
Success on Sun
Software Development Case Study

Federal National Mortgage Association (Fannie Mae)

Company Background
Chartered by Congress, Fannie Mae is the nation’s largest source of home mortgage funds. Mortgages
are purchased from primary lenders and sold to brokerage houses and investment funds.
Headquartered in Washington, D.C., Fannie Mae includes five regional offices nationwide, with 3450
employees producing over $760 billion (U.S.) annually. Boasting over $2 billion (U.S.) in after tax profit,
Fannie Mae received acclaim as the most profitable company per employee in 1994.

Over time, Fannie Mae has installed a new network of over 1000 Sun® SPARCstation™, SPARCserver™,
and SPARCcenter™ systems. The company’s central information system (IS) organization utilizes this
predominantly Sun UNIX® environment to develop, maintain, and deploy mission-critical financial
applications, such as its new Financial Management Information System (FMIS). Through the success of
its new development environment and processes, Fannie Mae realizes that software development has,
and will continue to play a key role in the organization’s ability to maintain its edge in the financial
services industry.

Company Name:

Industry:
Annual Revenues:

Headquarters:
Key Development Issues:

Key Development Results:

Application:

Application Type:

Development Environment: Hardware Software

Fannie Mae

Financial

Approximately $760 billion (U.S.)

Washington, D.C.

• Need to get applications to market quickly
• Need to adapt to rapidly changing market environments

• Shorter software development cycle
• Faster problem isolation and resolution
• Improved decision making and responsiveness

Financial Management Information System (FMIS)
Real-time decision support system

SPARCserver 690
SPARCserver 10
SPARCserver 20

Solaris 2.3
WingZ
SPARCworks C
SPARCworks C++

SYBASE RDBMS
SYBASE APT

SYBASE APT DWB
Workbench

Fannie Mae Success Story — March 1995 2

Old Development and Deployment Environment
For years, Fannie Mae developed and deployed all of its applications in a timeshared mainframe
environment. An IBM 3090 mainframe, several thousand Data General workstations and servers, and
thousands of 3270 terminals were used to develop financial analysis, planning, and mortgage processing
applications. Data General servers acting as gateways to the mainframe were connected via channel
attachment, while the terminals used serial lines. Workstation users accessed the mainframe via 3270
emulation.

The IBM 3090 was timeshared between development, testing, and deployment activities. Because they did
not have dedicated system resources, developers were forced to off-load portions of their project
development from the mainframe to servers and workstations. Using a traditional mainframe coding
methodology, programmers edited, compiled, and unit tested their 3GL-based COBOL code on either the
mainframe or a local Data General system. This process resulted in a fragmented development
environment. Once compiled and unit tested, pieces were sent to the mainframe where they were
assembled and the entire application tested. When verified, the application was moved to a designated
production area on the mainframe. Data access was achieved through character-based 3270 terminals,
limiting the manner in which data was presented to the user.

Fannie Mae’s development environment, and its
associated development process, constrained
application developers. The lack of windowing
environments limited their ability to concurrently
work on tasks. Batch mode transfers held developers
at bay, causing significant delays in their
edit/compile/test/debug cycle. Furthermore, as
application functionality increased, Fannie Mae’s
procedural 3GL coding effort produced large and often unwieldy applications, consuming seventy percent
of software development resources in maintenance. The use of both mainframe and workstation resources
in Fannie Mae’s development process fragmented the development environment and lengthened the
software development process.

Usage: Data Access

Internal application front-end
Applications:

Mainframe

Terminals

Usage:

Tools:

Serial Lines

Data General Workstations and Servers

Channel
Attachment

Old Development and Deployment Environment

COBOL
IDMS Database

Development Deployment

System level integration, compiling and testing

Usage:

Tools: COBOL

Unit level editing,
Compiling and debugging

Key mainframe development characteristics
• 3GL

• Monolithic code

• Single-tasking development

• Fragmented development cycle, split between the
mainframe and workstations

Fannie Mae Success Story — March 1995 3

Development Issues
The inadequacies of Fannie Mae’s development
environment negatively impacted their ability to
modify or create applications in a timely manner.
This resulted in a series of development problems
that hindered the effectiveness of their organization:
• Lengthy development cycles
Hampered by their development environment,
processes, and lack of development tools, application
developer productivity was compromised. Single-
tasking operating systems and non-windowed
environments prohibited developers from working
on concurrent tasks, and eliminated their ability to
simultaneously modify files and parallelize efforts.
Because development and production activities
shared resources, programmers were forced to
fragment their workspace, forcing the development
process to be split among systems. With each
edit/debug cycle, delays were experienced from
batch mode transfers of application modules to the
mainframe for compilation and testing, leaving
developers idle for long periods of time. Since
production applications had higher priority, turn-
around times were slowed, further delaying
development cycles.
• Unable to respond quickly to change
In the fast-paced financial services industry, new
features are constantly needed in a short timeframe.
Using a traditional coding methodology, the
resulting programs were monolithic in structure.
Without program modularity and tools to aid in
problem isolation, it was difficult for developers to
locate specific areas of code that needed
modification. In addition, it was impossible for
multiple programmers to concurrently modify source
code files safely without potentially obviating fixes
made by other developers, or cause new defects. This
resulted in excessive edit/integrate/build/test
cycles. Together, these issues resulted in a substantial
backlog for requested changes and bug fixes to
applications, resulting in the inability to quickly
adapt to change.

• Expensive software development costs
Mainframe environments carry with them extremely
high hardware and software maintenance costs. As
more compute power was required, additional
mainframe capacity or systems needed to be
purchased. These costs, in combination with
mainframe chargebacks for use of a shared resource,
caused the computing platform to become the most
significant cost in applications development.

Business Issues
Fannie Mae realized their development issues were
having a direct impact on their success:
• Lost business opportunity

Fannie Mae’s credit department handles
underwriting—the process of deciding which
mortgages should be purchased. Risk factors and
demographics must be analyzed, and its marketing
organization needs to be able to negotiate buy/sell
terms.
The process of obtaining the data needed to make
such analyses and decisions was cumbersome.
Access to the mainframe was slow, and once
retrieved, data could not be put in a format that was
quickly understandable. The inability to present
information in an intuitive, graphical manner meant
increased analysis time and delayed decision
making.
In addition, the inability to retrieve, analyze, and
present data to customers managing the actual
buying and selling of mortgages meant buy/sell
decisions could not be accurately made within
critical market windows. Fannie Mae discovered it
was losing $1 million (U.S.) per day in lost
opportunity and potential revenue.
• Inability to quickly analyze data

In 1989 Fannie Mae began applying financial
modeling to aid their corporate-wide decision
making process. Their complex models including
hundreds of variables required extensive compute
power. Since their mainframe was timeshared,
financial models would take months to run,
preventing Fannie Mae from taking maximum
advantage of historical and current data.

Fannie Mae Success Story — March 1995 4

Development Environment Analysis
When Fannie Mae concluded that their development
environment was causing business losses, they began to
reassess their requirements for a corporate-wide computing
system. For a pilot project, Fannie Mae chose a new
application, the Financial Management Information System
(FMIS). If the solution worked, use FMIS as a model for the rest
of the development organization.
FMIS was designed as a decision support system to help Fannie
Mae with a new way to look at their existing business —
referred to as their “Book of Business”. It was critical that
Fannie Mae have the ability to examine both financial data and
entire business segments in a consistent,
real-time manner. Developers had already identified the problems they encountered on a day-to-day
basis. What was needed was an environment that was graphical, that let them perform multiple tasks
at the same time, and that would allow them to develop applications faster.

Why Sun: The Choice for Client-Server Development
Based on the recommendation of consultants, Fannie Mae studied the cost of developing on mainframe
versus client-server systems. They determined their current mainframe solution would take a team of
20 programmers 12 months to develop FMIS at a cost of nearly $7.8 million (U.S.). They also
considered a client-server environment using a Sun SPARCserver 690 server, and 20 Sun desktops with
a SYBASE relational database to handle back-end data collection, processing, and analysis. In addition,
SYBASE’s APT Workbench and APT Developer’s Workbench (DWB) 4GL tools were selected for
application development. Because information needed to be presented in an intuitive manner and they
needed an application programming interface, the WingZ spreadsheet program was selected to present
data to the user graphically. In the end, they determined the FMIS application could be developed by
a smaller team in 6 months at a cost of only $1.5 million (U.S.)
Fannie Mae realized the cost savings differential between their mainframe and a new Sun client-server
environment had broad applicability. Lower cost client-server workstations significantly reduced
capital expenditures for hardware, as well as hardware and software maintenance expenses. With a
move to a distributed environment that provided dedicated computing resources, mainframe
chargebacks would no longer be incurred, further reducing costs directly attributed to the hardware
platform. Furthermore, using Sun’s powerful Solaris multitasking operating system and advanced
development tools, resource costs would be reduced. Smaller teams using flexible tools and an
iterative development process could produce significantly more sophisticated applications in a shorter
timeframe.

“Once we had demonstrated
the effectiveness of client-
server to quickly develop,
deploy, and run powerful new
applications, the floodgates
opened and everyone was
clamoring for new business
solutions.”

— Mike Williams

Fannie Mae Success Story — March 1995 5

The New Development Environment
After successful pilot project, Fannie Mae decided to make a broader commitment to Sun systems for
its entire development organization. Today, Fannie Mae’s new corporate-wide development
environment consists of 15 SPARCcenter 2000 and SPARCserver 690 servers, and 700 SPARCstation
desktops divided into various subnets.
The FMIS development environment is representative of most Fannie Mae applications developed
today. It consists of a SPARCserver 690 running Solaris 2.3 that is connected to each subnet via
Ethernet. SYBASE APT Workbench and APT DWB 4GL are the central tools used for application
development. When required, programmers utilize 3GL tools to augment functionality or integrate
application components. The SPARCserver 690 server handles the compilation of application code
using Sun’s SPARCworks C and SPARCworks C++ compilers.
A SYBASE relational database stores financial information, and a WingZ API is used for the
development of the application front-end that presents complex financial analyses in graphical form.
Developers use a mix of SPARCstation 10s and SPARCstation 20s running Solaris 2.3 along with the
SPARCworks toolset for developing, debugging, and testing application components.

Ethernet

SPARCworks C++ compiler

WingZ
UNIX scripts

Environment:
Solaris 2.3

System level integration, compiling, and testing

Tools:
SPARCworks C compiler

SPARCstations

Development Subnet

Test Subnet

Acceptance Subnet

Unit level editing, compiling, debugging

Environment:
Solaris 2.3 WingZ

Tools:

Ethernet

Ethernet

New Development Environment

SYBASE APT Workbench

SPARCserver 690

• Application development
• Compiling, debugging, testing

SPARCstations
• Engineering component testing
• Problem identification

SPARCstations
• Application user acceptance testing
• Problem identification

Fannie Mae Success Story — March 1995 6

Fannie Mae’s new Sun environment has many characteristics that
help its development organization to function more efficiently.
Having moved from a mainframe to a UNIX client-server platform,
developers now work in a multitasking, network-based, windowed
environment that allows simultaneous access to files and the ability
to work on concurrent tasks. Development and testing now use
dedicated, high performance servers and desktops that offer faster
compile times and increase productivity.

The company’s shift from a centralized, monolithic mainframe
environment to a distributed client-server computing platform has
changed development team composition and function. Systems are
divided among various financial application development groups,
with each group partitioned into subnets. This has allowed Fannie
Mae developers to specialize in specific tasks, such as development,
testing, and user acceptance. This segregation of duties, combined
with increased code modularity and an iterative development cycle,
has allowed teams to perform their tasks in a parallel, collaborative
manner. The resulting decrease in elapsed coding and testing time
has enabled Fannie Mae to develop and modify applications more
efficiently—significantly reducing backlog.

Fannie Mae not only changed its hardware configuration, it also
switched from a traditional coding methodology to a 4GL rapid
application development methodology. By altering the approach
used to develop applications, Fannie Mae has seen dramatic changes
in its development cycle. Dedicated desktop systems and SYBASE
APT Workbench and APT DWB tools are used to develop 4GL
applications. Additional lower level 3GL code is used to add
functionality and integrate application modules via SPARCworks C
and SPARCworks C++.

SPARCworks graphical tools are used to locate application defects in an interactive manner, easing the
debugging task and reducing development time. As each modification is made, testing groups are able to
test changes immediately after they are implemented and quickly provide feedback to developers. The
ability to compartmentalize and parallelize development and testing efforts is a dramatic change from the
sequential process used in the mainframe environment — a change that has resulted in the ability to
quickly develop new applications or modify existing ones.

“There was a significant pent-
up demand for more effective,
timely delivery of business
critical applications. With our
evolving client-server network,
we have not only experienced
considerably faster
development, but we are
adding significantly more
functionality to applications at
a price that is comparable to —
or less — than our proprietary
approach.”

— Mike Williams, Senior VP
Customer Applications

and Technology

Fannie Mae Success Story — March 1995 7

The New Deployment Environment
Fannie Mae’s new distributed computing platform gives developers the ability to stage and deploy
applications and functionality where they are needed. For example, the FMIS application is used
throughout all Fannie Mae offices. The centralized financial information database is stored on a
SPARCcenter 2000 located in Washington, D.C. On-line access to the information is obtained via a PC
front-end running WingZ and FMIS in each regional office. Each office connects its PCs using a Token
Ring network running Novell NetWare. These PCs directly access data located in Washington via an
FDDI backbone that transmits data over a 56 Kilobit line. The current IBM mainframe is now
principally used as a data repository.

Personal Computers

FDDI Backbone

Ethernet

Token Ring

Cisco Routers

SPARCstations

Development Subnet

Test Subnet

Acceptance Subnet

SPARCstations

SPARCstations

Ethernet

Ethernet

New Development Environment

Data repository

IBM 3090 Mainframe

Channel
Attachment

Usage: Data Access
Environment:

Microsoft Windows
Novell NetWare

Applications:
FMIS Front-end
WingZ

Atlanta Office
Personal Computers

FDDI Backbone
Token Ring

Cisco Routers

Dallas Office

Personal Computers

FDDI Backbone
Token Ring

Cisco Routers

Pasadena Office

Personal Computers

FDDI Backbone

Token Ring

Cisco Routers

Chicago Office

Personal Computers

FDDI Backbone

Token Ring

Cisco Routers

Philadelphia Office

Usage: Runs Financial Applications

Environment:

Solaris 2.3

Applications:

FMIS

WingZ

SYBASE

56 KB LinesSPARCcenter 2000

Washington, D.C.

New Deployment Environment

SPARCserver 690

Fannie Mae Success Story — March 1995 8

Development Benefits
With its Sun client-server solution, Fannie Mae solved a
variety of development problems:
• Shortened software development cycle
Using a Sun client-server development environment,
programmers can now work concurrently on a variety of
tasks. The multitasking features of Sun’s Solaris
operating system and graphical windowing system,
allow developers to simultaneously modify files,
parallelize processes, and decrease compile and link
times. By employing dedicated desktop systems and
servers, all tools and data are available on-line, resulting
in a cohesive development process rather than a
fragmented one. The move to a 4GL development
environment has also required less coding time, resulting
in a software development cycle has been reduced by
fifty percent.
• Faster problem isolation and resolution
The shift from a traditional coding to a iterative
development process, and a new 4GL tool set has
enabled better application modularity. Because
applications are modularized, features and functions are
segmented, eliminating the need to modify or replace a
substantial number of lines of code each time a defect is
found. Modularity eases the incorporation of new
features by minimizing their impact on the rest of the
application. Advanced graphical tools, such as Sun’s
SPARCworks compiler and debugger products, allow
programmers to quickly modify applications as needs
dictate, and to find and fix problems in less time.
• Application flexibility
Flexibility is the ability to easily modify or augment
applications. Because they have become more modular,
Fannie Mae’s applications developers have greater
flexibility in deciding how to add new functionality.
Also, the move to a 4GL process allows Fannie Mae to
accommodate new features without application redesign.
The rapid prototyping features of the 4GL SYBASE and
WingZ tools provide faster module development and
validation.
• Improved teamwork
Fannie Mae’s new iterative development structure has
shortened the software development life cycle by using
dedicated resources, and has improved teamwork by
encouraging better communication.

Code modularity has increased the parallelization of
software development tasks, making developers more
efficient. The ability to rapidly prototype new
applications and features also allows development
personnel to quickly iterate toward a solution that meets
end-user needs.
• Lower development costs
With its new client-server platform, development
processes and tools, Fannie Mae has changed the
architecture of its development environment resulting in
lower development costs. In the older, less flexible
environment, $7.8 M (U.S.) and 240 man months would
have been needed to develop FMIS. Fannie Mae was able
to complete the effort in a Sun client-server environment
in 120 man months at a cost of $1.5 M (U.S.) — a cost
savings of $6.3 million (U.S.)

Business Benefits
The new development environment had direct impact on
Fannie Mae’s business:
• Increased responsiveness
By investing in a dedicated development environment,
more CPU cycles are now available to production
systems. As a result, data access is improved, and
compute power is available for financial modeling.
Today, financial models are run in days rather than
months, enabling Fannie Mae to take better advantage of
historical and current data, increasing their
responsiveness to changing business conditions.
• Improved time-to-market
The shortened software development life cycle has
enabled Fannie Mae to produce applications more
quickly. In the last 4 years they have developed and
deployed over 60 financial applications, reducing
application time-to-market to one-half that observed in
the old mainframe environment. Not one mainframe
application has been developed since 1991.
• Increased revenue
An easy to use GUI and the graphical presentation of
financial data has financial data to be directly accessed
from on-line, dedicated servers. Now, data can be
analyzed more quickly, permitting better decisions to be
made quickly. With their new environment, Fannie Mae
is better able to seize market opportunities, and today
generates approximately $5 million (U.S.) per day from
recaptured business opportunities.

Fannie Mae Success Story — March 1995 9

Summary
Fannie Mae recognized that access and distribution of accurate, up-to-date financial information,
together with powerful analysis tools, was a critical factor in running a successful business. Financial
information, such as interest rates and market conditions needed to be integrated into their decision
making process as quickly as possible. The ability to quickly access this data directly for buy/sell
decisions, financial modelling, or business segment analysis, was essential to reduce missed
opportunities and lost revenue.

These observations drove Fannie Mae to restructure their development environment, the way financial
applications were developed, and how information was presented to the user. To accomplish these
goals, Fannie Mae replaced its mainframe environment with distributed client-server systems for both
development and deployment. By employing client-server technology, simultaneous access to a wide
variety of financial information, and the ability to quickly develop applications that can take
advantage of a powerful computing environment are now possible. By exploiting the multitasking and
windowing capabilities of s Solaris, Fannie Mae’s programming staff is able to work concurrently on
several tasks, decrease application development time and time-to-market.

The end-user graphical user interface used in the FMIS application is one example of where the use of
new technologies has had a significant impact on business revenue. By employing a SYBASE relational
database and APT Workbench 4GL tools, FMIS is able to graphically present time-sensitive and critical
financial data using WingZ as a user interface. Able to directly access financial information from an on-
line, dedicated server, data can be analyzed more quickly, allowing better informed decisions to be
made quickly.

The higher throughput and flexibility offered with Sun systems, combined with powerful development
tools, dramatically reduced the cost of developing financial software. Fannie Mae’s new Sun-based
development and deployment environments also reduced the cost of obtaining, managing, and
analyzing business information. Able to parallelize efforts, business can continue without interrupting
development. The Sun client-server solution combined with SunSoft SPARCworks tools has turned
Fannie Mae’s development bottleneck into an effective, efficient, and flexible application development
environment.

Australia: (02) 844 5000
Belgium: +32 2 716 79 11
Brazil: 011-55-11-887-9011
Canada: 416 477-6745
C.I.S.: 7-502-256-5470
Finland: +358-0-525561
France: (1) 30 67 50 00

South Africa: (2711) 805-4305
Spain: (91) 5551648
Switzerland: (01) 825 71 11
Taiwan: 2-514-0567
UAE: +971-4-366-333
UK: 0276 20444
United States: +1 800 821-4643
Venezuela: 011-582-285-6640

Latin America: + 1415 688-9464
Mexico: 011-525-580-5229
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-8492828
Poland: 48-2-658-4535
Singapore: 224 3388

Germany: (0) 89-46 00 8-0
Greece: +30-1-689-2210
Hong Kong: 852 802 4188
Hungary: 36-1-202-4415
Ireland: +353-1-6684377
Italy: 039 60551
Japan: (03) 5717-5000
Korea: 822-563-8700

Printed in USA

Worldwide Headquarters:
+1 415 960-1300
Intercontinental Sales:
+1 415 688-9000

