The PID
number is used as an index to the pidtab (making for
very fast location of the entry) and the next available
entry is pointed to by a "freepid" list. This also
eliminated seven different locking points in an area of the
kernel that is used extensively by every CPU.

3.4. Different Strokes for Different Folks

In addition to the study of different SMP techniques,
there is the application of these techniques to different
job loads.

For instance, it is not necessary to have a lot of the locks
in a single CPU situation. Therefore DEC OSF/1 has the
ability to "patch out" these locks either as a
configuration-time option, or as the operating system is
booting in a single-CPU environment.

Likewise, if a customer is doing real-time in a single-
CPU environment, the locks for preemption will be
applied, but the locks for SMP will not. If a customer
has an SMP system, but does not want real-time, the
locks which are only relevant for real-time will be
patched out. And finally, the customer that wants real-
time and SMP will have an environment which includes
both types of locks.

In all, DEC OSF/1 V3.0 has five levels of "lockmodes".
To our knowledge at the writing of this paper Digital is
unique in the industry in offering locking techniques
configurable to the environment.

So far only four modes have been described. The fifth
mode is "Lock Debug Mode", and has to deal with
deadlock detection, which we will now discuss.

3.5. Deadlocks and SMP quality

An SMP system is useless unless it is a quality system.
Digital, with its years of SMP engineering experience,
designed quality in from the start.

The term "deadlock" was described earlier in this paper.
One of the ways of avoiding deadlock is to lock the locks
in a particular order (called "assertion ordering" or
"hierarchy ordering") and to unlock them in reverse
order. This means that it is impossible for two threads to
have deadlock occur. However, in an operating system
kernel this is easier said than done.

Even in a single-CPU operating system it is possible for
deadlock to occur, or have the potential for deadlock to
occur, and not experience it for years. When SMP
systems ship, this potential escalates immeasurably.
Digital’s UNIX engineers built the original locks used for
real-time preemption with debug code built into it. As
engineering ran the kernel in the labs, they left the debug
code turned on, which checked to make sure that the
locks were locked and unlocked in the proper order.
While the systems ran a great deal slower due to this
checking, they uncovered hundreds of potential problems
that might not have otherwise been uncovered until the
code arrived in customer’s hands.

In addition to checking the locking hierarchy. the same
debugging code keeps count of lock usage, and allows
the engineers to see how often a particular lock is used
under different loads. This gives good indications of the
next place where algorithm restructuring or lock
replacement might be attempted.

Debug mode is also configurable by the customer,
however it is not recommended in normal production

August 10, 1994



-- --

- 7 -

environments due to the overhead it creates in the
system. It is very, very useful if the customer starts to
have problems, since the situation that creates a deadlock
is usually long gone by the time the deadlock is evident.
The debug mode logs the locking information necessary
to find the problem.

3.6. Scheduler changes

Another issue in SMP is processor affinity. Customers
often wish to apply processor affinity to one process or a
particular set of processes. This may be to dedicate a
certain amount of CPU power to a process, or (in the
case of a real-time system) hope to cut down re-
scheduling time by having the same processor (and
therefore the same processor cache) run the application
thread.

Processor affinity should not be confused with
"funneling". Funneling is a technique typically used
inside the kernel to allow only one CPU through a piece
of code at one time for control purposes. Processor
affinity is used outside the kernel to try to assign a
processor or group of processors to a process or group of
processes for better throughput.

DEC OSF/1 V3.0 allows "soft" processor affinity. This
means that the customer can set up processor affinity for
their CPUs, but if that CPU goes down, another CPU
takes over. Also, if the assigned thread requires services
only available from another processor, the affinity may be
compromised for a short time. In addition, the operating
system keeps statistics on jobs, and the operating system
will try to assign the same threads to the same processors
whenever possible.

Other than processor affinity being assigned (either by
the customer or automatically by the operating system)
the scheduler will attempt to distribute the processes
across all available processors evenly.

In DEC OSF/1 V3.0, the system automatically tries to
assign processor affinity, unless over-ridden by processor
affinity set up by the systems administrator.

4. Field Testing and Quality Control

Despite the care taken in engineering DEC OSF/1 V3.0
for SMP, it is a complex task, and some errors will
occur. It is for this reason that the Digital UNIX group
has embarked upon one of the largest quality and field
testing efforts in its history.

SMP was running for over a year inside our laboratories
in Nashua, N.H. before we released it to field test. The
field test was in two stages, with Internal field test

commencing in November of 1993, and External field
testing starting in March of 1994. The SMP
development group has been using V3.0 for their normal
day-to-day work since February of 1994, not just "testing
it" in the lab. An update to External field test was
released in May of 1994, with volume ship planned for
the July/August timeframe. In addition to the formal
field test sites, Digital put forth a heavily monitored pre-
release program to ISVs and large end users, including
several large data-base customers who have been jointly
working with Digital for the past two years in the design
and implementation of our SMP.

Finally, the engineering group developed a multi-
threaded, multi-call test suite to create thread races
between different system calls at the same time in a
random fashion to check out inter-system call issues.

Digital feels that the DEC OSF/1 V3.0 SMP
implementation will be very stable from first ship.

5. SMP is not the kernel alone

A good implementation of SMP is not just the kernel. A
good implementation requires supporting programs to
make it successful.

Other vendors shipped their SMP version of the
operating system, but did not ship tools for application
development or debugging until six months (or more)
after the SMP implementation was shipping.

The end-user customer did not see off-the-shelf
applications by commercial vendors which could take
advantage of SMP until much later (perhaps even a year
after first ship).

In the world of "C" programming, software engineers
have often used parallel programming techniques
(through the use of threads and shared memory) to get
better performance on both single CPU and SMP
systems.

However there are products which make it easier for C
and FORTRAN programmers to take advantage of
multi-threading. KAP for DEC Fortran V2.0 and KAP
for C V2.0 are being actively used in SMP benchmarks
at all of the Digital benchmark centers. Features/benefits
of the KAP preprocessors include:

o Automatic decomposition of FORTRAN 77 and C
programs

o Optional directed decomposition

o RTL based on OSF/1 threads, providing good
efficiency

August 10, 1994



-- --

- 8 -

o Parallelization is combined with KAP’s usual
scalar optimizations

o Tested, mature technology

These versions of the KAP development tools will be
available with the shipping of the DEC OSF/1 V3.0
layered products consolidated CDROM.

Digital, through its High Performance Computing group,
has also formulated a series of libraries and compilers
that allow a customer to develop a multi-threaded
FORTRAN program. In fact, Digital has extended its
Parallel Software Environment (PSE) and DEC Fortran
90 compiler to embrace industry standard extensions
(known as "High Performance FORTRAN or "HPF") to
FORTRAN 90 allowing for directives which tell the
compiler how to break up the program for best
parallelism. This compiler suite is in field test now,
shipping at the same time as DEC OSF/1 V3.0, allowing
ISVs to develop high performance applications which
will be available when DEC OSF/1 V3.0 ships, or
slightly after. Digital was the first vendor to support both
FORTRAN 90 and the High Performance FORTRAN
extensions.

In addition, Digital has a debugger which has the
capability of debugging multi-thread and multi-process
applications and a profiler that can profile to the thread
level. This will be shipping at the same time as V3.0,
and some of the system management utilities shipped
with DEC OSF/1 V3.0 will be modified to give
information about each CPU’s utilization.

6. Conclusion

This paper has talked about many techniques used in
Symmetric Multi-Processing, most of which are well
known in computer science. The point is not that new
techniques are used in implementing SMP, but that the
techniques used are used carefully, with the right
technique being used in the right place for maximum
throughput in the system. Digital engineering has made
that investment of time and engineering skill studying
and implementing DEC OSF/1 V3.0 for an efficient SMP
implementation. In addition, this paper has shown that
the OSF/1 base kernel from the Open Software
Foundation was a good choice for implementing such a
system due to its modularity.

I have not included the charts showing performance in
this paper, simply because it continues to get better every
day, and to embed the charts in this paper would not give
the reader the current status. However, the charts are
available, and will be placed out in the public directories
on gatekeeper.pa.dec.com as they are updated.

DEC OSF/1 is a world-class UNIX operating system, and
the V3.0 SMP implementation is a symbol of that class
of engineering that is a characteristic of the Alpha
Generation efforts.

August 10, 1994


