Windows™ “Chicago”
Architecture

MICROSOFT,
WINDOWS.

Tammy Steele
Technical Evangelist
Systems Marketing
Microsoft Corporation

What We’ll Talk About

¢ “Chicago” user architecture
¢ “Chicago” kernel architecture
¢ “Chicago” GDI architecture

Windows “Chicago’ User
Architecture

Overview Of New User Features

¢ Increased system capacity
¢ Robustness additions
¢ Win32® API support

¢ New WIiIn32 APIs to support
new user features

Increased System Capacity

\ 4

\ 4

Up to 32K menu and window
handles (each)

Number of timers limited only by
available memory

Unlimited number of COM and
LPT ports

List box item limits raise from
8K to 32K, with data limited only
by available memory

Robustness Additions

¢ o

More robust parameter validation

Each 32-bit or 16-bit process or thread ID is
used for object ownership of Ring 3 objects

All 32-bit applications and version 4.0-
marked 16-bit applications have unfreed
resources cleared at application
termination time

Existing Windows 3.x-based application
resources are cleared when “Chicago”
determines no other Windows 3.x-based
applications are running

Robustness Additions

Ring 3 objects Tracked by:
Hooks thread
Windows thread
Global Memory process
Menus process
Classes process
cursors process

User lcons process
GDI Pens process
Brushes process
Regions process
Device Contexts process
Fonts process
Bitmaps process
Palettes process

Win32 User APl Support

»SetDebugErrorLevel
»MessageBoXxEX
>EX1tWindowsEx
»CopyAcceleratorTable
»CreateAcceleratorTable
»DestroyAcceleratorTable
>EnumPropsEx
»PostThreadMessage
»SendMessageCal Iback
»SendMessageTimeout
»SendNoti1fyMessage
>»FormatMessage
»AttachThreadlnput
»GetThreadDesktop

»>CreatelconFromResource
»Createlconindirect
>Getlconlinfo
»LookuplconIDFromDiIrectory
»ActivateKeyboardLayout
»GetKeyboardLayoutName
»LoadKeyboardLayout
»UnloadKeyboardLayout
>»WindowFromDC
»CreateMDIWindow
>WairtForinputldle
»MsgWartForMultipleObjects
»GetForegroundWindow
»SetForegroundWindow

Added User Functionality

¢ New minimized window look
» GetSystemMetrics, SM_ARRANGE

¢ Enhanced control capabilities
> Bitmap buttons, thumbsize of scroll bars, etc.

¢ Enhanced support for context-sensitive
Help and message boxes

Added User Functionality

¢ APIs for drawing 3-D windows and
frame controls

¢ Enhanced menu support (default items,
radio items, bitmap/icon items, and
extended pop-up menus)

¢ Dialog manager support for other font
styles in RC template

Windows “Chicago” Kernel
Architecture

Topics

¢ o

“Chicago’ system virtual
machine overview

Tasking/scheduling
API serialization

Windows “Chicago’ Architecture

Ring 3 (System VM)
Wing2® |
application System
| services: [Win16 } Ring 3 Ring 3
. _ N application MS-DOS® VIS-DOS
Wingg Kernel ((
application : V|\/|) VM)
> /| graphics Win16
g 3 window application
Wins2 H management
application
Ring 0
Protect mode file system Virtual machine manager
VEAT, CDFES, SCSI, Network Pager, Scheduler, DPMI server

System VM Overview

' Win32

application ‘ ‘ : Winl6
z10) pJ]ca;tM

Shared
address

Sp?l(‘\’—'

A

- Wwin32 Threads
i ie)

application Win16

z10) pJ]ca't‘Icm

16-Bit Tasking

¢ Cooperative tasking, same as Microsoft®
Windows 3.1

¢ Each Win16 application runs as a thread,
providing for resource tracking in Ring 0
(VxDs) and Ring 3 (GDI and USER)

¢ Synchronization between applications
occurs via messages

32-Bit Tasking

¢ All 32-bit applications and threads
are fully preemptive

¢ Any thread can call any API

¢ Fault handler on a separate thread
for robustness

¢ Compatible with Windows NT™ model

The Scheduler

Compatible with Windows NT
model: 32 priority levels supported

Also compatible with existing Win16
applications, VDDs, and VxDs

Dynamic priority boosting with
timed decay

Priority inheritance boosting

API Serialization - General

¢ Every multithreaded OS must
serialize some APIs

¢ Critical sections are commonly used

void InsertObjectinList(OBJECT* pobj)

{

EnterCriticalSection(&Lock);
pObjectListHead = pobj;
pobj->pNext = pObjectListHead;
LeaveCriticalSection(&Lock);

Serlalization Of Windows NT API

¢ Examples of subsystem serialization:

» GDI32 uses per-object locking allowing
multiple clients to reenter using different
objects

» User32 maintains a single lock for all APls.
Only one thread at a time may be in a
User32 API

¢ Also, applications (clients) and OS
subsystems (servers) are on separate
processes/threads in Windows NT

Windows “Chicago” Winl6lL ock

¢ “Chicago” uses a global system-critical
section for all Win16 components
called the Winl16Lock

¢ When thunking from 32-bit to 16-bit
code, “Chicago” always attempts to
claim the Winl16Lock

¢ If the current thread cannot own it
(because another thread does), it blocks

Results Of Winl16L ock

All 16-bit code Is protected, including
third-party DLL code

16-bit core components stay small
and fast

Compatibility Is ensured by not
changing API ordering and timing

WIin32 threads calling native 32-bit
API do not block on Winl6Lock.

Results Of Winl16L ock

¢ Note that any lack of smoothness In
multitasking caused by the Winl16Lock
will only be due to ill-behaved WIn16

applications

¢ A system with only Win32 applications
will not be affected by the Winl1l6Lock

¢ The shell is a Win32 application

Windows “Chicago” GDI
Architecture

GDI Module Enhancements

¢ Performance

¢ Reduce system resource
limitations

¢ Windows NT congruence

Reduce 64K Limitations

¢ Local heap limitations

>
>
>
>

Regions out
Physical objects out
~ont management structures out

DCs still in 64K heap

» GDI object ownership

Graphics

Application

| Interface || matcher |

‘ minidriver H minidriver |
| printer driver |
" GraphcsDiBengine

| [

Bitmaps And DIBs

¢ Windows 3.1 distinction of
bitmaps and DIBs

> Bitmaps - device-dependent
» DIBs - device-independent

¢ New DIB APIs

» CreateDIBSection() - creates a DIB
that both applications and GDI can
write to

» SetDIBColorTable()
> GetDIBColorTable()

32-Bit DIB Engine

¢ Flat 32-bit code

¢ Wil be the fastest
software-only driver

¢ 1,4, 8,16 (555), 24 (RGB)
bpp supported

¢ Straightforward to add
other formats

Display Minidrivers

GDI16 ¢ Works best with:
> Flat linear frame buffer

F. '!.BH. H » Local bus video memory
minidriver

' ¢ We will have for “Chicago”
DIB engine > T he fastest, best driver for
frame buffers, with
Y A > Hooks for hardware
Video accelerators

adaptor

Advantages Of DIB Engine

4

¢ 6 o

Add new DDI without requiring new
drivers

> Example: WideTextOut

Printer drivers no longer dependent
on quality of display driver

Very robust display drivers
Smaller display drivers
Easy to add new formats

32-Bit TrueType® Rasterizer

® 6 6 ¢ O ¢ o

Fixes problems with current rasterizer
Complicated glyphs, such as Han
Better fidelity

Better performance

Uses memory mapped files

No more .FOT files

Faster boot with lots 0’ fonts!

Congruence Of Windows NT

¢ Paths

¢ Beziers

¢ Enhanced metafiles
¢ Color cursors

Paths

All Win32 path APIs have been
Implemented

Primitives: Lineto, Moveto, and
PolyBezier supported

Not pel-perfect to Windows NT

Beziers

¢ PolyBezier
¢ PolyBezierTo

¢ Port of the Windows NT code
to 386 assembly

¢ Not pel-perfect to Windows NT

Metafiles

¢ o

Windows 3.1 metafiles “lingua franca”

Win32 enhanced metafiles
» All enhanced metafile APIs supported
» Partial support of world transforms

SKip records “Chicago’ does not
understand

Port of the metafile converter to
Windows DLL

Enhanced Metafiles

¢ o

*® ¢ o6 o

Open with reference device

Goal: reproduce drawing from
reference device

Playback is original size by default
World transform scales

Clip regions scale and work, but
Paths scale better than regions

Additions To Windows NT GDI

Windows NT GDI has but “Chicago” does not

¢ Wide-styled lines
Forms

Transforms

Dithered pens and text

Complete 32-bit internals
and coordinates

Masked blit
Fine-grained reentrancy

® 6 6 o

¢ o

Questions?

Windows “Chicago” Ring 3

Relative Code Distribution

32-bit side

GDI132

TrueType rasterizer, print

graphics engine (DIB engine)
- Y

memory-mapped files, file'1/O, debug

\-

Kernel32)

Thread services, synchronization
objects, memory/ mamnagement,

services, console, comm, etc. J

Fritni< oznelywiclir)

subsystem, SPOGIEr, Universal [———

(One way)

16-bit side

-

.

USER16

Existing Windews;3.1 window
and menu management services,
plus new features (async input
model, new styles, etc).

J

/

.

N
GDI16
Existing Windoews 3.1
graphics mamnagement,
plus new Bezier, path,
EMFs, etc. J

Kernell6

	What We’ll Talk About
	Windows “Chicago” User Architecture
	Overview Of New User Features
	Increased System Capacity
	Robustness Additions
	Robustness Additions
	Win32 User API Support
	Added User Functionality
	Added User Functionality
	Windows “Chicago” Kernel Architecture
	Topics
	Windows “Chicago” Architecture
	System VM Overview
	16-Bit Tasking
	32-Bit Tasking
	The Scheduler
	API Serialization - General
	Serialization Of Windows NT API
	Windows “Chicago” Win16Lock
	Results Of Win16Lock
	Results Of Win16Lock
	Windows “Chicago” GDI Architecture
	Reduce 64K Limitations
	Graphics
	Bitmaps And DIBs
	32-Bit DIB Engine
	Display Minidrivers
	Advantages Of DIB Engine
	32-Bit TrueType® Rasterizer
	Congruence Of Windows NT
	Paths
	Beziers
	Metafiles
	Enhanced Metafiles
	Additions To Windows NT GDI
	Questions?

