The Plug and Play Framework:
Advancing the PC Architecture
Backgrounder

September 1993

Microsoft Corporation

Table of Contents

11 oo [ox 1o o 1 1
The Current PC Installation/Configuration Problem...........ccccccooiiiiiiiiiiiiiiiiiiiiieeee 1
The Solution: A Plug and Play Framework Architecture for PCs..........cccevvvvvvvvvinnnnnnnn. 3
Design Requirements for a Plug and Play SyStem..........cccccuuiiiiiiiiiiieiiiiieeeeeeeeee 4
Plug and Play: Progress 10 DAte..........uueiiiiiiiiiiiiieeeeee et 5
The Plug and Play SOIULIONoooiiiii e e e 7
A General FramMeEWOIKoveuiiiiiiiiiiiss e e e e e e e e e et e e s s e e e e e e eeaeeeeeeeesesnnnnes 7
Managing the Configuration of the PC...........ccuuiiiiiiiiiii 9
Overview of the Architecture and COMPONENTSccvvvviiiiiiiiiiiiiiiieee e 10
Plug and Play BIOS ... 10
Plug and Play Operating SYSIEM........couviiiiiiiiiiiiiiieeeeeeeeee e 11
Configuration MaNAQGETccccciiiiiiiiiiii et 11
HArAWAIE TrEEcciieiieeeeeeeitie et ettt s e s s e e e e e e e e e e e e eeeensnnnnnes 12
BUS ENUMETALONS.ottt e e e e aa s 12
RESOUICE ArDItIAtOreveviiiiiceee e e e e e e e anenees 13
Changes to Other Operating System Componentsevveeeieeneennn. 13
DY ot I 1= 14
Plug and PIaY DEVICEScooiiiiiiiiiiit ettt e e e e e e e e e aeeeas 14
LS A et e e ettt rataaaaaaaaaaaaaaaaaa 14
P M I A e e e e e —rraaaaaaaaaaaaaaaaan e 16
1] 3] P PEESUURURRR 18
o O PPPRSEERPPRPR 18
EISA and Micro Channel...........oooiiiiiieicre e e e 19
Other Device Types (Serial, Parallel, VL, IDE, Infrared).............ccccevvvvvvvrirnnnnnes 19
Levels of Plug and Play Implementation and Corresponding Benefits................ 20
L@ 0] o o3 11 0] o PSPPSR 21

SoUICES fOr MOTE INTOIMATION ..ceeeie ettt e e e et e e e e e e e e e e reeenees 21

I ntroduction

Configuring PC hardware and operating systems has become a significant prolhlerR@h t
industry, resulting in customer dissatisfaction and increased support costs, ang pifesilihg

PC market growth. A broad-based group of companies within the industry is tackling this
problem with the development of the Plug and Play framework architecture. This paper
describes the problem, the requirements for Plug and Play, the work that has been done so far,
and gives a technical overview of a complete Plug and Play system architecture.

The Current PC Installation/Configuration Problem

For anyone but a trained technician, installing or configuring a device on a PC today is a
daunting exercise that may be difficult, time-consuming and frustrating. Tomesf@n

common configuration tasks the computer user must understand arcane terms tlet thescri
technical details of the inner workings of the PC, such as IRQ lines, DMA channels, base
memory addresses, I/O ports and more. Cryptic records of the PC anatomy such as.aatpex
config.sys and *.ini files must be examined and modified to make most changes. The process i
so intimidating that it discourages nearly all computer users from upgrading cartgoohtheir
PCs or adding some new capability to their systems without expert help. Those who try
frequently fail and tell others about it, perpetuating the PC’s reputation as a xpomple
intimidating, and difficult-to-use product.

The root of the problem is that when the PC was designed, no architecture was defined for
installing, identifying and configuring hardware devices, nor for integrating haecaal

operating system software. One of the great strengths of the PC is the watieofaadd-in
devices; yet the hardware and software configuration problem is compounded by the fhet tha
typical PC contains devices made by a multitude of vendors. The hardware, operatimg syst
and applications can'’t tell what’s in the system, and the hardware can’t tell aiitots exist
between different devices trying to share the same system resource. Unhken@® industry

has left customers to struggle with complicated and inadequate technical dotiomeratdner

than designing intelligence into the PC itself to handle installation and conifoguiasks

without user intervention.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 2

Today's PCs based on the ISA bus architecture — the most popular expansion bus in the PC
industry — lack any mechanisms for configuration management. The ISA bus architectur
requires the allocation of resources such as memory and I/O address spaces, Divds cral
interrupts among multiple ISA cards. However, the ISA specification has no stéaddvwhre

or software interface for allocating these resources. As a result, configwhISA cards is
typically done with “jumpers,” manual changes to the card that change the decode maps for
memory and I/O address space, and steer the DMA and interrupt signals to diffesent fie
bus. In addition to making these manual changes to the hardware, the user is also usually
required to edit system software configuration files. Even for software-coalilg cards, the
user generally needs to determine the correct settings and enter them intallgoraggam to

set the card.

With the increasing popularity of add-in boards such as fax cards, audio cards and CD-ROM
drives, users are putting more complicated options into their systems and running imttsconfl
among the settings for system resources more frequently.

Alternative bus architectures (e.g., Micro CharRnahd EISA) have hardware and software
mechanisms to identify the resources requested by a card and resolve conflickes®&ut t
mechanisms are not compatible with the installed base of PCs with ISA card\itotover,
these bus architectures are considerably more expensive than ISA designs dredviedé t
range of add-on and peripheral device choices available for ISA systems. The cbafigura
mechanisms are also inherently hard to use and functionally limited becausethel ar
integrated with the operating system. When adding or removing devices, end usenstust fi
configure the hardware using a character-mode configuration utility that iequset of floppies
for the configuration program and for each card. These floppies are frequently |gsirates
from the PC. Subsequently, each operating system driver needs to be set up sephamtely. T
setup mechanisms require users to restart their systems to make any sorgofatanf change
— a major limitation for notebook computer users who want the convenience of changing
devices and configurations without interrupting their work.

Some vendors include elaborate installation programs with their add-in cards. Tugaepr

attempt to identify the installed hardware and configuration. However, they only Waldtyre

with cards made by that vendor, and with simple systems that do not contain many option cards.
Also, many PCs use cards from multiple vendors, and the installation programs often tamount
little more than a data entry screen.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 3

Systems using the ISA bus architecture have only a limited number of systencegesour

particularly IRQ lines and DMA channels. Furthermore, many ISA cards aredesabe able

to use only a limited number of the possible choices. Thus someone has to determine a workable
combination — one that meets all the requirements and does not cause conflicts. Unligrtunate
that task often falls to the user.

The customer’s problem has been helped somewhat by the trend toward providing more full-
featured products with preconfigured hardware and preinstalled software. But thchppr
inflexible and limited because it does not accommodate customers who want to upgrade the
systems after purchase, nor does it address the technical requirements of nastosvand
system designs. Mobile systems in particular demand greater hardware aadesioiegration,

in order to deliver dynamic insertion and removal of devices, hot docking and instant-on. The
configuration solution must be very general and flexible to accommodate the mix & devic
architectures prevalent on today’'s system designs, from local bus to ISA to RCMCI

The current situation is costing the industry millions of dollars in lost sales aedsed costs.
Frequently, when customers try to add a new device, the result is an expensive product support
call and a negative perception of the product manufacturer. The high rate of problems
encountered by users generates a tremendous support burden — for example, at Micrlysoft near
half of the support calls for the MicrosefiVindowsy operating system version 3.1 are related

to installation, configuration, and hardware or software integration. Customeatiarstvith

the configuration process depresses demand for add-on and upgrade products. For businesses,
the high cost of supporting PCs inhibits the penetration of PCs in the workplace and diferts Ml
personnel from focusing on using computer technology to solve business problems. If the
industry can solve this problem, it will result in more satisfied customers, mpable PCs as

users add new functions, and new sales as the market for new PCs and add-on devices is
expanded.

The Solution: A Plug and Play Framework Architecturefor PCs

The solution to the PC installation and configuration problem is the concept called riglug a
Play.” In practice, Plug and Play is both a design philosophy and a set of PC architecture
specifications. The ultimate goal of Plug and Play is to enable changes to a BGratoh

with no intervention by the user. A Plug and Play system has a number of charaxtefissi

any installation is a simple, fail-safe operation. For devices, the ingtallatautomatic — plug

the device in, turn on the system, and it works. With a Plug and Play system, the userrtcan inse

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 4

and remove certain devices (such as PCMCIA cards), or connect to or disconnect from@ docki
station or network, without restarting the system or fiddling with configuratiomedess. The
system figures out the optimal configuration, and applications automatically exfake full
advantage of the new configuration. Take your notebook with infrared communications features
into a room with an infrared printer, and your applications are ready to print.

Design Requirementsfor a Plug and Play System
To deliver the Plug and Play functionality described above, the PC industry has been working t
develop an architecture that addresses several critical design requirements

The goal of a Plug and Play architecture is to progadg installation and configuration of

new devices. Plug and Play devices must be capable of identifying themselves and declaring
their services and resource requirements. This information enables the opgsitingte
determine and establish a working configuration for all devices on the system and load the
appropriate device drivers without any user intervention. For customers, installiwgdaviee

will then be as easy as plugging it in, turning on the system, and if necessaiygresédppy

disk upon request by the system. In the event that a driver is already present on theeggstem
the latter step would not be required.

The system must be able to accommodedenless dynamic configuration changes. This

capability is critical for mobile systems. The Plug and Play architectust allow hot docking

and insertion of devices. When a device is inserted, the operating system must egbegmey
device, its services and requirements, as well as load the necessary devise Apypéications

must be notified about dynamic events, so they can take advantage of the new functionality or
stop attempting to use unavailable devices. The user should not be required to turn off and
reboot the system, and should not be asked to intervene in the configuration process unless the
required resources are not available to the new device.

The Plug and Play architecture must provadepatibility with theinstalled base of existing

(non Plug and Play) systems and peripherals while still meeting the goal of easy installation

and configuration of new devices. To accomplish this goal, components in the Plug and Play
architecture must be able to accommodate the lack of device-reporting mecHanisoms

Plug and Play devices. Information about such devices must be stored in the system, anid device

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 5

that cannot be software-configured must receive first priority in resouccagdn. When
unresolvable conflicts occur, the system should guide the user through device-coofigurati
options.

The Plug and Play architecture magpport existing classes of devices and be extensible to

new classes of devices that may arise in the future. Examples of existing classes of devices
include those on the ISA bus, EISA and Micro Channel devices, and SCSI devices. Examples of
new classes of devices include local buses such as PCIl and VL bus, and new types ofl@evices |
PCMCIA cards and Access bus. It is important for Plug and Play to encompass &l devic
currently in wide use, and be able to support devices that may be important in the future.

To make the solution comprehensive, the Plug and Play architecture nopshland
independent of specific operating systems and hardwar e implementations. The components
of the Plug and Play architecture must be based on published interfaces and abstadetesl t
that enables the architecture to accommodate different bus and device arelsiteagtmg
today, as well as future designs.

To make the solution economically feasible for the industry, the Plug and Playctekitaust
reduce har dwar e complexity, and increase hardwar e flexibility. The availability of clear
design guidelines and standardized interfaces between system components w# @novi
economically attractive solution for system vendors.

Plug and Play must baexpensive to implement. In particular, it must not significantly
increase the per-unit cost of PCs or devices.

Plug and Play: Progressto Date

Plug and Play development is being performed by a broad-based group of companies
representing all major segments of the computer industry. The common goal of thisdmup i
develop an architecture for system configuration that meets all the desigemssnts defined
above. A comprehensive solution addressing the problems of today while accommodating the
innovations of tomorrow is being developed by involving all components of the PC — the base
system, the BIOS, I/O architectures, devices and drivers, and the operating syste

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 6

The Plug and Play effort was formally introduced in March 1993 atMthdows Hardware
Engineering Conference to more than 1,300 attendees. Microsoft and Intel Corporation
presented the general Plug and Play framework as well as the first applafatiat framework

in the form of the Plug and Play ISA Specification (version 0.8). More than 3,000 copies of the
Plug and Play ISA specification have been distributed, and feedback has been receivid throug
more than 500 pieces of electronic mail on the “plugplay” Internet alias.

Microsoft and Intel revised the specification based on feedback they received, asddele
version 0.9 of the Plug and Play ISA Specification in April 1993. Those who provided feedback
were invited to a full-day design review, which resulted in the completion of version 1.0 of the
specification. The design preview was attended by representatives of more than Gilesmpa
The first implementation workshop to discuss and teach implementation of the spiedificeld

in June, was attended by more than 150 engineers from more than 80 hardware vendors.
Microsoft also released the MS-DO%nd Windows 3.1 Plug and Play Driver Interface
Specification for system vendors who would like to provide a partial implementation of

Plug and Play functionality in systems based on Windows 3.1. At the same event, Intel
announced its plans to release a configuration utility for Windows 3.1 based on thatenterfac
Two Plug and Play ISA cards are available today: a SCSI card from Future Dowhan audio
card from Intel. Many more Plug and Play ISA cards are expected before the endeaf the y

The most recent Plug and Play events have beénititows Strategy Design Review held in
July 1993 at Microsoft headquarters and the Intel Plug and Play Software Briefirng Aeigust
1993 at Intel headquarters. Nearly 150 technical executives and system arthited30 key
hardware vendors attended the two-day Microsoft Design Review event, which covered the
overall Plug and Play framework in detail. This event focused on the broad Plug and Play
architecture in a future Plug and Play operating system. Technical féasibilie Plug and

Play ISA design was shown when four Plug and Play cards from various vendors were
automatically installed and simultaneously activated in a live demonstrattiamstthan early
testing release of a future version of Microsoft Windows. Participants deaate positively to
the overall

Plug and Play framework and indicated strong support for moving forward to implementing the
framework into their products. Nearly 100 technical executives attended the Imigivevieh
focused on delivering Plug and Play functionality with today’'s operating systemewigipg
driver development kits and configuration utilities. Intel released a beta versteriPbig and
Play development kit at the briefing.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 7

A broad coalition of system and component manufacturers is currently working to provide
Plug and Play functionality across a wide range of devices. Specificationsrayevbtten for
PCMCIA, SCSI, PCI, ECP, EISA, Micro Channel, VL and IDE architectures. All skthe
specifications will be subjected to an open review process similar to the one usaevidire
ISA specification.

A CompusServe forum (GO PLUGPLAY) has been established to support the industry-wide
Plug and Play development work. Copies of all the final specifications are postealstinari

as certain specifications in progress. The CompuServe forum is the main inddstsupport
source for Plug and Play development.

The Plug and Play Solution

A General Framework

To design a Plug and Play solution that meets the requirements stated above, atuaathite
framework is needed that provides a complete definition of the functions each systeomenm
performs in the configuration process — BIOS, operating system, devices and devise-drive
and how these components will interact with each other.

The basic functions that must be performed are readily apparent. Devices must bg anjuel
positively identified, their resource requirements must be read, and their doiaees |
Resources must be allocated and re-allocated when devices request identicedsedf any
change is made to the system configuration, the process must be repeated. There must be
centralized management of this entire configuration process to ensure coropidteation.

To create a Plug and Play framework, it is helpful to start by defining a model $oaibde the
general characteristics of a system and the functions which must be perfornhedsigstem to
be “plug and play.” This model is presented in this discussion from the perspective of the
operating system, due to the central role it must play in configuration management.

Today’'s PCs consist of multiple bus and device architectures coexisting in aygitean.s These
systems can be viewed using a “tree” model to describe the relationships béegeebuses

and devices. In the system tree, buses and devices may appear at different legedgstéim

hierarchy in multiple “parent-child” relationships; may require systewuress; and may

provide resources that are understood, or not understood, by their parents. The relationships are

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 8

complicated by the fact that some of the buses (SCSI, PCMCIA) are actually olaetheir
parents until they are initialized.

‘ Local Bus
7

o Keyboard Serial Parallel Display RAM PIC DMA
Controller Controller
Mouse Keyboard Monitor
ISA Bus SCSI Bus
Net CD-ROM Hard-disk
Access Bus PCMCIA Bus
Fax/Modem Wireless RAM
Modem

Figure 1: Tree model of an arbitrary PC system

Each branch in the tree defines an object that must be addressed by the Plug and élayKram
This object is called a “device node.” Configuring the device node requires the following
information:

« A unique identification code

« The device node resource requirements

« The resources allocated to the device node

+ Whether the device node is a bus (a bus has “child” device nodes)

The identification code is simply a string that uniquely describes the device. dsadince
requirement must identify both tinesour ce type (such as IRQs and memory ranges) and
constraints associated with that specific resource. For example, certain devicesguiag re
specific IRQs. Also, constraints may have some interdependencies — for exan(pM, @@
may require either IRQ3 and I/0O port 02F8, or IRQ4 and 1/O port 03F8.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 9

If the device is a bus, the system must identify the additional device nodes adsweitiatbat

bus and keep track of the device node’s resources. This is important even if these are non-
shareable resources (such as SCSI ID) because it enables the systenato eeenttral
database with all configuration information, so device drivers can access thesdatalearn
about their assigned resources (e.g., SCSI ID).

Managing the Configuration of the PC

The tree model defines tldevice node as the fundamental data structure that can be
manipulated by components of the system to manage installation and configuration &. device
The next step toward building a framework for a Plug and Play architecture isne tthefi
configuration process that will manipulate the device nodes to establish a workerg sys
configuration. This process will in turn define the system components required to Béliger
and Play functionality.

A certain amount of configuration must be performed by the system BIOS during theypwer-
phase. In order for the system to boot, the BIOS must at a minimum configure a display devic
input device and initial program load device, passing the information about each of these devic
nodes to the operating system for additional configuration of the system.

The operating system must continue the configuration process by identifying evesy misde

on the system and its respective resource requirements. Each non-boot device shoulgée inact
upon power-up so that the operating system can identify any conflicts between thesresourc
requirements of different devices before configuring them. Information about each dese

must be stored by the operating system in a central database. The operatinghgystanst

load the device drivers for each device node.

In the event that different devices require the same resources, the devices rlestdopravide
information to the operating system about alternative resource requirementsthvehoperating
system will in turn use to identify a working system configuration. Once the resoumflict
has been resolved, the operating system must store the new configuration informagon in t
central database and notify the device drivers of the new resource assignments.

If a change occurs to the system configuration during operation (e.g., the insertiondCPC
card or a docking event) the relevant bus (PCMCIA or BIOS) must be able to notify thingpera
system of the event so that the operating system can configure the new device.tidipplica

The Plug and Play Framework: Advancing the PC Architecture Backgrounder

must be able to respond to configuration changes to take advantage of new devices and to cease

calling devices that have been removed.

Overview of the Architecture and Components

In order to implement a fully Plug and Play system, it is apparent that changeguared to all
components of the PC system, including the BIOS, operating system, devices and deaiise dri

and applications. The following discussion outlines the architecture that has been detcelope

date to deliver the benefits of Plug and Play, and the functions of each of the components defined

by that architecture.

The general structure of the Plug and Play architecture is shown below:

Plug and Play Architecture

Operating System

Configuration Management

Bus Enumerator Ijesource Arb

—1Bus Enumerator

Resource Arb
BIOS |

|jevice Driver

Device Driver

Bus

Bus

Bus
‘ Device ‘ Device
Device Device

‘ Device
Device

Figure 2: Diagram of Plug and Play Components

Plug and Play BIOS

To meet the requirements of Plug and Play, the system BIOS must be enhanced to provide boot
device configuration and dynamic event notification services. In addition, these ¢isailist

be tightly integrated with the operating system.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 11

A Plug and Play BIOS must be able to configure the system board devices (at a mihefamm
handing control of the configuration process to the operating system. This process involves
isolating and initializing the system board devices (Programmable Interoapto@er, DMA
Controller, System Video Controller, Floppy Controller, etc.). In the Plug and Phagvirark,
each of these devices is associated with a unique identification code that iszeddyrthe
operating system. The BIOS also maintains a list of system board device airdigur
information and communicates that information to the operating system after §iegParess

is complete.

To provide complete Plug and Play functionality, the BIOS must be able to notify tharaperat
system of dynamic configuration events, such as the insertion of a notebook system into a
docking station. A Plug and Play BIOS provides a mechanism for a Plug and Play operating
system to reconfigure system board devices in response to a dynamic event. Thistie@able
operating system to reconfigure the system without requiring the user to tursttdma sy¥f, and
also to notify applications and drivers of the new system configuration. In addition, fearsoft
controlled devices (such as VCR-style docking systems), the BIOS can provwdeararhg to

the operating system and prevent errors and data loss due to removal of the device.

Plug and Play Operating System
The operating system requires several new components to provide complete Plug and Play
functionality, including:

« Software to control the configuration process and communicate with all components
involved in that process (tl&onfiguration Manager)
« A database of information that is used to configure the systerhi ditteware Treg)

« Drivers to identify all the devices on a particular bus and their resource regoisem
(Busenumerators)

« Software to allocate resources among all deviResolr ce Arbitrators)

In addition, a number of components must be modified, including the operating sgiatpm
program andiser interface.

Configuration Manager

The Configuration Manager is the central figure during all phases of the conbgyraicess,
orchestrating the entire flow of operations performed by all the components involved in
configuration.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 12

The Configuration Manager takes control of the configuration process when it rdbeives
system board device configuration list from the BIOS, and also when the BIOS sendatiwotif
of a dynamic configuration event. The Configuration Manager then coordinates comroanicati
between the bus enumerators, hardware tree, device drivers and resource atbigataldish a
working configuration for the system. In addition, the Configuration Manager notifiesedevi
drivers and applications of any pending or present changes in the system layout (i.e., new or
removed devices).

To perform this role the Configuration Manager calls on the bus enumerators to idkitiéy
devices on their specific buses and their respective resource requirementgrésethist
information in the hardware tree as a hierarchical arrangement of device nodeactdevice
a driver is loaded, and instructed by the Configuration Manager to await assignnpatifod s
resources. The Configuration Manager calls on the resource arbitrators tteaksocarces for
each device, and in the event of a conflict performs an interactive process of reatinfigumtil
a working configuration is determined. Device drivers are then informed of the device-
configuration information to complete the configuration process. The above processigeadi
when the BIOS or one of the other bus enumerators informs the Configuration Manager of an
event that requires a change to the system configuration, such as the removalian wisart
PCMCIA card.

Hardware Tree

The hardware tree is a record in RAM of the current system configuration. Tiv&dresation
is drawn from a central database of configuration information for all devices, whetlieare
currently installed or not. This record is created every time the system boatsetirae
change occurs to the system configuration. The format for the hardware tree astaedard
scheme for identifying each device, its resource requirements and resourcamsngtany.
There may also be interdependencies between specific resources, such as C@MlipB@s,
for example. The central database is accessible to applications and driversde trew with
information about alternative configurations, software required to operate thesesdeawvid
user-defined settings. The existence of this database will eliminate théonesany of the
device and application-specific *.ini files used today.

Bus Enumerators
Bus enumerators are responsible for building (“enumerating”) the hardware trédumneand
Play system. The bus enumerators are a new type of driver required for each bpsdtifpe.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 13

The driver is designed to understand the implementation details of a specific biecanehso
it can identify the devices on that bus, read their resource requirements, and caméiguas t
instructed by the Configuration Manager.

These drivers may leverage existing drivers or BIOS services to accessitga For example,
the SCSI bus enumeration is performed by calling the SCSI driver, and the PCMCIA
enumeration is performed by the Card Services and Socket Services drivers. Tla¢sonbay
implemented at the BIOS level for specific buses such as the system board.

The critical function of the bus enumerator is to assign a unique identification codé to ea
device on its bus. In addition, bus enumerators are expected to retrieve the device tonfigura
information either directly from the device (for example, PCMCIA card cordtgur tuples) or
from the central database (for existing ISA cards). The only requirement fdettidication

code is that it be unique and consistent so that each time the system boots the ID ifarlarpart
device is the same. The Plug and Play framework uses existing identificatisfaooh®st

buses. For example, Plug and Play ISA devices are identified using the EISA Destoteine,
while PCMCIA cards are identified via the Manufacturer ID tuple on the card.

Resource Arbitrator

The Resource Arbitrator allocates specific types of resource to devicessalveseonflicts
between devices that request identical resource assignments. To accomiisictiois the
Resource Arbitrator contains all the information about how a resource is struchged, a
algorithms for determining a feasible resource configuration given a set o degigrements
and constraints. This functional separation of the Resource Arbitrator and the Ctinfigura
Manager provides for future extensibility of the operating system to addresgpesnot
resources.

The Resource Arbitrator interacts extensively with the Configuration Matagerform the
iterative process of assigning resources both at power-up and in response to dynamic
configuration events. In the case of a run-time reconfiguration of the system, thgu@ardn
Manager may require the resource arbitrator to release resources aigh thass to satisfy the
needs of a new device.

Changesto Other Operating System Components
The central configuration database is created during the operation of the syafepregram.
During setup, the operating system calls various detection and enumeration moduléstrto per

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 14

an inventory of all devices on the system and record information about those devices in the
configuration database.

Although under normal circumstances the system will not require intervention by thesetal us
perform configuration operations, there are some exceptions. For example, if tise user
installing a non Plug and Play device and the system fails to detect that devicer ttenusrce

an installation by pushing a button in the control panel or dragging an installation icon into the
system folder from a floppy disk. At times the system may be unable to generate a non
conflicting configuration for a device. In this case user-interface componemisested to

explain to the user what is happening, and ask what the user wants to do about the problem (e.g.,
turn off a device to make room for the new device, disable the new device, reconfigure a non
Plug and Play card to make room for the new device). And since the Plug and Play system
provides a way to change the system configuration, the system needs to provide iaesp&mihl

to access and edit this information, primarily for use by the advanced user.

Device Drivers

The Plug and Play architecture builds on existing device driver models to provide atlditiona
APIs required for Plug and Play device configuration. Device drivers must becomaahtham
loadable and unloadable, both to enable reconfiguration and make most efficient use of system
memory. Device drivers must communicate with other components of the system &tyaofari
ways: they must register with Configuration Manager when they are fid#gdpsemain inactive
until they are given their resource assignments, and be able to communicate witttiapplio
respond to dynamic configuration events. For example, a word processing applicatiominay wa
to save files before removal of a SCSI disk, or block the removal altogether. A PCIEHé&t
enumerator that recognizes the insertion of a new card will want to notify the @atibg

Manager of the insertion of the newly inserted card so that the appropriate dnvbesfoand

and loaded, and resources assigned to the card.

Plug and Play Devices

ISA

A specification for design of Plug and Play ISA adapters has been published, reviewed and
released to the industry. This specification defines a hardware and softwaenisiecfor
incorporation in the next generation of ISA cards, referred to as Plug and PlaydSA The
software mechanism enables resolution of conflicts between Plug and PlaydSA lkceother
words, the Plug and Play software optimally allocates system resourceebébhs Plug and

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 15

Play ISA cards and other devices in the system without requiring user interventioRlugtzand
Play ISA specification does not require any changes to the ISA buses, so Plug aB&Play |
devices can run on existing PCs.

In a system that uses only Plug and Play ISA cards, it will be possible to achigeeifomatic
configuration. However, during a transition period the current generation of standarartiSA c
will coexist with Plug and Play ISA cards in the same system. In such systeniSA
configuration solution needs to be supplemented with additions to the BIOS and/or operating
system to manage and arbitrate ISA bus resources. User intervention niegyretitlessary in
some cases.

The technical requirements of Plug and Play functionality on ISA systems include:

+ A mechanism to uniquely address individual cards even when two or more cards
request the same system resources

« A protocol for reading a configuration template on each card, to identify current
resource usage and options for each system resource requested

« A mechanism to set or modify the configuration of each card

The Plug and Play ISA specification defines the mechanisms that each PlugyaishRiard
must implement to support identification, resource usage determination, conéictiaetind
conflict resolution. In addition, the specification presents a process for Plug arsbflare to
automatically configure new Plug and Play cards without user intervention. Thestegi®of
the auto-configuration process are as follows:

« Putall Plug and Play ISA cards in configuration mode

« Isolate one Plug and Play ISA card at a time and assign a “handle” to the card

+ Read the card’s resource data structure to determine the card’s resoureeneusi
and capabilities

« Allocate conflict-free resources to each card

« Activate all Plug and Play ISA cards and remove them from configuration mode

The Plug and Play software identifies and configures devices using a set of cortimaads
executed using three 8-bit I/O ports. A sequence of data writes to one of the portsdtlominit
key) is used to enable the Plug and Play logic on the card.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 16

Once the cards are put in configuration mode, the Plug and Play software needs an isolati
mechanism to address one particular card at a time, because all the cards refgosahte 1/0

port addresses. The isolation protocol uses a unique number on each card (the EISA device ID
and a serial number) to isolate one Plug and Play card at a time. After isolatiluglaad

Play software assigns each card a handle, which is used to select that Bhegriied Play card.

The handle eliminates the need for the more elaborate and time-consuming isolaticol poot
select a specific card.

Each Plug and Play ISA card supports a read-only resource data structure tiizsidser

resources supported and those requested by the functions on that card. The structure supports the
concept of multiple functions per ISA card. Each function is defined as a logical device.

Plug and Play resource information is provided for each logical device and eachdegicalis
independently configured through the Plug and Play standard registers. Followingrnstiat

Plug and Play software reads the resource data structure on each card. Whauredl res

capabilities and demands are known, a process of resource arbitration is invoked tméetermi
resource allocation to each ISA card.

The configuration of ISA cards is performed using the command registers spemifgach

resource type. Some ISA functions may not be reconfigurable. In this case, the sesource
requested will be equivalent to the resources assigned. However, the resourcaaiata st

informs the configuration software that it cannot assign these resources tologhandPPlay

cards in the system. After the assignment of resources, an I/O conflidieteteechanism may

be invoked. This mechanism provides a means to ensure that I/O resources assigned are not |
conflict with standard ISA cards. The command set also supports activating ovateagrthe
functions on the card.

Once configuration is complete, Plug and Play cards are removed from configurationToode
re-enable configuration mode, the initiation key needs to be re-issued. This previeetstaicc
erasure of the configuration information.

PCMCIA

In order for PCMCIA devices to be supported under the Plug and Play framework, changes must
be made to device drivers and PCMCIA system software. In addition, PCMCIA cards mus
include the manufacturer identification and configuration tuples for proper idetbificand
configuration.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 17

The approach to supporting PCMCIA under the Plug and Play framework calls for a PCMCIA
adapter to be controlled by a PCMCIA bus enumerator that incorporates the PCM@IA Car
Services functions as well as the enumeration and configuration functions descriteeBlumgt

and Play specification. Using this approach the PCMCIA device can be treatetylikiher

Plug and Play device during the configuration process, so resources can be allocated and
reclaimed dynamically by the operating system, allowing for easy additioatiaf &tvices and
support for hot or warm docking.

To support PCMCIA cards as standard Plug and Play devices, the PCMCIA Card musttbe abl
supply a unique identifier for itself and declare its resource requirements.nfbinmeation can

then be kept in the operating system hardware tree, where it can be used to configwiedhe de
dynamically.

PC Card device drivers can be implemented in several ways. If the device driver degsiinet
the use of the Card Services API, the card vendor can implement a standard protect-mode
Plug and Play driver. Resource allocation for this driver will then be performed by the
configuration management software in the operating system, and configuration arftiteedf
will be handled by the PCMCIA bus enumerator after the system has allocatedessar
benefit of this approach is that it enables card vendors to write a single driver foAIBESA
and PCMCIA implementations of a specific I/O card. If the device is supportedinativiee
operating system, then the generic driver in the operating system for that devie wsed.
Specialized functions of the device can be implemented by directly accessiagdtiusiog 1/0
commands.

If the device driver requires Card Services memory functions, then the driver caplémémted
as a “mixed” Plug and Play and Card Services driver. The structure of the driver wthutd be
same, but it would register as a Card Services client at initializatien &na then call Card
Services memory functions as needed.

In a Plug and Play system the PCMCIA system software is integratechwitipérating system
configuration management software, so that the Configuration Manager providesotireee
allocation for the card rather than the Card Services module. This can be done by adding a
PCMCIA bus enumerator and driver to Card Services, and changing Card Serviceptto acce
configurations from the configuration manager instead of tracking the resosatesThis

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 18

implementation will provide support for existing Card Services clients asasekw
Plug and Play drivers.

SCSl

SCSI devices require both design changes and general ease-of-use enhancemisets to del
Plug and Play functionality. The configuration of a SCSI system can be sepamtgebidistinct
processes — configuring the SCSI bus itself, such as terminating both ends of the S@l bus
setting device IDs, and configuring the SCSI host adapter, such as assigning anniR€) cha
DMA channel, etc.

Configuring the SCSI bus is difficult for a consumer. The concepts are mystifyamyone

who is unfamiliar with SCSI. In a Plug and Play world, the user would be able to just plug in the
new device and the bus would adjust. But in today’s world the list of issues the user must
confront to configure a SCSI bus is long, including SCSI device ID assignment, tesminat

SCSI parity, command sets, disk geometry and software. The SCSI-2 speaifitss not

define an automated ID assignment mechanism, so the end user is responsible foruraking s
that no two SCSI devices on the same SCSI bus share the same SCSI ID. It is notleasy f
non-technical user to tell whether or not a SCSI device is terminated, becausatiemcan be
done by jumpers, switches or by adding/removing resistor packs. Today, users can replace a
SCSI host adapter with one from a different company and find it doesn’t work due to difference
in disk geometries or the way devices are mapped to INT 13h parameters. Each eftiesse i
needs to be addressed to provide Plug and Play functionality for SCSI buses.

ISA SCSI host adapters wishing to provide Plug and Play functionality must support the
Plug and Play ISA Specification. The specification enables hardware to be builiito obt
resources such as IRQ lines and DMA Channels automatically, so that users needynot wor
about assigning system resources and ensuring the assignment is coordinatedestiothe
their system.

PCI

The current PCI bus architecture meets most of the requirements for providingé® Riga
functionality. PCI devices use a standard identification scheme and a mechardseidang

their resource requirements. The BIOS on PCI platforms contains the configurgteon |

required to configure all PCI devices during POST, and to enable only boot devices and devices

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 19

with option ROMs. In addition, the BIOS already provides a mechanism for device drivers to
access PCI configuration data.

To become fully Plug and Play capable, a bus enumerator for PCl and some PCI BIOS
extensions to the Plug and Play BIOS specification are required. The PCI bus éonwwikra
build the hardware tree in the operating system for both PCI devices and PCI bridg8OShe
extensions are required to enable the operating system to correctly confgganassthat contain
both PCI and ISA devices. Since PCI devices can share interrupts but ISA devices, itiegy not
BIOS must be able to prevent the operating system from mapping PCI devices tpisteeing
used by non-shareable ISA devices.

EISA and Micro Channel

EISA and Micro Channel devices already provide a standard identification mechadism a
mechanism for configuring their resources through software. To integrate wRtuthand Play
architecture, a bus enumerator for each bus standard is required to make configuration
information about EISA and Micro Channel devices accessible to the operating. sy$teinus
enumerators need to incorporate the functions previously provided by the configurati@s utiliti
for those buses. In addition, it is desirable to integrate the currently requiredicatinig

utilities with the operating system.

Other Device Types (Serial, Paralld, VL, IDE, Infrared)

Additional types of devices can be incorporated into the Plug and Play architecturg as |
they provide the necessary mechanisms for identifying and configuring the device. VL bus
devices can leverage much of the work that has been done with the ISA specification. IDE
controllers already provide a way to support multiple disk drives, so with the addition of an
identification scheme and mechanism for declaring resource requirements: thatidard
could provide a low-cost solution for adding Plug and Play CD-ROM drives. The ECP
specification can be extended to support Plug and Play devices that utilize therB&E6puat,
and with the development of a standard for serial devices, the serial port could be used to add
Plug and Play devices to the system as well. In the case of evolving technologiesintreinesl
communications, the

Plug and Play architecture provides a way to increase the usability andvattess of the
technology.

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 20

Levelsof Plug and Play mplementation and Corresponding Benefits

To provide complete Plug and Play functionality, a system must incorporate all three

Plug and Play system components — BIOS (motherboard), devices (buses) and opetating sys
However, partial Plug and Play functionality can be provided on systems that includewae or t

of those components. So systems vendors can begin to provide customers some of the benefits of
Plug and Play prior to the release of operating systems that include Plug anabRlziitg; and

Plug and Play operating systems can provide benefits to users of existingssystem

There are some benefits in purchasing Plug and Play devices and installing therern curr
systems that do not have either a Plug and Play BIOS or Plug and Play operating Hyte
customer installs a configuration utility that is separate from the opesytstgm, and then
installs a Plug and Play device with a new driver, the system will be able to su&tiyna
configure the new device. However, if the customer later installs a non Plug andviiayode
that system, there may be configuration problems.

If the customer has a system with a Plug and Play BIOS and devices, but lacksralflaya
operating system, the system will automatically configure boot devices dathdysard devices
so the customer can be certain that the system will boot. A configuration utiibaodle new
Plug and Play devices that are added. However, configuration problems may occur if the
customer adds a non Plug and Play device to that system, because the BIOS will natobe able
configure that device.

When a system includes a Plug and Play operating system as well as Plug &1@8lapd
devices, the customer receives the full benefits of Plug and Play. Both Plug anddRiayn a
Plug and Play devices can be configured automatically, because the operatmgnsiydie able
to read the non Plug and Play card’s resource requirements more effectivelynusmpgaved
configuration information file format, and assign resources first to the non PlugaancaRds
before allocating the remaining resources to the more flexible Plug and Riay tathe event
that a resource conflict arises between multiple non Plug and Play cards, the@ggsam

can provide an improved interface to the user for making manual modifications to the syste
configuration.

The major incremental benefit of having a system with complete Plug and Play comspgsne
the ability of that system to respond to dynamic configuration events. Excellent deggiem
solutions will finally be feasible, because the system will be able to autathatoad and

unload device drivers to reflect the different devices attached to the systent wglawcked or

The Plug and Play Framework: Advancing the PC Architecture Backgrounder Page 21

undocked. Also, applications will be able to automatically adjust their configuratioefect
the insertion or removal of devices, such as a network card and a fax-modem.

Conclusion

The Plug and Play framework advances the PC architecture in ways that wilit pegsible to

both improve the experience that customers have working with existing PCs, and emaltte the
work with PCs in new ways. The results will not only be more satisfied customertgdat a
healthier industry with lower support costs and higher demand for PC products. In recognition of
the benefits of Plug and Play for the entire PC industry, a variety of companiesentioig all

major aspects of the industry are working together closely to define Plug anddBisscture

and to implement that architecture in their products. In the near future, products treat deli

some of the benefits of Plug and Play will begin to appear in the market, with fullpirduglay
products appearing as all of the components are completed.

Sour cesfor More I nformation
A number of specifications addressing the Plug and Play framework are in vargassafta
completion, and more are being proposed. Copies of the following specifications and others, as
they are completed, can be requested by sending e-mail to plugplay@microsoft.com.

« Plug and Play ISA Specification (Intel Corporation and Microsoft Corporation)

+ Plug and Play Device Driver Interface Specification for Microsoft Windowsrgi1 a
MS-DOS (Microsoft Corporation)

+ Plug and Play BIOS Specification (Compaq Computer Corporation and Phoenix
Technologies, Ltd.)

+ Plug and Play PCMCIA Specification (Intel Corporation and Microsoft Corporation)
+ Plug and Play PCI Specification (Intel Corporation)

Founded in 1975, Microsoft (NASDAQ “MSFT”) is the worldwide leader in software for
personal computers. The company offers a wide range of products and services for business a
personal use, each designed with the mission of making it easier and more enjoyalolel¢or pe

to take advantage of the full power of personal computing every day.

HHHHAHHAHE

Microsoft and MS-DOS are registered trademarks\&imtlows is a trademark of Microsoft Corporation.
Micro Channel is a registered trademark of Inteoma! Business Machines Corporation.

CompuServe is a registered trademark of CompuSkmwe,

