

September 1993

The Plug and Play Framework:
Advancing the PC Architecture
Backgrounder

 Microsoft Corporation

Table of Contents

Introduction..1
The Current PC Installation/Configuration Problem...1
The Solution: A Plug and Play Framework Architecture for PCs..................................3
Design Requirements for a Plug and Play System...4
Plug and Play: Progress to Date..5
The Plug and Play Solution ...7

A General Framework ...7
Managing the Configuration of the PC..9
Overview of the Architecture and Components ..10

Plug and Play BIOS ...10
Plug and Play Operating System..11
Configuration Manager..11
Hardware Tree ...12
Bus Enumerators..12
Resource Arbitrator ...13
Changes to Other Operating System Components13
Device Drivers ...14

Plug and Play Devices ...14
ISA...14
PCMCIA..16
SCSI...18
PCI...18
EISA and Micro Channel...19
Other Device Types (Serial, Parallel, VL, IDE, Infrared)....................................19
Levels of Plug and Play Implementation and Corresponding Benefits20

Conclusion...21
Sources for More Information ...21

Introduction
Configuring PC hardware and operating systems has become a significant problem in the PC

industry, resulting in customer dissatisfaction and increased support costs, and possibly affecting

PC market growth. A broad-based group of companies within the industry is tackling this

problem with the development of the Plug and Play framework architecture. This paper

describes the problem, the requirements for Plug and Play, the work that has been done so far,

and gives a technical overview of a complete Plug and Play system architecture.

The Current PC Installation/Configuration Problem
For anyone but a trained technician, installing or configuring a device on a PC today is a

daunting exercise that may be difficult, time-consuming and frustrating. To perform even

common configuration tasks the computer user must understand arcane terms that describe the

technical details of the inner workings of the PC, such as IRQ lines, DMA channels, base

memory addresses, I/O ports and more. Cryptic records of the PC anatomy such as autoexec.bat,

config.sys and *.ini files must be examined and modified to make most changes. The process is

so intimidating that it discourages nearly all computer users from upgrading components of their

PCs or adding some new capability to their systems without expert help. Those who try

frequently fail and tell others about it, perpetuating the PC’s reputation as a complex,

intimidating, and difficult-to-use product.

The root of the problem is that when the PC was designed, no architecture was defined for

installing, identifying and configuring hardware devices, nor for integrating hardware and

operating system software. One of the great strengths of the PC is the wide variety of add-in

devices; yet the hardware and software configuration problem is compounded by the fact that the

typical PC contains devices made by a multitude of vendors. The hardware, operating system

and applications can’t tell what’s in the system, and the hardware can’t tell when conflicts exist

between different devices trying to share the same system resource. Until now the PC industry

has left customers to struggle with complicated and inadequate technical documentation, rather

than designing intelligence into the PC itself to handle installation and configuration tasks

without user intervention.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 2

Today’s PCs based on the ISA bus architecture — the most popular expansion bus in the PC

industry — lack any mechanisms for configuration management. The ISA bus architecture

requires the allocation of resources such as memory and I/O address spaces, DMA channels and

interrupts among multiple ISA cards. However, the ISA specification has no standard hardware

or software interface for allocating these resources. As a result, configuration of ISA cards is

typically done with “jumpers,” manual changes to the card that change the decode maps for

memory and I/O address space, and steer the DMA and interrupt signals to different pins on the

bus. In addition to making these manual changes to the hardware, the user is also usually

required to edit system software configuration files. Even for software-configurable cards, the

user generally needs to determine the correct settings and enter them into an install program to

set the card.

With the increasing popularity of add-in boards such as fax cards, audio cards and CD-ROM

drives, users are putting more complicated options into their systems and running into conflicts

among the settings for system resources more frequently.

Alternative bus architectures (e.g., Micro Channel and EISA) have hardware and software

mechanisms to identify the resources requested by a card and resolve conflicts. But these

mechanisms are not compatible with the installed base of PCs with ISA card slots. Moreover,

these bus architectures are considerably more expensive than ISA designs and lack the wide

range of add-on and peripheral device choices available for ISA systems. The configuration

mechanisms are also inherently hard to use and functionally limited because they are not

integrated with the operating system. When adding or removing devices, end users must first

configure the hardware using a character-mode configuration utility that requires a set of floppies

for the configuration program and for each card. These floppies are frequently lost or separated

from the PC. Subsequently, each operating system driver needs to be set up separately. The

setup mechanisms require users to restart their systems to make any sort of configuration change

— a major limitation for notebook computer users who want the convenience of changing

devices and configurations without interrupting their work.

Some vendors include elaborate installation programs with their add-in cards. These programs

attempt to identify the installed hardware and configuration. However, they only work reliably

with cards made by that vendor, and with simple systems that do not contain many option cards.

Also, many PCs use cards from multiple vendors, and the installation programs often amount to

little more than a data entry screen.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 3

Systems using the ISA bus architecture have only a limited number of system resources,

particularly IRQ lines and DMA channels. Furthermore, many ISA cards are designed to be able

to use only a limited number of the possible choices. Thus someone has to determine a workable

combination — one that meets all the requirements and does not cause conflicts. Unfortunately,

that task often falls to the user.

The customer’s problem has been helped somewhat by the trend toward providing more full-

featured products with preconfigured hardware and preinstalled software. But this approach is

inflexible and limited because it does not accommodate customers who want to upgrade their

systems after purchase, nor does it address the technical requirements of new form factors and

system designs. Mobile systems in particular demand greater hardware and software integration,

in order to deliver dynamic insertion and removal of devices, hot docking and instant-on. The

configuration solution must be very general and flexible to accommodate the mix of device

architectures prevalent on today’s system designs, from local bus to ISA to PCMCIA.

The current situation is costing the industry millions of dollars in lost sales and increased costs.

Frequently, when customers try to add a new device, the result is an expensive product support

call and a negative perception of the product manufacturer. The high rate of problems

encountered by users generates a tremendous support burden — for example, at Microsoft nearly

half of the support calls for the Microsoft Windows operating system version 3.1 are related

to installation, configuration, and hardware or software integration. Customer frustration with

the configuration process depresses demand for add-on and upgrade products. For businesses,

the high cost of supporting PCs inhibits the penetration of PCs in the workplace and diverts MIS

personnel from focusing on using computer technology to solve business problems. If the

industry can solve this problem, it will result in more satisfied customers, more capable PCs as

users add new functions, and new sales as the market for new PCs and add-on devices is

expanded.

The Solution: A Plug and Play Framework Architecture for PCs
The solution to the PC installation and configuration problem is the concept called “Plug and

Play.” In practice, Plug and Play is both a design philosophy and a set of PC architecture

specifications. The ultimate goal of Plug and Play is to enable changes to a PC configuration

with no intervention by the user. A Plug and Play system has a number of characteristics. First,

any installation is a simple, fail-safe operation. For devices, the installation is automatic — plug

the device in, turn on the system, and it works. With a Plug and Play system, the user can insert

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 4

and remove certain devices (such as PCMCIA cards), or connect to or disconnect from a docking

station or network, without restarting the system or fiddling with configuration parameters. The

system figures out the optimal configuration, and applications automatically adjust to take full

advantage of the new configuration. Take your notebook with infrared communications features

into a room with an infrared printer, and your applications are ready to print.

Design Requirements for a Plug and Play System
To deliver the Plug and Play functionality described above, the PC industry has been working to

develop an architecture that addresses several critical design requirements.

The goal of a Plug and Play architecture is to provide easy installation and configuration of

new devices. Plug and Play devices must be capable of identifying themselves and declaring

their services and resource requirements. This information enables the operating system to

determine and establish a working configuration for all devices on the system and load the

appropriate device drivers without any user intervention. For customers, installing a new device

will then be as easy as plugging it in, turning on the system, and if necessary inserting a floppy

disk upon request by the system. In the event that a driver is already present on the system, even

the latter step would not be required.

The system must be able to accommodate seamless dynamic configuration changes. This

capability is critical for mobile systems. The Plug and Play architecture must allow hot docking

and insertion of devices. When a device is inserted, the operating system must recognize the new

device, its services and requirements, as well as load the necessary device drivers. Applications

must be notified about dynamic events, so they can take advantage of the new functionality or

stop attempting to use unavailable devices. The user should not be required to turn off and

reboot the system, and should not be asked to intervene in the configuration process unless the

required resources are not available to the new device.

The Plug and Play architecture must provide compatibility with the installed base of existing

(non Plug and Play) systems and peripherals while still meeting the goal of easy installation

and configuration of new devices. To accomplish this goal, components in the Plug and Play

architecture must be able to accommodate the lack of device-reporting mechanisms for non

Plug and Play devices. Information about such devices must be stored in the system, and devices

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 5

that cannot be software-configured must receive first priority in resource allocation. When

unresolvable conflicts occur, the system should guide the user through device-configuration

options.

The Plug and Play architecture must support existing classes of devices and be extensible to

new classes of devices that may arise in the future. Examples of existing classes of devices

include those on the ISA bus, EISA and Micro Channel devices, and SCSI devices. Examples of

new classes of devices include local buses such as PCI and VL bus, and new types of devices like

PCMCIA cards and Access bus. It is important for Plug and Play to encompass all devices

currently in wide use, and be able to support devices that may be important in the future.

To make the solution comprehensive, the Plug and Play architecture must be open and

independent of specific operating systems and hardware implementations. The components

of the Plug and Play architecture must be based on published interfaces and abstracted to a level

that enables the architecture to accommodate different bus and device architectures existing

today, as well as future designs.

To make the solution economically feasible for the industry, the Plug and Play architecture must

reduce hardware complexity, and increase hardware flexibility. The availability of clear

design guidelines and standardized interfaces between system components will provide an

economically attractive solution for system vendors.

Plug and Play must be inexpensive to implement. In particular, it must not significantly

increase the per-unit cost of PCs or devices.

Plug and Play: Progress to Date
Plug and Play development is being performed by a broad-based group of companies

representing all major segments of the computer industry. The common goal of this group is to

develop an architecture for system configuration that meets all the design requirements defined

above. A comprehensive solution addressing the problems of today while accommodating the

innovations of tomorrow is being developed by involving all components of the PC — the base

system, the BIOS, I/O architectures, devices and drivers, and the operating system.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 6

The Plug and Play effort was formally introduced in March 1993 at the Windows Hardware

Engineering Conference to more than 1,300 attendees. Microsoft and Intel Corporation

presented the general Plug and Play framework as well as the first application of that framework

in the form of the Plug and Play ISA Specification (version 0.8). More than 3,000 copies of the

Plug and Play ISA specification have been distributed, and feedback has been received through

more than 500 pieces of electronic mail on the “plugplay” Internet alias.

Microsoft and Intel revised the specification based on feedback they received, and released

version 0.9 of the Plug and Play ISA Specification in April 1993. Those who provided feedback

were invited to a full-day design review, which resulted in the completion of version 1.0 of the

specification. The design preview was attended by representatives of more than 60 companies.

The first implementation workshop to discuss and teach implementation of the specification, held

in June, was attended by more than 150 engineers from more than 80 hardware vendors.

Microsoft also released the MS-DOS and Windows 3.1 Plug and Play Driver Interface

Specification for system vendors who would like to provide a partial implementation of

Plug and Play functionality in systems based on Windows 3.1. At the same event, Intel

announced its plans to release a configuration utility for Windows 3.1 based on that interface.

Two Plug and Play ISA cards are available today: a SCSI card from Future Domain and an audio

card from Intel. Many more Plug and Play ISA cards are expected before the end of the year.

The most recent Plug and Play events have been the Windows Strategy Design Review held in

July 1993 at Microsoft headquarters and the Intel Plug and Play Software Briefing held in August

1993 at Intel headquarters. Nearly 150 technical executives and system architects from 100 key

hardware vendors attended the two-day Microsoft Design Review event, which covered the

overall Plug and Play framework in detail. This event focused on the broad Plug and Play

architecture in a future Plug and Play operating system. Technical feasibility of the Plug and

Play ISA design was shown when four Plug and Play cards from various vendors were

automatically installed and simultaneously activated in a live demonstration that used an early

testing release of a future version of Microsoft Windows. Participants reacted very positively to

the overall

Plug and Play framework and indicated strong support for moving forward to implementing the

framework into their products. Nearly 100 technical executives attended the Intel event, which

focused on delivering Plug and Play functionality with today’s operating systems by providing

driver development kits and configuration utilities. Intel released a beta version of its Plug and

Play development kit at the briefing.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 7

A broad coalition of system and component manufacturers is currently working to provide

Plug and Play functionality across a wide range of devices. Specifications are being written for

PCMCIA, SCSI, PCI, ECP, EISA, Micro Channel, VL and IDE architectures. All of these

specifications will be subjected to an open review process similar to the one used to review the

ISA specification.

A CompuServe forum (GO PLUGPLAY) has been established to support the industry-wide

Plug and Play development work. Copies of all the final specifications are posted there as well

as certain specifications in progress. The CompuServe forum is the main industry-wide support

source for Plug and Play development.

The Plug and Play Solution

A General Framework

To design a Plug and Play solution that meets the requirements stated above, an architectural

framework is needed that provides a complete definition of the functions each system component

performs in the configuration process — BIOS, operating system, devices and device drivers —

and how these components will interact with each other.

The basic functions that must be performed are readily apparent. Devices must be uniquely and

positively identified, their resource requirements must be read, and their drivers loaded.

Resources must be allocated and re-allocated when devices request identical resources. If any

change is made to the system configuration, the process must be repeated. There must be

centralized management of this entire configuration process to ensure complete coordination.

To create a Plug and Play framework, it is helpful to start by defining a model that describes the

general characteristics of a system and the functions which must be performed for the system to

be “plug and play.” This model is presented in this discussion from the perspective of the

operating system, due to the central role it must play in configuration management.

Today’s PCs consist of multiple bus and device architectures coexisting in a given system. These

systems can be viewed using a “tree” model to describe the relationships between these buses

and devices. In the system tree, buses and devices may appear at different levels of the system

hierarchy in multiple “parent-child” relationships; may require system resources; and may

provide resources that are understood, or not understood, by their parents. The relationships are

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 8

complicated by the fact that some of the buses (SCSI, PCMCIA) are actually hidden from their

parents until they are initialized.

Local Bus

Keyboard Display
Serial Parallel

ISA Bus SCSI Bus

Net

Fax/Modem

Hard-disk

Wireless

Access Bus PCMCIA Bus

CD-ROM

Modem

RAM PIC DMAI/O

RAM

Controller

Mouse Keyboard Monitor

Controller

Figure 1: Tree model of an arbitrary PC system

Each branch in the tree defines an object that must be addressed by the Plug and Play framework.

This object is called a “device node.” Configuring the device node requires the following

information:

 • A unique identification code

 • The device node resource requirements

 • The resources allocated to the device node

 • Whether the device node is a bus (a bus has “child” device nodes)

The identification code is simply a string that uniquely describes the device. Each resource

requirement must identify both the resource type (such as IRQs and memory ranges) and

constraints associated with that specific resource. For example, certain devices may require

specific IRQs. Also, constraints may have some interdependencies — for example, a COM port

may require either IRQ3 and I/O port 02F8, or IRQ4 and I/O port 03F8.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 9

If the device is a bus, the system must identify the additional device nodes associated with that

bus and keep track of the device node’s resources. This is important even if these are non-

shareable resources (such as SCSI ID) because it enables the system to maintain a central

database with all configuration information, so device drivers can access the database to learn

about their assigned resources (e.g., SCSI ID).

Managing the Configuration of the PC

The tree model defines the device node as the fundamental data structure that can be

manipulated by components of the system to manage installation and configuration of devices.

The next step toward building a framework for a Plug and Play architecture is to define the

configuration process that will manipulate the device nodes to establish a working system

configuration. This process will in turn define the system components required to deliver Plug

and Play functionality.

A certain amount of configuration must be performed by the system BIOS during the power-up

phase. In order for the system to boot, the BIOS must at a minimum configure a display device,

input device and initial program load device, passing the information about each of these device

nodes to the operating system for additional configuration of the system.

The operating system must continue the configuration process by identifying every device node

on the system and its respective resource requirements. Each non-boot device should be inactive

upon power-up so that the operating system can identify any conflicts between the resource

requirements of different devices before configuring them. Information about each device node

must be stored by the operating system in a central database. The operating system then must

load the device drivers for each device node.

In the event that different devices require the same resources, the devices must be able to provide

information to the operating system about alternative resource requirements, which the operating

system will in turn use to identify a working system configuration. Once the resource conflict

has been resolved, the operating system must store the new configuration information in the

central database and notify the device drivers of the new resource assignments.

If a change occurs to the system configuration during operation (e.g., the insertion of a PCMCIA

card or a docking event) the relevant bus (PCMCIA or BIOS) must be able to notify the operating

system of the event so that the operating system can configure the new device. Applications

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 10

must be able to respond to configuration changes to take advantage of new devices and to cease

calling devices that have been removed.

Overview of the Architecture and Components

In order to implement a fully Plug and Play system, it is apparent that changes are required to all

components of the PC system, including the BIOS, operating system, devices and device drivers,

and applications. The following discussion outlines the architecture that has been developed to

date to deliver the benefits of Plug and Play, and the functions of each of the components defined

by that architecture.

The general structure of the Plug and Play architecture is shown below:

Plug and Play Architecture

Operating System

Configuration Management

Bus Enumerator

Bus Enumerator

Resource Arb

Resource Arb

Device Driver

Device Driver

Bus Bus Bus

Device

Device

Device

Device

Device

Device

BIOS

Figure 2: Diagram of Plug and Play Components

Plug and Play BIOS

To meet the requirements of Plug and Play, the system BIOS must be enhanced to provide boot

device configuration and dynamic event notification services. In addition, these capabilities must

be tightly integrated with the operating system.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 11

A Plug and Play BIOS must be able to configure the system board devices (at a minimum) before

handing control of the configuration process to the operating system. This process involves

isolating and initializing the system board devices (Programmable Interrupt Controller, DMA

Controller, System Video Controller, Floppy Controller, etc.). In the Plug and Play framework,

each of these devices is associated with a unique identification code that is recognized by the

operating system. The BIOS also maintains a list of system board device configuration

information and communicates that information to the operating system after the POST process

is complete.

To provide complete Plug and Play functionality, the BIOS must be able to notify the operating

system of dynamic configuration events, such as the insertion of a notebook system into a

docking station. A Plug and Play BIOS provides a mechanism for a Plug and Play operating

system to reconfigure system board devices in response to a dynamic event. This enables the

operating system to reconfigure the system without requiring the user to turn the system off, and

also to notify applications and drivers of the new system configuration. In addition, for software-

controlled devices (such as VCR-style docking systems), the BIOS can provide early warning to

the operating system and prevent errors and data loss due to removal of the device.

Plug and Play Operating System

The operating system requires several new components to provide complete Plug and Play

functionality, including:

 • Software to control the configuration process and communicate with all components
involved in that process (the Configuration Manager)

 • A database of information that is used to configure the system (the Hardware Tree)

 • Drivers to identify all the devices on a particular bus and their resource requirements
(Bus enumerators)

 • Software to allocate resources among all devices (Resource Arbitrators)

In addition, a number of components must be modified, including the operating system setup

program and user interface.

Configuration Manager

The Configuration Manager is the central figure during all phases of the configuration process,

orchestrating the entire flow of operations performed by all the components involved in

configuration.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 12

The Configuration Manager takes control of the configuration process when it receives the

system board device configuration list from the BIOS, and also when the BIOS sends notification

of a dynamic configuration event. The Configuration Manager then coordinates communication

between the bus enumerators, hardware tree, device drivers and resource arbitrators to establish a

working configuration for the system. In addition, the Configuration Manager notifies device

drivers and applications of any pending or present changes in the system layout (i.e., new or

removed devices).

To perform this role the Configuration Manager calls on the bus enumerators to identify all the

devices on their specific buses and their respective resource requirements, then stores this

information in the hardware tree as a hierarchical arrangement of device nodes. For each device

a driver is loaded, and instructed by the Configuration Manager to await assignment of specific

resources. The Configuration Manager calls on the resource arbitrators to allocate resources for

each device, and in the event of a conflict performs an interactive process of reconfiguration until

a working configuration is determined. Device drivers are then informed of the device-

configuration information to complete the configuration process. The above process is reinitiated

when the BIOS or one of the other bus enumerators informs the Configuration Manager of an

event that requires a change to the system configuration, such as the removal or insertion of a

PCMCIA card.

Hardware Tree

The hardware tree is a record in RAM of the current system configuration. The tree information

is drawn from a central database of configuration information for all devices, whether they are

currently installed or not. This record is created every time the system boots or a run-time

change occurs to the system configuration. The format for the hardware tree defines a standard

scheme for identifying each device, its resource requirements and resource constraints, if any.

There may also be interdependencies between specific resources, such as COM ports and IRQs,

for example. The central database is accessible to applications and drivers to provide them with

information about alternative configurations, software required to operate these devices, and

user-defined settings. The existence of this database will eliminate the need for many of the

device and application-specific *.ini files used today.

Bus Enumerators

Bus enumerators are responsible for building (“enumerating”) the hardware tree on a Plug and

Play system. The bus enumerators are a new type of driver required for each specific bus type.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 13

The driver is designed to understand the implementation details of a specific bus architecture so

it can identify the devices on that bus, read their resource requirements, and configure them as

instructed by the Configuration Manager.

These drivers may leverage existing drivers or BIOS services to access hardware. For example,

the SCSI bus enumeration is performed by calling the SCSI driver, and the PCMCIA

enumeration is performed by the Card Services and Socket Services drivers. They may also be

implemented at the BIOS level for specific buses such as the system board.

The critical function of the bus enumerator is to assign a unique identification code to each

device on its bus. In addition, bus enumerators are expected to retrieve the device configuration

information either directly from the device (for example, PCMCIA card configuration tuples) or

from the central database (for existing ISA cards). The only requirement for the identification

code is that it be unique and consistent so that each time the system boots the ID for a particular

device is the same. The Plug and Play framework uses existing identification codes for most

buses. For example, Plug and Play ISA devices are identified using the EISA device ID scheme,

while PCMCIA cards are identified via the Manufacturer ID tuple on the card.

Resource Arbitrator

The Resource Arbitrator allocates specific types of resource to devices, and resolves conflicts

between devices that request identical resource assignments. To accomplish this function the

Resource Arbitrator contains all the information about how a resource is structured, and

algorithms for determining a feasible resource configuration given a set of device requirements

and constraints. This functional separation of the Resource Arbitrator and the Configuration

Manager provides for future extensibility of the operating system to address new types of

resources.

The Resource Arbitrator interacts extensively with the Configuration Manager to perform the

iterative process of assigning resources both at power-up and in response to dynamic

configuration events. In the case of a run-time reconfiguration of the system, the Configuration

Manager may require the resource arbitrator to release resources and reassign them to satisfy the

needs of a new device.

Changes to Other Operating System Components

The central configuration database is created during the operation of the system setup program.

During setup, the operating system calls various detection and enumeration modules, to perform

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 14

an inventory of all devices on the system and record information about those devices in the

configuration database.

Although under normal circumstances the system will not require intervention by the end user to

perform configuration operations, there are some exceptions. For example, if the user is

installing a non Plug and Play device and the system fails to detect that device, the user can force

an installation by pushing a button in the control panel or dragging an installation icon into the

system folder from a floppy disk. At times the system may be unable to generate a non-

conflicting configuration for a device. In this case user-interface components are needed to

explain to the user what is happening, and ask what the user wants to do about the problem (e.g.,

turn off a device to make room for the new device, disable the new device, reconfigure a non

Plug and Play card to make room for the new device). And since the Plug and Play system

provides a way to change the system configuration, the system needs to provide a specialized tool

to access and edit this information, primarily for use by the advanced user.

Device Drivers

The Plug and Play architecture builds on existing device driver models to provide additional

APIs required for Plug and Play device configuration. Device drivers must become dynamically

loadable and unloadable, both to enable reconfiguration and make most efficient use of system

memory. Device drivers must communicate with other components of the system in a variety of

ways: they must register with Configuration Manager when they are first loaded, remain inactive

until they are given their resource assignments, and be able to communicate with applications to

respond to dynamic configuration events. For example, a word processing application may want

to save files before removal of a SCSI disk, or block the removal altogether. A PCMCIA socket

enumerator that recognizes the insertion of a new card will want to notify the Configuration

Manager of the insertion of the newly inserted card so that the appropriate drivers can be found

and loaded, and resources assigned to the card.

Plug and Play Devices

ISA

A specification for design of Plug and Play ISA adapters has been published, reviewed and

released to the industry. This specification defines a hardware and software mechanism for

incorporation in the next generation of ISA cards, referred to as Plug and Play ISA cards. The

software mechanism enables resolution of conflicts between Plug and Play ISA cards. In other

words, the Plug and Play software optimally allocates system resources between the Plug and

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 15

Play ISA cards and other devices in the system without requiring user intervention. The Plug and

Play ISA specification does not require any changes to the ISA buses, so Plug and Play ISA

devices can run on existing PCs.

In a system that uses only Plug and Play ISA cards, it will be possible to achieve fully automatic

configuration. However, during a transition period the current generation of standard ISA cards

will coexist with Plug and Play ISA cards in the same system. In such systems, the ISA

configuration solution needs to be supplemented with additions to the BIOS and/or operating

system to manage and arbitrate ISA bus resources. User intervention may still be necessary in

some cases.

The technical requirements of Plug and Play functionality on ISA systems include:

 • A mechanism to uniquely address individual cards even when two or more cards
request the same system resources

 • A protocol for reading a configuration template on each card, to identify current
resource usage and options for each system resource requested

 • A mechanism to set or modify the configuration of each card

The Plug and Play ISA specification defines the mechanisms that each Plug and Play ISA card

must implement to support identification, resource usage determination, conflict detection and

conflict resolution. In addition, the specification presents a process for Plug and Play software to

automatically configure new Plug and Play cards without user intervention. The major steps of

the auto-configuration process are as follows:

 • Put all Plug and Play ISA cards in configuration mode

 • Isolate one Plug and Play ISA card at a time and assign a “handle” to the card

 • Read the card’s resource data structure to determine the card’s resource requirements
and capabilities

 • Allocate conflict-free resources to each card

 • Activate all Plug and Play ISA cards and remove them from configuration mode

The Plug and Play software identifies and configures devices using a set of commands that are

executed using three 8–bit I/O ports. A sequence of data writes to one of the ports (the initiation

key) is used to enable the Plug and Play logic on the card.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 16

Once the cards are put in configuration mode, the Plug and Play software needs an isolation

mechanism to address one particular card at a time, because all the cards respond to the same I/O

port addresses. The isolation protocol uses a unique number on each card (the EISA device ID

and a serial number) to isolate one Plug and Play card at a time. After isolation, the Plug and

Play software assigns each card a handle, which is used to select that specific Plug and Play card.

The handle eliminates the need for the more elaborate and time-consuming isolation protocol to

select a specific card.

Each Plug and Play ISA card supports a read-only resource data structure that describes the

resources supported and those requested by the functions on that card. The structure supports the

concept of multiple functions per ISA card. Each function is defined as a logical device.

Plug and Play resource information is provided for each logical device and each logical device is

independently configured through the Plug and Play standard registers. Following isolation, the

Plug and Play software reads the resource data structure on each card. When all resource

capabilities and demands are known, a process of resource arbitration is invoked to determine

resource allocation to each ISA card.

The configuration of ISA cards is performed using the command registers specified for each

resource type. Some ISA functions may not be reconfigurable. In this case, the resources

requested will be equivalent to the resources assigned. However, the resource data structure

informs the configuration software that it cannot assign these resources to other Plug and Play

cards in the system. After the assignment of resources, an I/O conflict-detection mechanism may

be invoked. This mechanism provides a means to ensure that I/O resources assigned are not in

conflict with standard ISA cards. The command set also supports activating or deactivating the

functions on the card.

Once configuration is complete, Plug and Play cards are removed from configuration mode. To

re-enable configuration mode, the initiation key needs to be re-issued. This prevents accidental

erasure of the configuration information.

PCMCIA

In order for PCMCIA devices to be supported under the Plug and Play framework, changes must

be made to device drivers and PCMCIA system software. In addition, PCMCIA cards must

include the manufacturer identification and configuration tuples for proper identification and

configuration.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 17

The approach to supporting PCMCIA under the Plug and Play framework calls for a PCMCIA

adapter to be controlled by a PCMCIA bus enumerator that incorporates the PCMCIA Card

Services functions as well as the enumeration and configuration functions described in the Plug

and Play specification. Using this approach the PCMCIA device can be treated like any other

Plug and Play device during the configuration process, so resources can be allocated and

reclaimed dynamically by the operating system, allowing for easy addition of static devices and

support for hot or warm docking.

To support PCMCIA cards as standard Plug and Play devices, the PCMCIA Card must be able to

supply a unique identifier for itself and declare its resource requirements. This information can

then be kept in the operating system hardware tree, where it can be used to configure the device

dynamically.

PC Card device drivers can be implemented in several ways. If the device driver does not require

the use of the Card Services API, the card vendor can implement a standard protect-mode

Plug and Play driver. Resource allocation for this driver will then be performed by the

configuration management software in the operating system, and configuration of the card itself

will be handled by the PCMCIA bus enumerator after the system has allocated resources. A

benefit of this approach is that it enables card vendors to write a single driver for the ISA/EISA

and PCMCIA implementations of a specific I/O card. If the device is supported natively in the

operating system, then the generic driver in the operating system for that device can be used.

Specialized functions of the device can be implemented by directly accessing the card using I/O

commands.

If the device driver requires Card Services memory functions, then the driver can be implemented

as a “mixed” Plug and Play and Card Services driver. The structure of the driver would be the

same, but it would register as a Card Services client at initialization time, and then call Card

Services memory functions as needed.

In a Plug and Play system the PCMCIA system software is integrated with the operating system

configuration management software, so that the Configuration Manager provides the resource

allocation for the card rather than the Card Services module. This can be done by adding a

PCMCIA bus enumerator and driver to Card Services, and changing Card Services to accept

configurations from the configuration manager instead of tracking the resources itself. This

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 18

implementation will provide support for existing Card Services clients as well as new

Plug and Play drivers.

SCSI

SCSI devices require both design changes and general ease-of-use enhancements to deliver

Plug and Play functionality. The configuration of a SCSI system can be separated into two distinct

processes — configuring the SCSI bus itself, such as terminating both ends of the SCSI bus and

setting device IDs, and configuring the SCSI host adapter, such as assigning an IRQ channel,

DMA channel, etc.

Configuring the SCSI bus is difficult for a consumer. The concepts are mystifying to anyone

who is unfamiliar with SCSI. In a Plug and Play world, the user would be able to just plug in the

new device and the bus would adjust. But in today’s world the list of issues the user must

confront to configure a SCSI bus is long, including SCSI device ID assignment, termination,

SCSI parity, command sets, disk geometry and software. The SCSI-2 specification does not

define an automated ID assignment mechanism, so the end user is responsible for making sure

that no two SCSI devices on the same SCSI bus share the same SCSI ID. It is not easy for the

non-technical user to tell whether or not a SCSI device is terminated, because termination can be

done by jumpers, switches or by adding/removing resistor packs. Today, users can replace a

SCSI host adapter with one from a different company and find it doesn’t work due to differences

in disk geometries or the way devices are mapped to INT 13h parameters. Each of these issues

needs to be addressed to provide Plug and Play functionality for SCSI buses.

ISA SCSI host adapters wishing to provide Plug and Play functionality must support the

Plug and Play ISA Specification. The specification enables hardware to be built to obtain

resources such as IRQ lines and DMA Channels automatically, so that users need not worry

about assigning system resources and ensuring the assignment is coordinated with the rest of

their system.

PCI

The current PCI bus architecture meets most of the requirements for providing Plug and Play

functionality. PCI devices use a standard identification scheme and a mechanism for declaring

their resource requirements. The BIOS on PCI platforms contains the configuration logic

required to configure all PCI devices during POST, and to enable only boot devices and devices

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 19

with option ROMs. In addition, the BIOS already provides a mechanism for device drivers to

access PCI configuration data.

To become fully Plug and Play capable, a bus enumerator for PCI and some PCI BIOS

extensions to the Plug and Play BIOS specification are required. The PCI bus enumerator will

build the hardware tree in the operating system for both PCI devices and PCI bridges. The BIOS

extensions are required to enable the operating system to correctly configure systems that contain

both PCI and ISA devices. Since PCI devices can share interrupts but ISA devices may not, the

BIOS must be able to prevent the operating system from mapping PCI devices to interrupts being

used by non-shareable ISA devices.

EISA and Micro Channel

EISA and Micro Channel devices already provide a standard identification mechanism and a

mechanism for configuring their resources through software. To integrate with the Plug and Play

architecture, a bus enumerator for each bus standard is required to make configuration

information about EISA and Micro Channel devices accessible to the operating system. The bus

enumerators need to incorporate the functions previously provided by the configuration utilities

for those buses. In addition, it is desirable to integrate the currently required configuration

utilities with the operating system.

Other Device Types (Serial, Parallel, VL, IDE, Infrared)

Additional types of devices can be incorporated into the Plug and Play architecture as long as

they provide the necessary mechanisms for identifying and configuring the device. VL bus

devices can leverage much of the work that has been done with the ISA specification. IDE

controllers already provide a way to support multiple disk drives, so with the addition of an

identification scheme and mechanism for declaring resource requirements, the IDE standard

could provide a low-cost solution for adding Plug and Play CD-ROM drives. The ECP

specification can be extended to support Plug and Play devices that utilize the PC’s parallel port,

and with the development of a standard for serial devices, the serial port could be used to add

Plug and Play devices to the system as well. In the case of evolving technologies such as infrared

communications, the

Plug and Play architecture provides a way to increase the usability and attractiveness of the

technology.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 20

Levels of Plug and Play Implementation and Corresponding Benefits

To provide complete Plug and Play functionality, a system must incorporate all three

Plug and Play system components — BIOS (motherboard), devices (buses) and operating system.

However, partial Plug and Play functionality can be provided on systems that include one or two

of those components. So systems vendors can begin to provide customers some of the benefits of

Plug and Play prior to the release of operating systems that include Plug and Play capability; and

Plug and Play operating systems can provide benefits to users of existing systems.

There are some benefits in purchasing Plug and Play devices and installing them on current

systems that do not have either a Plug and Play BIOS or Plug and Play operating system. If the

customer installs a configuration utility that is separate from the operating system, and then

installs a Plug and Play device with a new driver, the system will be able to automatically

configure the new device. However, if the customer later installs a non Plug and Play device on

that system, there may be configuration problems.

If the customer has a system with a Plug and Play BIOS and devices, but lacks a Plug and Play

operating system, the system will automatically configure boot devices and system board devices

so the customer can be certain that the system will boot. A configuration utility can handle new

Plug and Play devices that are added. However, configuration problems may occur if the

customer adds a non Plug and Play device to that system, because the BIOS will not be able to

configure that device.

When a system includes a Plug and Play operating system as well as Plug and Play BIOS and

devices, the customer receives the full benefits of Plug and Play. Both Plug and Play and non

Plug and Play devices can be configured automatically, because the operating system will be able

to read the non Plug and Play card’s resource requirements more effectively using an improved

configuration information file format, and assign resources first to the non Plug and Play cards

before allocating the remaining resources to the more flexible Plug and Play cards. In the event

that a resource conflict arises between multiple non Plug and Play cards, the operating system

can provide an improved interface to the user for making manual modifications to the system

configuration.

The major incremental benefit of having a system with complete Plug and Play components is

the ability of that system to respond to dynamic configuration events. Excellent docking system

solutions will finally be feasible, because the system will be able to automatically load and

unload device drivers to reflect the different devices attached to the system when it is docked or

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 21

undocked. Also, applications will be able to automatically adjust their configurations to reflect

the insertion or removal of devices, such as a network card and a fax-modem.

Conclusion
The Plug and Play framework advances the PC architecture in ways that will make it possible to

both improve the experience that customers have working with existing PCs, and enable them to

work with PCs in new ways. The results will not only be more satisfied customers, but also a

healthier industry with lower support costs and higher demand for PC products. In recognition of

the benefits of Plug and Play for the entire PC industry, a variety of companies representing all

major aspects of the industry are working together closely to define Plug and Play architecture

and to implement that architecture in their products. In the near future, products that deliver

some of the benefits of Plug and Play will begin to appear in the market, with fully Plug and Play

products appearing as all of the components are completed.

Sources for More Information
A number of specifications addressing the Plug and Play framework are in various stages of

completion, and more are being proposed. Copies of the following specifications and others, as

they are completed, can be requested by sending e-mail to plugplay@microsoft.com.

 • Plug and Play ISA Specification (Intel Corporation and Microsoft Corporation)

 • Plug and Play Device Driver Interface Specification for Microsoft Windows 3.1 and
MS-DOS (Microsoft Corporation)

 • Plug and Play BIOS Specification (Compaq Computer Corporation and Phoenix
Technologies, Ltd.)

 • Plug and Play PCMCIA Specification (Intel Corporation and Microsoft Corporation)

 • Plug and Play PCI Specification (Intel Corporation)

Founded in 1975, Microsoft (NASDAQ “MSFT”) is the worldwide leader in software for

personal computers. The company offers a wide range of products and services for business and

personal use, each designed with the mission of making it easier and more enjoyable for people

to take advantage of the full power of personal computing every day.

#########

Microsoft and MS-DOS are registered trademarks and Windows is a trademark of Microsoft Corporation.
Micro Channel is a registered trademark of International Business Machines Corporation.

CompuServe is a registered trademark of CompuServe, Inc.

