
WindowsWindows™™ “Chicago”“Chicago”
ArchitectureArchitecture

Tammy SteeleTammy Steele
Technical EvangelistTechnical Evangelist
Systems MarketingSystems Marketing

Microsoft CorporationMicrosoft Corporation

What We’ll Talk AboutWhat We’ll Talk About

“Chicago” user architecture
“Chicago” kernel architecture
“Chicago” GDI architecture

Windows Windows “Chicago” “Chicago” User User
ArchitectureArchitecture

Overview Of New User FeaturesOverview Of New User Features

Increased system capacity
Robustness additions
Win32® API support
New Win32 APIs to support
new user features

Increased System CapacityIncreased System Capacity

Up to 32K menu and window
handles (each)
Number of timers limited only by
available memory
Unlimited number of COM and
LPT ports
List box item limits raise from
8K to 32K, with data limited only
by available memory

Robustness AdditionsRobustness Additions
More robust parameter validation
Each 32-bit or 16-bit process or thread ID is
used for object ownership of Ring 3 objects
All 32-bit applications and version 4.0-
marked 16-bit applications have unfreed
resources cleared at application
termination time
Existing Windows 3.x-based application
resources are cleared when “Chicago”
determines no other Windows 3.x-based
applications are running

Robustness AdditionsRobustness Additions
Ring 3 objects Tracked by:

Hooks thread
Windows thread
Global Memory process
Menus process
Classes process
Cursors process
Icons process
Pens process
Brushes process
Regions process
Device Contexts process
Fonts process
Bitmaps process
Palettes process

User

GDI

Win32 User API SupportWin32 User API Support
SetDebugErrorLevel
MessageBoxEx
ExitWindowsEx
CopyAcceleratorTable
CreateAcceleratorTable
DestroyAcceleratorTable
EnumPropsEx
PostThreadMessage
SendMessageCallback
SendMessageTimeout
SendNotifyMessage
FormatMessage
AttachThreadInput
GetThreadDesktop

CreateIconFromResource
CreateIconIndirect
GetIconInfo
LookupIconIDFromDirectory
ActivateKeyboardLayout
GetKeyboardLayoutName
LoadKeyboardLayout
UnloadKeyboardLayout
WindowFromDC
CreateMDIWindow
WaitForInputIdle
MsgWaitForMultipleObjects
GetForegroundWindow
SetForegroundWindow

Added User FunctionalityAdded User Functionality

New minimized window look
GetSystemMetrics, SM_ARRANGE

Enhanced control capabilities
Bitmap buttons, thumbsize of scroll bars, etc.

Enhanced support for context-sensitive
Help and message boxes

Added User FunctionalityAdded User Functionality

APIs for drawing 3-D windows and
frame controls
Enhanced menu support (default items,
radio items, bitmap/icon items, and
extended pop-up menus)
Dialog manager support for other font
styles in RC template

Windows Windows “Chicago” “Chicago” Kernel Kernel
ArchitectureArchitecture

TopicsTopics

“Chicago” system virtual
machine overview
Tasking/scheduling
API serialization

Windows Windows “Chicago”“Chicago” ArchitectureArchitecture

Ring 0Ring 0
Protect mode file systemProtect mode file system

VFAT, CDFS, SCSI, NetworkVFAT, CDFS, SCSI, Network
Virtual machine managerVirtual machine manager

Pager, Scheduler, DPMI serverPager, Scheduler, DPMI server

Ring 3 (System VM)Ring 3 (System VM)

Ring 3Ring 3
(MS(MS--DOSDOS®®

VM)VM)

Ring 3Ring 3
(MS(MS--DOS DOS

VM)VM)

Win32Win32®®

applicationapplication System System
services:services:

KernelKernel
graphicsgraphics
window window

managementmanagement

Win32 Win32
applicationapplication

Win32 Win32
applicationapplication

Win16 Win16
applicationapplication

Win16 Win16
applicationapplication

System VM OverviewSystem VM Overview
Ring 3Ring 3

3232--bit sidebit side 1616--bit sidebit side

Kernel32Kernel32 Kernel16Kernel16

GDI32GDI32 GDI16GDI16

USER32USER32 USER16USER16

ThreadsThreads

ThreadThread

ThreadThread

Win32 Win32
applicationapplication

Win32 Win32
applicationapplication

Win16 Win16
applicationapplication

Win16 Win16
applicationapplication

Shared Shared
address address
spacespace

1616--Bit TaskingBit Tasking

Cooperative tasking, same as Microsoft®

Windows 3.1
Each Win16 application runs as a thread,
providing for resource tracking in Ring 0
(VxDs) and Ring 3 (GDI and USER)
Synchronization between applications
occurs via messages

3232--Bit TaskingBit Tasking

All 32-bit applications and threads
are fully preemptive
Any thread can call any API
Fault handler on a separate thread
for robustness
Compatible with Windows NT™ model

The SchedulerThe Scheduler

Compatible with Windows NT
model: 32 priority levels supported
Also compatible with existing Win16
applications, VDDs, and VxDs
Dynamic priority boosting with
timed decay
Priority inheritance boosting

API Serialization API Serialization -- GeneralGeneral

Every multithreaded OS must
serialize some APIs
Critical sections are commonly used

voidvoid InsertObjectInListInsertObjectInList(OBJECT*(OBJECT* pobjpobj))
{{

EnterCriticalSectionEnterCriticalSection(&Lock);(&Lock);
pObjectListHeadpObjectListHead == pobjpobj;;
pobjpobj-->>pNextpNext == pObjectListHeadpObjectListHead;;
LeaveCriticalSectionLeaveCriticalSection(&Lock);(&Lock);

}}

Serialization Of Windows NT APISerialization Of Windows NT API
Examples of subsystem serialization:

GDI32 uses per-object locking allowing
multiple clients to reenter using different
objects
User32 maintains a single lock for all APIs.
Only one thread at a time may be in a
User32 API

Also, applications (clients) and OS
subsystems (servers) are on separate
processes/threads in Windows NT

Windows Windows “Chicago”“Chicago” Win16LockWin16Lock

“Chicago” uses a global system-critical
section for all Win16 components
called the Win16Lock
When thunking from 32-bit to 16-bit
code, “Chicago” always attempts to
claim the Win16Lock
If the current thread cannot own it
(because another thread does), it blocks

Results Of Win16LockResults Of Win16Lock
All 16-bit code is protected, including
third-party DLL code
16-bit core components stay small
and fast
Compatibility is ensured by not
changing API ordering and timing
Win32 threads calling native 32-bit
API do not block on Win16Lock.

Results Of Win16Lock Results Of Win16Lock

Note that any lack of smoothness in
multitasking caused by the Win16Lock
will only be due to ill-behaved Win16
applications
A system with only Win32 applications
will not be affected by the Win16Lock
The shell is a Win32 application

Windows Windows “Chicago”“Chicago” GDI GDI
ArchitectureArchitecture

GDI Module EnhancementsGDI Module Enhancements

Performance
Reduce system resource
limitations
Windows NT congruence

Reduce 64K LimitationsReduce 64K Limitations

Local heap limitations
Regions out
Physical objects out
Font management structures out
DCs still in 64K heap
GDI object ownership

GraphicsGraphics
ApplicationApplication

Graphics deviceGraphics device
interfaceinterface

DisplayDisplay
minidriverminidriver

PrinterPrinter
minidriverminidriver

Graphics DIB engineGraphics DIB engine

Display Display Printer Printer

Image colorImage color
matchermatcher

UniversalUniversal
printer driverprinter driver

Bitmaps AndBitmaps And DIBsDIBs
Windows 3.1 distinction of
bitmaps and DIBs

Bitmaps - device-dependent
DIBs - device-independent

New DIB APIs
CreateDIBSection() - creates a DIB
that both applications and GDI can
write to
SetDIBColorTable()
GetDIBColorTable()

3232--Bit DIB EngineBit DIB Engine

Flat 32-bit code
Will be the fastest
software-only driver
1, 4, 8, 16 (555), 24 (RGB)
bpp supported
Straightforward to add
other formats

DisplayDisplay MinidriversMinidrivers

Works best with:
Flat linear frame buffer
Local bus video memory

We will have for “Chicago”
The fastest, best driver for
frame buffers, with
Hooks for hardware
accelerators

GDI16 GDI16

DisplayDisplay
minidriverminidriver

DIB engineDIB engine

VideoVideo
adaptoradaptor

Advantages Of DIB EngineAdvantages Of DIB Engine
Add new DDI without requiring new
drivers

Example: WideTextOut
Printer drivers no longer dependent
on quality of display driver
Very robust display drivers
Smaller display drivers
Easy to add new formats

Fixes problems with current rasterizer
Complicated glyphs, such as Han
Better fidelity
Better performance
Uses memory mapped files
No more .FOT files
Faster boot with lots o’ fonts!

3232--Bit TrueTypeBit TrueType®® RasterizerRasterizer

Congruence Of Windows NTCongruence Of Windows NT

Paths
Beziers
Enhanced metafiles
Color cursors

PathsPaths

All Win32 path APIs have been
implemented
Primitives: Lineto, Moveto, and
PolyBezier supported
Not pel-perfect to Windows NT

BeziersBeziers

PolyBezier
PolyBezierTo
Port of the Windows NT code
to 386 assembly
Not pel-perfect to Windows NT

MetafilesMetafiles
Windows 3.1 metafiles “lingua franca”
Win32 enhanced metafiles

All enhanced metafile APIs supported
Partial support of world transforms

Skip records “Chicago” does not
understand
Port of the metafile converter to
Windows DLL

Enhanced MetafilesEnhanced Metafiles

Open with reference device
Goal: reproduce drawing from
reference device
Playback is original size by default
World transform scales
Clip regions scale and work, but
Paths scale better than regions

Additions To Windows NT GDIAdditions To Windows NT GDI

Wide-styled lines
Forms
Transforms
Dithered pens and text
Complete 32-bit internals
and coordinates
Masked blit
Fine-grained reentrancy

Windows NT GDI has but “Chicago” does not

Questions?Questions?

Windows Windows “Chicago”“Chicago” Ring 3 Ring 3
Relative Code DistributionRelative Code Distribution

32-bit side 16-bit side

Kernel32Kernel32
Thread services, synchronization Thread services, synchronization

objects, memory management, objects, memory management,
memorymemory--mapped files, file I/O, debug mapped files, file I/O, debug

services, console,services, console, commcomm, etc., etc.

ThunkThunk bandwidthbandwidth

GDI32GDI32
TrueTypeTrueType rasterizerrasterizer, print , print

subsystem, spooler, universal subsystem, spooler, universal
graphics engine (DIB engine)graphics engine (DIB engine)

Kernel16Kernel16

USER3USER3
22

USER16USER16
Existing WindowsExisting Windows 3.1 window 3.1 window

and menu management services, and menu management services,
plus new features (plus new features (asyncasync input input

model, new styles, etc).model, new styles, etc).

GDI16GDI16
Existing Windows Existing Windows 3.1 3.1
graphics management, graphics management,
plus newplus new BezierBezier, path,, path,

EMFsEMFs, etc., etc.

(One way)(One way)

	What We’ll Talk About
	Windows “Chicago” User Architecture
	Overview Of New User Features
	Increased System Capacity
	Robustness Additions
	Robustness Additions
	Win32 User API Support
	Added User Functionality
	Added User Functionality
	Windows “Chicago” Kernel Architecture
	Topics
	Windows “Chicago” Architecture
	System VM Overview
	16-Bit Tasking
	32-Bit Tasking
	The Scheduler
	API Serialization - General
	Serialization Of Windows NT API
	Windows “Chicago” Win16Lock
	Results Of Win16Lock
	Results Of Win16Lock
	Windows “Chicago” GDI Architecture
	Reduce 64K Limitations
	Graphics
	Bitmaps And DIBs
	32-Bit DIB Engine
	Display Minidrivers
	Advantages Of DIB Engine
	32-Bit TrueType® Rasterizer
	Congruence Of Windows NT
	Paths
	Beziers
	Metafiles
	Enhanced Metafiles
	Additions To Windows NT GDI
	Questions?

