Writing HOT Games
for Microsoft. Windows™

The Microsoft Game Developers’ Handbook

Microsoft Windows™ Multimedia

10/94

TABLE OF CONTENTS

Table of Contents 3
Microsoft Windows Multimedia 5
WE'Te SErOUS ADOUL QAIMESveiiiiiiiitieeeeeie ettt e ettt e e bt e e sbe e e be e e e br e e snteeeaneeas 5
Millions of new 32-bit game machines on the way!...........cccoiiiiiiiiiicee e 5
[E @IN"T OVET YLttt ettt ettt et e st e e e a bt e e ea bt e e bt e e ehb e e e ambe e e abbeeebbeeesnbeeeteeeann 5
The Windows Market 7
Windows 95 as a Game Platform 9
1 Fast, Flexible Graphics 9
WWING OVEIVIEW ...ttt ettt ekt e bt e st e e eh et e bt e et e e e b e e st e e aneee s 9
Other graphic @NNANCEMENTScciuiiiiiii ettt e et e et e e sabeeasieee e 10
2 Easy to Support 10
3 Powerful Development Environment 10
4 Built-in Digital Video Support 11
5 High Quality, Flexible Sound 11
6 Support for Multi-player Games 12
7 Synchronization 12
8 Toys 13
9 3D for Windows 13
Appendix A: PRELIMINARY WinG Documentation 15
Why WinG? 15
Off-screen Drawing With WinG 15
Using GDI With WinGDCs 16
Halftoning With WinG 17
Maximizing Performance With WinG 17
10. Take Out Your Monochrome Debugging Card..........cccooeeerieieiiiieeiieeesiee e 17
9. Store WinGBitmap Surface Pointer and BITMAPINFO...........ccccovviiiiie i 17
8. Don’'t Make Redundant GDI Calls............cccomeverreeiieeneennn
7. Special Purpose Code May Be Faster Than GDI
6. Time Everything, Assume Nothing (Ruminations oood coding practices).............cccccuv.... 18
5. Don't Stretch
4, DON'tBlt e
3. DONtClip v
2. Use an Identity Palette
1. Use the Recommended DIB FOIMALoammmeteiiiieniiieiiieesiieenie et 19
DIB Orientation
TOP-DOWN DIBS ...ttt ettt et e e e e e e e e e e e e s enen e e e e e e e e e e
Using an Identity Palette
5] r= (ol @0 (o] £ TP TP SO PO PP PPRPOPPPPPO
Oher COIOTS.....cuiiiiiiiiereeee et

Creating an ldentity Palette
Palette Animation With WinG

Accessing a Full Palette Using SYSPAL_NOSTATIC 25
WinGBitBlIt 28
WinGCreateBitmap 28
WinGCreateDC 31
WinGCreateHalftoneBrush 31
WinGCreateHalftonePalette 32

Table of Contents 3

WinGGetDIBColorTable

WinGGetDIBPointer

WinGRecommendDIBFormat

WinGSetDIBColorTable

WinGStretchBIt
WING_DITHER_TYPE

Debugging WinG Applications

Shipping a Product With WinG
Code Samples

Balloon Doggie Sample

Spinning Cube Sample

WinG Timing Sample

WinG Halftoning Sample
WinG Palette Animation Sample
WinG Glossary

Further Reading

Table of Contents

33
33
34
35
35
36
37
37
37
38
38
39
39
39
40
40

MicroSOFT WINDOWS MULTIMEDIA

Microsoft is committed to making Windows a leadorge in multimedia technologies
and systems.

Our commitment takes many forms, but the most itapbone for independent
software vendors is our commitment to substantial @ahgoing investment in
multimedia-related R&D. In this handbook we expladme new innovations in
Windows that will be of particular interest to gaahevelopers.

We’re serious about games

For the past year, the home market has been ttestagowing segment of the PC
business. More and more of our customers aragelis that they want games for
WindowsO and at this point, there aren’t many. Games laeady the largest category
of multimedia application, but most of today’s cartgr games are running on MS-
DOS®. In fact, at the end of 1993 computer game®wne of the last remaining
software categories for which Windows product stigided MS-DOS product sales.

Not that this should come as any surprise. Util,game graphics under Windows
made slug racing look exciting.

The only way for Windows to succeed as a gamegptatis for developers to write
great games for it. This Handbook is designecetp fiou do that. And the WinG library
delivers graphics performance approaching raw MSSBeeds.

Millions of new 32-bit game machines on the way!

There are over 100 million MS-DOS based personadpeders in the worldl and over
40 million of those are running Windows. The hdpt market is growing fast, and a
very large portion of the machines being sold lmimes are equipped with the kinds of
devices that should make game developers smileROBI drives, sound subsystems,
and 4MB of RAM or more.

With the release of Windows 95, a GIANT new 32dzme platform will be born.
This handbook:

1 explains some of the new features and capabiliti@Vindows 95 that make it
possible for you to write great games for the werttext PC operating system; and

2 introduces the WinG libraries, a development that you can use to write high-
performance graphical games for Windows today.

It ain’t over yet

It's important to emphasize that the technologiescdbed in this handbook aren'’t the
end of the story. Quite the contraiy we've made some very important first steps, but
there’s a lot of work to be done in the years ahd@lgéase tell us how we can make
Windows a great platform for your games!

We've invested a lot of effort making Windows irte leading environment for
“serious” applications.

Now comes the fun part!

To send a suggestion to the Microsoft Windows kheltiia team, GO WINMM in
CompuServe® or send email to mmdinfo@microsoft.com.

Microsoft Windows Multimedia 5

Microsoft, MS-DOS and Visual Basic are registerediémarks and Windows is a
trademark of Microsoft Corporation.

CompusServe is a registered trademark of CompuSkrwe,

VoiceView is a trademark of Radish Communicatidns,

Microsoft Windows Multimedia

THE WINDOWS MARKET

It has now been over four years since the releB¥éirmows 3.0, and the software market
is greatly changed. For example:

e The majority of new PCs sold now come with Micraddindows pre-installed.

e Virtually every PC peripheral and add-in board loa tharket (including sound cards)
ships with drivers and installation instructions @ize with Microsoft Windows.

¢ Invirtually every software category (with the egtien of games), sales of software
for Windows outpace sales of software for MS-DOS.

Windows is a growing, active platform, and comimyelopments will help to make it
more so. Windows 95 is the name for the next varsfoNindows. Analysts who have
reviewed Windows 95 in its prerelease form areaalyeconcluding that this new
operating system will be the biggest news to cammen fMicrosoft since the release of
Windows 3.0.

Until recently, the Windows-based personal comph#gdware and software
businesses focused almost exclusively on the offessiktop. That focus is broadening
rapidly:

¢« Home PCs are the fastest-growing category of théd&@ware business, and home
buyers are demanding multimedia capabilities itir tREs.

e Laptop and notebook computers are an increasingdpitant share of the business,
and they are helping to establish the modem aanalatd PC device.

* Non-business software categories (including gamesyapidly growing into the
multi-billion dollar range.

These trends show no signs of stopping. As PCsrbe@n increasingly common
appliance in the home, we can count on the follgwadarollaries:

e The average level of computer knowledge among hasees will decline.

* The market will favor ease of installation and eafsase as features of home
software products. Products that are obnoxiossary to install won't sell well in
the broad home market.

These forces will help support the continued sucoésVindows software in the home
market, which presents an important opportunitytfiergame development community.
There are millions of PCs with Windows in homesatypdand relatively few Windows-
based games. The market forces above make iy piedlr that there’s a big market out
there, waiting for the right Windows-based gamedpats to come along.

Got any ideas?

The Windows Market 7

WINDOWS 95 AS A GAME PLATFORM

This chapter describes some (not all') of the fetwf Windows 95 that will make it
an important release for you as a game developrethe case of our work on graphics
speed, this chapter also describes how WinG malkessible for games to smoothly
transition to Windows 95 while maintaining compditip with Windows 3.1 today.

This document is an overview of our technology @evelopment plans as they
relate to games. Further technical articles abmoplementing games on Windows can
be found in the Microsoft Developer Network. (Baubscription, call Microsoft at 1-
800-759-5474. Outside the US and Canada, call@@2-0173 for a distributor in your
country.)

Naturally, we are interested in your input in afltbese areas, as we are very
committed to making Windows the best game operatistgm possible. The best way to
reach us is through the new CompuServe forum foregdevelopers7 GO WINMM.

Or send email to mmdinfo@microsoft.com.

Discussed here are the following topics:

Fast, Flexible Graphics

Easy to Support

Powerful Development Environment
Built-in Digital Video Support

High Quiality, Flexible Sound
Support for Multi-player Games
Synchronization

Toys

3D for Windows

O©CO~NOOUIDSWNPE

1 Fast, Flexible Graphics

The speed of graphics (or, more appropriately|ablk of it) in Windows 3.1 has been the
most important obstacle keeping game developens éfwoosing the Windows platform
for their games. We have addressed this issuetreada way that provides
substantially improved speed while preserving tixéick independence that makes
Windows appealing in the first place with a newpipia library called WinG.

WinG provides close to the graphic performance &DBPOS based games with all of
the device independence of Windows. (For detailemrmation about the WinG library,
see Appendix A)

WinG overview:

Fast graphics. Blts directly to the frame buffer from Device Indgmlent Bitmaps in
memory, allowing performance approaching raw MS-D¥p&ed on any given Windows
compatible computer.

Compatible with Windows 3.1 and Windows NT.Runs across Microsoft operating
systemsincluding the millions of copies of Windows 3.1tafled today and uses the
fastest available blting mechanism on each OS.

Color. WiInG is optimized for all color depths and graphiesolutions under Windows
95 and Windows NT. For WinG on Windows 3.1, MS-D€&ss graphic performance is
optimized for 256-color source animation.

Free. The WinG library will be freely available to develers and redistributable at no
cost. This library will be available on CompuSeinvehe WINMM forum by the end of
May, 1994,

Windows 95 as a Game Platform 9

32 bit. WIinG will be available in both 16- and 32-bit venss, allowing you to create full
Win32 games.

Other graphic enhancements

Windows 95 games will also be able to take advantdghe following enhancements to
the operating system:

On-the-fly control of screen resolutionmakes it possible to dynamically configure the
display to achieve optimal speed and graphics tyuali your game.

Offscreen buffering and other hardware-level video functionality notessible in
Windows 3.1 will also be supported in Windows 95.

Device-independent color supportn Windows 95 will allow you to ensure that your
graphic colors are consistent across all diffetgmes of video cards and displays.

2 Easy to Support

Every support call might as well be a lost sale.

Providing customer support for gamesor any software, for that matter is very,
very costly. In fact, the margin that game devetspypically make from the sale of a
game are generally low enough that the cost ofsopgort call for installation or
configuration can actually eliminate the profitmeed from that sale.

Developing your game for Windows 95 and/or Micreafndows 3.1 will help you
decrease support costs in four ways:

« Windowsmemory managementousts the 640K conventional memory barrier for
you, gives you up to gigabytes’ worth of linear@2addressable memory and
eliminating the need to fiddle with customers’ CONFSYS file during setup. A
huge portion of all support calls relate to setup.

¢ Windowsdevice independencérees you from a lot of card-specific codidgand
support. Use the standard Windows APIs and yoodymt will work with all
Windows-compatible devices.

¢ Not your dime. Importantly, if you've written your game for Windevand your
user’s sound card doesn’t go “whoooosh!” when ghduo do so, your game isn’t the
culprit. Microsoft (or the sound card maker) géts phone call, not you.

¢ In Windows 95, a new feature callBtug and Playwill make it easier for users to
add device$§] such as CD-ROM drives or sound caltigo their systems. This will
help to further increase the market for gameslifais upgrades, and take support
pressure off of game developers.

Windows offers device-independent support for:

¢ CD-ROM drives

e Sound cards

e Video Displays

< Digital video acceleration boards (including MPEG)

¢ Printing
¢ Networking
¢ Modem

e Joystick, and
¢ Pointing devices including the mouse (of course)

Windows 95 as a Game Platform 10

3 Powerful Development Environment

The tools for writing Windows code have evolvedatiigover the last few years. We
aren’t saying that your job is in dandérthe code doesn't write itself. But some of the
least rewarding parts have been substantially aateain and there are good tools now
available to help you write code that you can rdtm@ one project to the next. For
example:

* Microsoft Visual C++. Provides a fully integrated graphic development
environment for Windows applications that makesritple to create a GUI
application utilizing sophisticated functionalitych as networking, WinG, Object
Linking and Embedding, sound, digital video, andath.

¢ Object Linking and Embedding (OLE) is an object technology made available for
all Microsoft operations systems and the Mac thaaty facilitates the exchange of
information and functionality between unrelatedlaggpions. The availability of this
technology creates game possibilities previouslgnaginable in the MS-DOS world,
such as:

« Drag & Drop monsters from one game space to another

e provide standard interfaces that others can udevelop or extend functionality for
your game worlds;

« embedding game sessions into mail messages thautamatically connect you over
a network or modem, etc.

4 Built-in Digital Video Support

For the past several years, Microsoft has beenlaigivg a high-performance architecture
for digital videod Microsoft Video for Windows.

In the past, Microsoft Video for Windows has beeld separately (principally as a
Software Developers’ Kit). With the release of \Wbmvs 95, it will be built right into the
operating system. For the first time, the abii@yplay digital video will ship with every
copy of Microsoft Windows.

If you include digital video in your game, Windowan play it back for your
customers, regardless of the display board thatuetomer may have installed. Your
customers don’t need special hardware to play gameld any VGA card will do.

More information on Microsoft Video for Windows @vailable on MSDN and in the
Microsoft Video for Windows software developers kit

5 High Quality, Flexible Sound

Microsoft Windows offers device independent soulmrang applications to call
standard APIs to drive sound boards without wogyabout the hardware-specific details.
The high-level MCI sound APIs make it relativelyasghtforward to play a given sound
with minimal coding effort. The low-level WAV APIgrovide more precise control over
arbitrary digital sound. MIDI APIs are also proeit

For mixing sound, Microsoft offers a library callédAVEMIX.DLL, which can
merge up to four channels of sound into a singkast on the fly. WAVEMIX can be
found on CompuServe and on the Microsoft Windowdtivhedia Jumpstart CD.

To make the burden of storing and playing sounsl ¢e®rous, Windows 95 includes
a family of sound compression technologies (“cotjec§hese codecs can be divided into
two groups:

e Music-oriented codecs (such as IMADPCM) are inctutheat allow close to CD-
quality sound to be compressed to about one-qusiger

Windows 95 as a Game Platform 11

* Voice-oriented codecs (such as TrueSpeech) anededlto allow very, very efficient
compression of voice data.

This support for compressed sound is two-Wayou can play sound from a compressed
sound file, or you can compress a sound file (uiedouilt-in sound recording and
editing utility). If you have a microphone, youncirn on voice compression when
recording so that your file is compressed in reakt

6 Support for Multi-player Games

The much-touted information superhighway holds gpeamise in lots of areas, but one
of theleastcontroversial is the opportunity it might provifie cool multi-player games.
Why wait for the information superhighway? Windo9& offers two technologies that
make Windows-based multi-player games viable ragiry:

¢ Networks offer great promise for multi-player games, butwwek support has been
added to relatively few MS-DOS-based games toddys is principally for technical
reasong] there are scores of different network hardwaresadiivare challenges,
and even getting a game to run can be frustratidgeapensive to support. It's
much, much simpler in Windows you don’t have to write the networking code,
you don'’t have to work around the network’'s memgpgce, and you don't have to
take the network support calls. A Windows techggloalled WinSockets makes it
possible to write games for a broad variety of mekitypes including Novell,
Banyan Vines, Windows for Workgroups, LAN ManadeGP/IP and others without
worrying about which one is in use.

¢ Modems. In addition to easy modem setup and configuratdgimdows 95 provides
support for a new modem technology called VoiceVikis technology lends itself
well to games that involve “taking turns,” andMiélp to put the appeal of human
interaction into modem-based games.

VoiceView will be shipped as a standard featureiafially every modem in 1995
Until now, modem users have had no chaicehey can either talk on the phone or
use their modem, but not both. (If you want t& tgbu generally have to disconnect the
modem and call back, or else get a second phoa# lithis makes modem-based 2-
player games pretty unappealing, because talkiyguo opponent is half the fun, right?
With VoiceView, you can plagndtalk to your opponent in the same phone call.
Here’s how it works:

* Run one phone line from the wall to the “in” poftyour VoiceView-capable
modem, and another from the “out” port to your p&ion

e Turn on your PC and call up your friend (who alss b VoiceView-capable
modem).

« Talk for as long as you like. When you feel likdaunch a 2-player ganie we’ll
use chess as an example.

¢ When you make a move, you will hear a brief beepg, your modems will take over
the phone line for a moment. (You can't talk withe modems are conversing). A
simple message like a chess move takes less tlasecond to communicate.

* When you're done (or have to go eat dinner), hgntike you always do.

7 Synchronization

Synchronization of sound with events is crucialdotting-edge games. In Windows 95,
you can write 32-bit games that use threads to gepeocesses that occur
simultaneously (such as sound, scoring and animjatim the past, many game
developers have written their own multitasking eegiunder MS-DOS to build this sort

Windows 95 as a Game Platform 12

of functionality. The multitasking support in Wiods 95 will free you from this low-
level coding so that you can invest more of yoforen features.

Windows 95 has a default preemptive thread scheglgliain of 20 ms, meaning that
if there are not a lot of other background acegtia foreground application (or high-
priority thread) can be assured of constant arglLigrat attention from the OS. If that
isn’t fast enough, it's possible to set the grairiast as 1ms. Windows 95 provides fine
event control and scheduling objects that facditatiting tightly synchronized
multitasking applications.

The ability to manage sound as a separate thregouofprogram allows multimedia
tittes and games to have a more smooth, finishelddethem. For example, a game might
have a thread that plays background music contsiyauring game play. This would
help smooth out the breaks between scenes, wheyathe is loading new dafa on
another thread of the program. Threading provides$ynchronous I/O that makes it
possible to carry on sound and animation whilerfgitthe network or file system at the
same time.

Another area of synchronization that is importana tsuccessful action game is
synchronization of input with action. Again, usithgeading you can control the polling
rate of input devices and ensure that your game &isp and responsive. In addition to a
thread scheduler, Windows 95 also provides acceasonfigurable event timer that can
generate clock messages at up to 1ms.

8 Toys
Support for game devices will be built right intantfows 95. Aside from the obvious
support for the mouse and the keyboard, Windowsif%lso include built-in support for
joysticks.

9 3D for Windows

Windows NT (Daytona) will ship with the industryastdard OpenGL libraries included as
a standard part of the Windows Graphic APIl. Wecgrdte that this will make Windows
NT a great authoring environment for 3D softwalkéicrosoft will also make the OpenGL
libraries available on Windows 95, so that the santboring tools can run on both
Windows 95 and Windows NT. To enable the markeBid accelerators, Microsoft will
publish the 3D-DDI (device driver interface), whiglil make it possible for hardware
vendors to accelerate 3D graphics for MS-DOS, Wivej@and Windows NT. Our
OpenGL implementation will utilize hardware accat@n via the 3D-DDI whenever it is
available.

The 3D DDI is an open interface, enabling other8Bdering APIs such as HOOPS
and PeX to coexist with OpenGL on Windows. Althbygneral-purpose 3D libraries
are not practical for most games today, we hopeatimasupport for OpenGL and the 3D
DDI will rapidly grow the installed base of 3D harare accelerators.

Windows 95 as a Game Platform 13

APPENDIX A: PRELIMINARY WING DOCUMENTATION

Why WinG?

Although business applications such as word pracesmd spreadsheets have moved
overwhelmingly to Windows, MS-DOS remains the ofiatpsystem of choice for games.
These applications have not made the transitisitalows largely for performance
reasong] in a word,speed.The performance of games under Windows has suffered
because of restrictions placed on the programm&bls device independence, by the
windowed environment, and by the inability of gexiegyraphics libraries to provide the
necessary speed.

Most MS-DOS game programmers use knowledge spéoiticeir application and
their hardware to write optimized graphics routirgstil now, Windows programmers
could not use such methods because GDI prevergsste device-specific surfaces;
programmers can not draw directly onto the surtd@e GDI device context.

WinG (pronounced "Win Gee") is an optimized libragsigned to enable high-
performance graphics techniques under Windows\Biddows 95, and Windows NT.
WinG has been developed as a key component of ib@sbft Windows Multimedia
Initiative.

WinG allows the programmer to create a GDI-compati#BITMAP with a Device
Independent Bitmap (DIB) as the drawing surfaceglammers can use GDI or their
own code to draw onto this bitmap, then use Win@aosfer it quickly to the screen.
WinG also provides halftoning APIs that use thed#ad Microsoft halftone palette to
support simulation of true color on palette devices

Off-screen Drawing With WinG

WinG introduces a new type of device context, tha®DC, that can be used like any
other device context. Unlike other DCs, programnearsretrieve a pointer directly to the
WinGDC drawing surface, its BITMAPINFOHEADER, artd tolor table. They can also
create and select new drawing surfaces for the \WD®@r modify the color table of an
existing surface. DIBs become as easy to use asadspecific bitmaps and compatible
DCs, and programmers can also draw into them ukigigown routines.

Most often, applications will use WinGCreateDC teate a single WinGDC and will
use WinGCreateBitmap to create one or more WinG&itsrinto which they compose an
image. The application will typically draw into ghbuffer using DIB copy operations,
GDI calls, WinG calls, and custom drawing routires shown here.

Appendix A: PRELIMINARY WinG Documentation 15

DIB GDI Drawing Custom Drawing DIB
Routines Routines

GDI Blt Custom BIt
Routines Routines

WinGDC

A

WinGStretchBIt or WinGBiItBIt

A double-buffering architecture for WinG

Once DIB composition for the current frame is ctetgy the application will copy the
WinGDC buffer to the screen using WinGStretchBIWinGBitBIt. This double-
buffering architecture minimizes flicker and proggdsmooth screen updates.

Many games and animation applications draw theratters using sprites. On
arcade machines, sprite operations are performbdraware. Under DOS with a VGA,
games simulate sprite hardware using transparemniribdd an off-screen buffer. The
DOGGIE sample application (in the SAMPLES\DOGGIEedtory of the WinG
development kit) uses WinG in the same way to parfilansparent blts to a WinGDC
and includes source code for an 8-bit to 8-bit $pamentDIBits procedure.

Using GDI With WinGDCs

WinG allows drawing onto the DIB surface of a WinGvith GDI, but there are some
anomalies to keep in mind.

1 Most importantly, GDI does NOT regard WinGDCgatette devices. WinGDCs
are actually RGB devices with a fixed 256-colorozdhble. You happen to be able
to modify the device color table using the WinGS&tDolorTable API, but the color
table is considered static by GDI. You can't setgatealize palettes in a WinGDC.
The Palette Animation With WinG article describesvito match a given palette to a
WinGDC color table.

2 Drawing with GDI on a WinGDC surface does notafs/produce a pixel-perfect
duplicate of the image you would see using GDI alisplay device. The images will
be similar, but some stray pixels will remain ify¥OR the two images together.

Brushes realized in a WinGDC will be aligned to tipper left corner of the WinGDC
whereas brushes used in screen DCs are alignbd tgpper left corner of the screen.
This means that when you blt a WinGDC that has fided with a pattern into a screen
DC that has been filled with the same patternptitéerns will not necessarily align
correctly.

If you have this problem, you can either changebttush origins and re-realize the
brushes in either DC (see the section “1.6.8 BAlgfnment” in the Windows SDK
Programmer’s Reference Volume 1, also availabltherMicrosoft Developer Network
CD) or you can make off-screen brushes align ctyr@géth on-screen brushes by blting
the WinGDC to a brush-aligned position on the seré®r example, an 8x8 brush pattern
can be correctly aligned to the screen by bltirgWinGDC to an x, y position when x
and y are both multiples of 8.

Appendix A: PRELIMINARY WinG Documentation 16

Halftoning With WinG

WinG allows applications to simulate true 24-bitazmn 8-bit devices through the WinG
halftoning support APIs, WinGCreateHalftonePalatte WinGCreateHalftoneBrush.

The halftone palette is an identity palette coritgjra carefully selected ramp of
colors optimized for dithering true color images8tbit devices. The
WinGCreateHalftonePalette function returns a hatalke halftone palette which
applications can select and realize into a disgiyce context to take advantage of the
halftoning capabilities offered by WinG.

The brushes returned by the WinGCreateHalftoneBAlhuse patterns of colors in
the halftone palette to create areas of simulatexldolor on 8-bit devices into which the
halftone palette has been selected and realizeel CUBE sample application (in the
SAMPLES\CUBE subdirectory of the WinG developmeitt lses halftoned brushes to
generate a wide range of shaded colors on andspitay.

The halftone palette gives applications a framevioridithering 24-bit images to 8-
bit devices. The palette itself is a slightly maetif 2.6-bit-per-primary RGB cube, giving
216 halftoned values. The 256-color halftone palalso contains the twenty static colors
and a range of gray values.

Given a 24-bit RGB color with 8 bits per primitisgu can find the index of the
nearest color in the halftone palette using thiewhg formula:

Hal ftonelndex = (Red / 51) + (Green / 51) * 6 + (Blue / 51) * 36;
Hal ft oneCol or I ndex = aW nGHal ftoneTransl ati on [Hal ftonel ndex] ;

The aWinGHalftoneTranslation vector can be founthe'HALFTONE source code. The
HALFTONE sample (in the SAMPLES\HALFTONE subdirestof the WinG
development kit) applies an ordered 8x8 dither 2ddit image, converting it to an 8-bit
DIB using the WinG Halftone Palette.

Applications should avoid depending on a specifieaing of the halftone palette by
using PALETTERGB instead of PALETTEINDEX to referentries in the palette.

Maximizing Performance With WinG

Here is the WinG Programmer’s Guide to Achieving\&iNirvana, the Top Ten ways to
maximize blt performance under Windows using WinG.

10. Take Out Your Monochrome Debugging Card

Eight bit monochrome video cards can turn the 18 hilHz ISA bus into an 8 bit 4 MHz
PC bus, cutting your video bus bandwidth by up8&7Monochrome cards are an
invaluable aid when debugging graphical applicajdut when timing or running final
tests, remove the card for maximum speed.

9. Store WinGBitmap Surface Pointer and BITMAPINFO

WinGCreateBitmap takes a BITMAPINFO, creates an H&AP, and returns a pointer
to the new bitmap surface. Store the BITMAPINFO pnoihter at creation time with the
HBITMAP rather than call WinGGetDIBPointer when yoeed it.

8. Don’t Make Redundant GDI Calls

GDI objects such as brushes, fonts, and penstitaketo create, select, and destroy. Save
time by creating frequently used objects once authing them until they are no longer
needed. Move the creation and selection of obpgtar out of your inner loops as
possible.

Appendix A: PRELIMINARY WinG Documentation 17

7. Special Purpose Code May Be Faster Than GDI

There may be many ways to accomplish a given geagiperation using GDI or custom
graphics code in your application. Special purpmsi#e can be faster than the general
purpose GDI code, but custom code often incurscéastsal development and testing
overhead. Determine if GDI can accomplish the a@rand if the performance is
acceptable for your problem. Weigh the alternatoa®fully and see number 6 below.

6. Time Everything, Assume Nothing (Ruminations on good coding practices)

Software and its interactions with hardware arefes Don’'t assume one technique is
faster than another; time both. Within GDI, somd3#0 more work than others, and
there are sometimes multiple ways to do a singé&aijpn—not all techniques will be the
same speed.

Remember the old software development adage: 90fbuoftime is spent executing
10% of the code. If you can find the 10% througbffiing and optimize it, your
application will be noticeably faster.

Timing results may depend on the runtime platfolimapplication’s performance on
your development machine may be significantly défe from its performance on a
different runtime machine. For absolute maximunespénplement a variety of
algorithms, time them at runtime or at installatiand choose code paths accordingly. If
you choose to time at installation, remember thanges to video drivers and hardware
configuration after your application has been ittestibcan have a significant effect on
runtime speed.

5. Don’t Stretch

Stretching a WinGBitmap requires more work than ping it. If you must stretch,
stretching by factors of 2 will be fastest.

On the other hand, if your application is pixel-bhdyit spends more time writing
pixels to the bitmap than it does blting), it mayfaster to stretch a small WinGBitmap to
a larger window than it is to fill and blt a WinGBiap with the same dimensions as the
window. Your application can respond to the WM_GHBNMAXINFO message to
restrict the size of your window if you don’t wantdeal with this problem.

4. Don’t Blt

“The fastest code is the code that isn't calledt'tBe smallest area possible as seldom as
possible. Of course, figuring out the smallest aodalt might take longer than just blting

a larger area. For example, a dirty rectangleesgsistem could use complex algorithms
to calculate the absolute minimum rectangles tatgydut it might spend more time
doing this than just blting the union of the digineas. The runtime environment can affect
which method is faster. Again, time it to make sure

3. Don’t Clip

Selecting GDI clip regions into the destination Bxplacing windows (like floating tool
bars) over the destination DC can slow the blt dpee

Clip regions may seem like a good way to reducentimber of pixels actually sent
to the screen, but someone has to do the workuAsbar 4 and number 7 discuss above,
you may be better off doing the work yourself rattien using GDI.

An easy way to test your application’s performawben clipped is to start the
CLOCK.EXE program supplied with Windows. Set itAtways On Top and move it over
your client area.

2. Use an Identity Palette

WinGBitmaps without identity palettes require aardranslation per pixel when blted.
‘Nuff said.

Appendix A: PRELIMINARY WinG Documentation 18

See the Using an ldentity Palette article for dpetiformation about what identity
palettes are, how they work, and how you can us@th

1. Use the Recommended DIB Format

WinG adapts itself to the hardware available atinomto achieve optimum performance
on every platform. Every hardware and software doatibn can be different, and the
best way to guarantee the best blt performanaeusé the DIB parameters returned by
WinGRecommendDibFormat in calls to WinGCreateBitmégou do this, remember
that your code must support both bottom-up anddimpn DIB formats. See the DIB
Orientation article for more information on handlithese formats.

DIB Orientation

The most frustrating thing about working with DIBghat DIBs are usually oriented with
the bottommost scanline stored first in memory,ekact opposite of the usual device-
dependent bitmap orientation. This standard typ&/iofdows DIB is called a bottom-up
DIB.

WinG hides the orientation of DIBs from an appliocatunless the application wants
to know. Drawing into a WinGDC using GDI functioasd blting the WinGDC to the
display using either of the WinG DIB copy comma@dsnGStretchBIt or WinGBitBIt)
results in an image that is almost identical to omated using GDI to draw directly onto
a display DC. See the Using GDI With WinGDCs aetifdr more information.

If you don’t plan on writing custom drawing routsand will not be using existing
Windows 3.1 DIB-to-screen functions (such as ShigtBits or SetDIBitsToDevice), you
can skip the rest of this section.

If you do plan on writing custom drawing routinggust want to know how they
work, this section will begin to alleviate the cosion. The Microsoft Technical Articles
“DIBs and Their Use” by Ron Gery and “AnimationVvindows” by Herman Rodent will
flesh out the ideas presented here, provide heffuice, and describe DIBs in depth.
The TRIQ sample code from Microsoft's GDI Technibldtes shows how to draw
triangles and quads into a memory DIB. These ediake listed in the section Further
Reading.

Confusion with bottom-up DIBs inevitably stems frdne fact that the bottommost
scanline is stored first in memory, giving a cooede space where (0, 0) is the lower left
corner of the image. Windows uses (0, 0) as thewulgft corner of the display and of
device dependent bitmaps, meaning that the Y coatels of bottom-up DIBs are
inverted. In the diagram below, the smiling facstsdts gaze towards the DIB origin, but
when translated to the display with WinGStretchBIWinGBiItBlt, it looks away from
the display origin.

Appendix A: PRELIMINARY WinG Documentation 19

(0,0

pBits >

/

WinGStretchBlt or WinGBitBlt
/

Increasing
Memory

Bottom-Up DIB
In Memory

Bottom-Up DIBs are flipped when copied to the digpl

WinGStretchBlt, WinGBitBlt, StretchDIBits, and Sd<sToDevice invert the bottom-
up DIB as they draw it to the screen.

For an 8-bit bottom-up DIB, the address in memooyf which the screen pixel (X,
Y) is retrieved can be found with these equations:

/1 Calculate actual bits used per scan line

Di bW dthBits = (U NT)I pBnmi Header->bi Wdth *

(UINT) | pBri Header - >bi Bi t Count) ;

/1 And align it to a 32 bit boundary

D bW dt hBytes = ((Di bWdthBits + 31) & (~31)) / 8§;

pPi xel XY = Di bAddr + (Di bHeight - 1 - Y) * D bWdthBytes + X

where DibAddr is the base address of the DIB, Dighieis the height of the DIB,
IpBmiHeader is a pointer to a BITMAPINFOHEADER debing the DIB, and
DibWidthBytes is the DWORD-aligned offset of bytagnemory from any X in one
scanline to any X in the next scanline.

Top-Down DIBs

Another kind of DIB, called a top-down DIB, is storwith the same orientation as most
device-dependent bitmaps: the first scanline in orgris the top of the image. Top-down
DIBs are identified by a negative biHeight entrythieir BITMAPINFOHEADER
structures.

Sometimes, WinG can greatly improve the speed@Bato-screen copy by using a
top-down DIB because it can avoid inverting the @dBa device-dependent format.
When this is the case, WinGRecommendDIBFormatreilirn a negative value in the
biHeight field of the passed BITMAPINFOHEADER stture.

If you are writing custom DIB drawing routines, yaill have to handle top-down
DIBs for best performance because there is a gbadae that WinG will recommend
them with WinGRecommendDibFormat.

WinGStretchBIt and WinGBitBIt recognize top-downE3l and handle them
correctly, butWindows 3.1 functions such as StretchDIBits and SetBitsToDevice

Appendix A: PRELIMINARY WinG Documentation 20

will not work properly with top-down DIBs unless you intentionally mirror the
image.

(0,0)

\

WinGStretchBlt or WinGBitBIt

pBits >

Increasing
Memory

\

Top-Down DIB
In Memory

Top-Down DIBs are copied directly to the display

For an 8-bit top-down DIB, the memory address effiixel (X, Y) can be found with this
equation:

Pi xel Addr = Di bAddr + Y * Di bW dthBytes + X

where DibAddr is the base address of the DIB armi\DbilthBytes is the DWORD-
aligned offset of bytes in memory from the begignifi one scanline to the next.

The PALANIM sample application (in the SAMPLES\PANAM subdirectory of the
WinG development kit) includes a routine to drawihantal lines into a DIB. To do this,
it determines the orientation of the target DIB @edforms its calculations accordingly.

The DOGGIE sample application (in the SAMPLES\DOGGubdirectory of the WinG
development kit) includes a routine to copy one i® another with a transparent color.
The assembly function that does this also behaedismith both DIB orientations.

Using an Identity Palette

The Windows Palette Manager, described in depBoin Gery’s technical article “The
Palette Manager: How and Why” (see the Further Reagkction for details) arbitrates
conflicts between Windows applications vying fotarcentries in a single hardware
palette (known as the system palette). It gives @pplication it's own virtual 256-color
palette, called a logical palette, and translatéses in the logical palette to entries in the
system palette as they are needed for blting imegt® screen.

An identity palette is a logical palette which ethamatches the current system
palette. An identity palette does not require ti@ien of palette entries, so using an
identity palette can drastically improve the spe&tl which you can blt WinGDCs to the
screen.

Appendix A: PRELIMINARY WinG Documentation 21

The WinG Halftone Palette is an identity paletthisTarticle describes how to create
your own identity palettes for maximum WinG blt spde

Static Colors

The Palette Manager reserves a number of coldreipalette, called the static colors,
which it uses to draw system elements such as wirgédptions, menus, borders, and
scroll bars. An identity palette must include thegtis colors in the appropriate palette
entries.

The display driver defines the actual RGB valuethefstatic colors, so they must
always be determined at run time. The GetSysterttBRiatries will retrieve the colors
currently in the system palette, and you can isdla static colors using the
SIZEPALETTE and NUMCOLORS capability indices witletBeviceCaps and a little
knowledge of how the Palette Manager works.

The static colors are split in half and storedithiee end of the system palette. If
there aranColorspossible entries in the system palette and thereGtaticColorsstatic
colors, then the static colors will be found inregg 0 througmStaticColor& - 1 and
entriesnColors- nStaticColor& throughnColors1 in the system palette. Typically, there
are 20 static colors, found in indices 0-9 and 286-of a 256-color palette. The peFlags
portion of these PALETTEENTRY structures must beteeero.

The SetSystemPaletteUse API turns use of the staltics on and off for the system.
Using SYSPAL_STATIC, 20 entries will be reservedhie palette.
SYSPAL_NOSTATIC reserves only 2 entries, which mhesmapped to black and white.
See the Accessing a Full Palette Using SYSPAL NOBTAarticle for more
information.

Other Colors

The remaining non-static colors in the logical ptalenay be defined by the application,
but they must be marked as PC_NOCOLLAPSE (secAhEPTEENTRY
documentation for a description) to ensure an itiepalette.

A palette containing the static colors in the ajppiate entries with the remaining
entries marked PC_NOCOLLAPSE, selected and realizeca DC, becomes an identity
palette. Because no translation to the systemtpatetequired, the Palette Manager can
step aside gracefully and leave you to achieve maxi blt bandwidth.

Creating an Identity Palette

The CreateldentityPalette() function below shows I create an identity palette from a
an array of RGBQUAD structures. Before you readimgdentity palette for the first time,
it may be a good idea to clear the system palgttedlizing a completely black palette,
as the ClearSystemPalette() function below does Whi ensure that palette-managed
applications executed before your application ndt affect the identity mapping of your
carefully constructed palette.

To make sure that you have successfully createcdendsing an identity palette, you
can tell WinG to send debugging messages to tinelatd debug output, as described in
the Debugging With WinG article.

The PALANIM sample (in the SAMPLES\PALANIM subdirecy of the WinG
development kit) uses these routines to creatéaeBfy identity palette filled with a
wash of color.

Click Here to copy the CreateldentityPalette() cedmple to the clipboard.

Click Here to copy the ClearSystemPalette() codepsaito the clipboard.

HPALETTE Createl dentityPal ette(RGBQUADW n31_API aRGB[], int nCol ors)
{

int i;

struct {

WORD Ver si on;

Appendix A: PRELIMINARY WinG Documentation 22

WORD Nunber OfF Entri es;
PALETTEENTRY aEntri es[256] ;
} Palette =

{
0x300,
256

b

[/*** Just use the screen DC where we need it
HDC hdc = Get DC(NULL);

[1*** For SYSPAL_ NOSTATIC, just copy the color table into
[1*** a PALETTEENTRY array and replace the first and last entries
[1*** with black and white

if (GetSystenPal etteUse(hdc) == SYSPAL_NOSTATI C)

[1*** Fill in the palette with the given values, narking each
[[*** as PC_NOCOLLAPSE
for(i = 0; i < nColors; i++)

{
Pal ette.aEntries[i].peRed = aRGB[i].rgbRed;
Pal ette.aEntries[i].peGeen = aRGB[i].rghG een;
Pal ette.aEntries[i].peBlue = aRGB[i].rgbBl ue;
Pal ette.aEntries[i].peFl ags = PC NOCOLLAPSE;

}

[1*** NMark any unused entries PC_NOCOLLAPSE
for (; i < 256; ++i)

{
Pal ette.aEntries[i].peFl ags = PC NOCOLLAPSE;
}

[1*** Make sure the last entry is white
[1*** This nmay replace an entry in the array!
Pal ette. aEntries[255]. peRed = 255;

Pal ette. aEntri es[255] . peGr een = 255;

Pal ette. aEntri es[255] . peBl ue = 255;

Pal ette. aEntri es[255] . peFl ags = O0;

[1*** And the first is black

[1*** This may replace an entry in the array!
Pal ette. aEntries[0].peRed = O;

Pal ette. akEntries[0]. peG een = 0;

Pal ette. akEntries[0]. peBlue = O;

Pal ette. aEntries[0]. peFlags = O;

}
el se
[1*** For SYSPAL STATIC, get the twenty static colors into
[1*** the array, then fill in the enpty spaces with the

[1*** given color table

{
int nStaticCol ors;
i nt nUsabl eCol ors;

[1*** Get the static colors fromthe system palette
nStati cCol ors = Get Devi ceCaps(hdc, NUMCOLORS);
Get SystenPal etteEntri es(hdc, 0, 256, Palette.aEntries);

[1*** Set the peFlags of the |ower static colors to zero
nStaticColors = nStaticColors / 2;

for (i=0; i<nStaticColors; i++)

Pal ette.aEntries[i].peFlags = O;

[1*** Fill in the entries fromthe given color table

Appendix A: PRELIMINARY WinG Documentation 23

nUsabl eCol ors = nColors - nStaticCol ors;
for (; i<nUsableColors; i++)

{
Pal ette.aEntries[i].peRed = aRGB[i].rgbRed;
Pal ette.aEntries[i].peGeen = aRGB[i].rghG een;
Pal ette.aEntries[i].peBlue = aR&B[i].rgbBl ue;
Pal ette.aEntries[i].peFl ags = PC NOCOLLAPSE;

}

[1*** Mark any enpty entries as PC NOCOLLAPSE
for (; 1<256 - nStaticColors; i++)
Pal ette.aEntries[i].peFl ags = PC NOCOLLAPSE;
[1*** Set the peFlags of the upper static colors to zero
for (i = 256 - nStaticColors; i<256; i++)
Pal ette.aEntries[i].peFlags = O;
}

//*** Remenber to rel ease the DC
Rel easeDC(NULL, hdc);

[1*** Return the palette
return CreatePal ette((LOGPALETTE *) &Pal ette);
}

voi d O ear SystenPal ette(void)

{
[1*** A dummy pal ette setup
struct

{
WORD Ver si on;
WORD Nunmber OfF Entri es;
PALETTEENTRY aEntri es[256] ;
} Palette =

{
0x300,
256

b

HPALETTE ScreenPal ette = O;

HDC Scr eenDC,
i nt Counter;
[1*** Reset everything in the systempalette to bl ack
for(Counter = 0; Counter < 256; Counter++)

{
Pal ette. aEntries[Counter]. peRed = O;
Pal ette. akEntri es[Counter]. peGeen = 0;
Pal ette. aEntries[Counter]. peBlue = 0;
Pal ette. aEntries[Counter]. peFl ags = PC_NOCOLLAPSE;

}

[1*** Create, select, realize, deselect, and delete the palette
ScreenDC = Get DC(NULL) ;
ScreenPal ette = CreatePal ette((LOGPALETTE *) &Pal ette);
ScreenPal ette = Sel ect Pal ette(ScreenDC, ScreenPal ette, FALSE) ;
Real i zePal ett e(Scr eenDC) ;
ScreenPal ette = Sel ect Pal ette(ScreenDC, ScreenPal ette, FALSE) ;
Del et ethj ect (ScreenPal ette);
Rel easeDC(NULL, ScreenDC);

Appendix A: PRELIMINARY WinG Documentation 24

Palette Animation With WinG

Palette animation creates the appearance of miotian image by modifying entries the
system palette, resulting in color changes in fhplayed image. Carefully arranged and
animated palette entries can produce motion effeath as running water, flowing lava,
or even motion of an object across the screen.

The AnimatePalette function in Windows replacesiestn a logical palette. When
the modified palette is realized, the colors inph&tte will be remapped, and colors on
the display will change.

Because every DIB and WinGBitmap has an assocaled table which is
translated to the system palette when the imagep®d to the screen, DIBs blted after
the palette is animated will not appear animatezhbse their colors are translated to the
new palette.

The Using an ldentity Palette article discusse<thation of an identity palette
which removes the need for color translation whiéind If a palette animating
application went through the trouble to createideatity palette, it should maintain the
identity mapping between the palette and the Win@G@atching the WinGBitmap
color table to the animated palette before bltirgdo this, use WinGSetDibColorTable
to keep the WinGBitmap color table synchronizedhwitanges in the system palette.

Remember that any entries in a palette which abetanimated must be marked with
the PC_RESERVED flag. This includes the PC_NOCOLEEHIag, so these entries can
be included in an identity palette.

The PALANIM sample (in the SAMPLES\PALANIM subdirecy of the WinG
development kit) performs a simple palette aninmatiith an identity palette, making sure
to update the WinGDC color table to match the paleefore it blts using the following
code, which copies the current logical palette ¥app) into the color table of the
WinGDC (hdcOffscreen). Of course, if you create filatette yourself from an array of
colors, there will be no need to call GetPaletteEstbecause you could update the color
table from the array you already have in memorgoAin a palette animation that does
not animate the complete palette, an applicationldvoot need to modify the entire
palette and color table, as this code snippet does:

int i;
PALETTEENTRY aPal ett e[256] ;
RGBQUAD aPal et t eRGB[256] ;

[1*** BEFORE BLTING nmatch the DIB color table to the
[1*** current palette to match the aninmated palette

Get Pal etteEntri es(hpal App, 0, 256, aPalette);

[1*** Alas, palette entries are r-g-b, rgbquads are b-g-r
for (i=0; i<256; ++i)

aPal etteRGB[i].rgbRed = aPalette[i]. peRed;
aPal etteRGB[i].rghGeen = aPalette[i]. peG een;
aPal etteRGB[i].rgbBlue = aPal ette[i]. peBl ue;

aPal etteRGB[i].rgbReserved = 0;

}
W nGSet DI BCol or Tabl e(hdcOf f screen, 0, 256, aPal etteRGB);

Accessing a Full Palette Using SYSPAL_NOSTATIC

The Palette Manager usually reserves twenty statars in the palette for use in drawing
captions, menus, text, scroll bars, window fraraas, other system elements. These static
colors ensure a common color scheme across alcafiphs, but this leaves only 236
palette entries available to each application. Ad@ivs graphics application requiring a
full palette of 256 colors has two options, outtireere.

The first option is to incorporate the static cslarto the palette at runtime, knowing
that the RGB values of the colors may change $jigiam display driver to display

Appendix A: PRELIMINARY WinG Documentation 25

driver. This means that the palette will vary sliglivhen the application runs on different
platforms, but it ensures the consistent look aad hetween the application and
coexisting applications in the system.

The static colors are defined as follows:

Index Color Index Color

0 Black 246 Cream

1 Dark Red 247 Light Gray
2 Dark Green 248 Medium Gray
3 Dark Yellow 249 Red

4 Dark Blue 250 Green

5 Dark Magenta 251 Yellow

6 Dark Cyan 252 Blue

7 Light Gray 253 Magenta

8 Money Green 254 Cyan

9 Sky Blue 255 White

If you can accept the limitation of including thes®ors in your palette and determining
their exact RGB values at runtime (using GetSystdatREntries), you can skip the rest
of this article.

The second option is to tell the Window Managemtike 18 of the twenty static
colors available to the application, with entrye@naining black and entry 255 remaining
white. However, choosing to control those paletteies means you’ll have some more
intimate relations with the Palette Manager.

To change the use of the static colors in the sygigette, you use the
SetSystemPaletteUse API, passing either SYSPAL_STAT SYSPAL_NOSTATIC.
Setting the palette use to SYSPAL_NOSTATIC gives slocess to palette entries 1
through 254. Your palette must map entry 0 to RGB(®) and entry 255 to RGB(255,
255, 255), but black and white are standard in rpakttes anyway.

Ordinarily, Windows uses entries 0-9 and 246-258raw captions, borders, menus,
and text, and it will continue to do so after yaaishanged the RGB values of those
palette entries unless you tell it to do otherwigou do not inform the operating system
of your changes, your application and all otherthansystem will become very messy and
your application will be condemned by its peersiafsiendly.

You want your application to be friendly to the ogténg system and to the other
active applications. You can handle this in two svgypu can make your application a
full-screen window with no controls, thereby takioger the entire screen and the full
palette, or you can tell the operating system todierent palette entries to draw its
captions, borders, menus, and text so that otksésleiwindows do not appear completely
strange. In either case, you must restore thecstalbrs when your application becomes
inactive or exits.

The following procedure handles the switch betw8¥SPAL_STATIC and
SYSPAL_NOSTATIC for you, managing the mapping aschapping of the system
colors for you through the Windows functions GetSgter and SetSysColors. It stores
the current mapping of the system colors beforéckivig to SYSPAL_NOSTATIC mode
and restores them after switching back to SYSPAIAHET mode.

To use the AppActivate() function in an applicaticall
AppActivate((BOOL)wParam) in response to a WM_ACHNWEAPP message and call
AppActivate(FALSE) before exiting to restore thet®m colors. This will set the system
palette use and remap the system colors when yalication is activated or deactivated.

The PALANIM sample (in the SAMPLES\PALANIM subdirecy of the WinG
development kit) uses this function to take overgtatic colors at run time and clean up
before it exits.

#def i ne NunBysCol ors (sizeof (SysPal | ndex)/si zeof (SysPal | ndex[1]))

#def i ne rgbBl ack RGB(O0, 0, 0)
#def i ne rgbWite RGB(255, 255, 255)

Appendix A: PRELIMINARY WinG Documentation 26

[1*** These are the Get SysCol or display element identifiers

static int SysPallndex[] = {
COLOR_ACTI VEBORDER,
COLOR_ACTI VECAPTI ON,
COLOR_APPWORKSPACE,
COLOR_BACKGROUND,
COLOR_BTNFACE,
COLOR_BTNSHADOW
COLOR_BTNTEXT,
COLOR_CAPTI ONTEXT,
COLOR_GRAYTEXT,
COLOR_HI GHLI GHT,
COLOR_HI GHLI GHTTEXT,
COLOR_| NACTI VEBORDER,
COLOR_| NACTI VECAPTI ON,
COLOR_MENU,
COLOR_MENUTEXT,
COLOR_SCROLLBAR,
COLOR_W NDOW
COLOR_W NDOWFRAME,
COLOR_W NDOWTEXT

b

[1*** This array translates the display elenments to black and white
stati c COLORREF MonoColors[] = {
r gbBl ack,
rgbwite,
rgbwite,
rgbwite,
rgbwite,
r gbBl ack,
r gbBl ack,
r gbBl ack,
r gbBl ack,
r gbBl ack,
rgbwite,
rgbwite,
rgbwite,
rgbwite,
r gbBl ack,
rgbwite,
rgbwite,
r gbBl ack,
r ghBl ack

[1*** This array holds the old col or napping so we can restore them
static COLORREF O dCol or s[NunBysCol or s];

[1*** AppActivate sets the system palette use and
[1*** remaps the system col ors accordingly.
voi d AppActivate(BOOL fActive)

HDC hdc;

int i;

//*** Just use the screen DC
hdc = Get DC(NULL) ;

[1*** |f the app is activating, save the current col or napping
[1*** and switch to SYSPAL_NOSTATIC
if (fActive && Get SystenPal etteUse(hdc) == SYSPAL_STATI C)

{

Appendix A: PRELIMINARY WinG Documentation

[1*** Store the current napping
for (i=0; i<NunBysColors; i++)
A dCol ors[i] = GetSysCol or(SysPal I ndex[i]);
[1*** Switch to SYSPAL_NOSTATIC and remap the col ors
Set Syst enPal ett eUse(hdc, SYSPAL NGOSTATI O ;
Set SysCol or s(NunBSysCol ors, SysPal I ndex, MonoCol ors);

}
else if (IfActive &% Get SystenPal etteUse(hdc) == SYSPAL_ NOSTATI C)

{
[1*** Switch back to SYSPAL_STATIC and the ol d mappi ng
Set Syst enPal ett eUse(hdc, SYSPAL STATI O);
Set SysCol or s(NunSysCol ors, SysPal I ndex, O dCol ors);

}

//*** Be sure to rel ease the DC!
Rel easeDC(NULL, hdc) ;
}

WinGBitBIt

Copies an area from a specified device contextdestination device context.
WInGBitBIt is optimized for copying WinGDCs to display DCs.

BOOL WinGBitBIt(HDC hdcDest, int nXOriginDest, imtY OriginDest, int
nWidthDest, int nHeightDest, HDC hdcSrc, int nXOnigrc, int nYOriginSrc)

Parameters

hdcDest Identifies the destination device context.

nXOriginDest X coordinate of the upper-left corner of the destion rectangle in MM_TEXT
client coordinates.

nYOriginDest Y coordinate of the upper-left corner of the destion rectangle in MM_TEXT
client coordinates.

nWidthDest Width of the source and destination rectangle..
nHeightDest Height of the source and destination rectangle..
hdcSrc Identifies the source device context.

nXOriginSrc X coordinate of the upper-left corner of the somestangle in MM_TEXT
client coordinates.

nYOriginSrc Y coordinate of the upper-left corner of the sounestangle in MM_TEXT
client coordinates.

Return Value
The return value is non-zero if the function iscassful. Otherwise, it is zero.

Comments

WinGBitBIt requires both DCs to use MM_TEXT mapping moddattime of the call
or the results may be unpredictable. At other tirm@y mapping mode may be used in
either DC.

Maximizing Performance

You will get the highest performance fraMinGBitBIt if you select a WinGBitmap
created from header information supplied by atcelVinGRecommendDIBFormat.
WinGBitBIt is optimized for copying WinGDCs to the screen.
Clipping can slowVinGBiItBIt down. In general, don't select clipping region®in
or blt outside the boundaries of the source orinfetion DCs and avoid blting to an
overlapped window if possible.

See Also

Appendix A: PRELIMINARY WinG Documentation 28

WinGStretchBIt WinGCreateDC WinGCreateBitmap Win@B@mendDIBFormat
Maximizing Performance With WinG

WinGCreateBitmap

hwinGDC
pHeader

ppBitsr

Creates a WinGBitmap for the given WinGDC usinggpecified header information.
HBITMAP WinGCreateBitmap(HD@WinGDG BITMAPINFO far *pHeader
void far *far *ppBits)

Parameters

Identifies the WinG device context.

Points to a BITMAPINFO structure specifying thedhi, height, and color table
for the new WinGBitmap.

If not O, points to a pointer to receive the addrefsthe new WinGDC DIB
surface.

Return Value
Returns a handle to the new WinGBitmap DIB surfaic@ if it is unsuccessful.
Comments

Under Windows 3.1WinGCreateBitmap will only create 8-bit-per-pixel surfaces.

If ppBits is 0, the address of the newly createthap will not be returned.
WinGGetDIBPointer will also return this information

pHeadermust point to enough memory to hold a BITMAPINFOMEER and a
complete color table of RGBQUAD entries. The biGad field of the
BITMAPINFOHEADER specifies the number of colorstie color table; if it is zero, the
maximum number of colors according to biBitCourd ased if biBitCount is less than
24. For example, if biBitCount is 8 and biClrUsedj 256 palette entries are expected.
See the BITMAPINFOHEADER description in the Windo8:4¢ SDK Reference for
more information.

When an application has finished using a WinGBitniaphould select the bitmap
out of its WinGDC and remove the bitmap by callibgleteObject.

The pointer to the WinGBitmap DIB surface returtwydNinGCreateBitmap must
not be freed by the caller. The allocated memotlyhei freed by a call to DeleteObject.

WinGCreateBitmap usepHeaderand the subsequent color table to create the
drawing surface. WinG ignores the biClrimportankRelsPerMeter, biYPelsPerMeter,
and biSizelmage fields. WinG expects biComprestidme Bl_RGB.

If the biHeight field of the passed BITMAPINFOHEAPBESs negative,
WinGCreateBitmap will create a top-down DIB as the bitmap surfé®ee the article on
DIB Orientation for a discussion of top-down andtbm-up DIBs.

An HBITMAP can only be selected into one deviceteghat a time, and a device
context can only have a single HBITMAP selectedtia time.

Maximizing Performance

To create a WinGBitmap that will maximize WinGBitBlerformance, use
WinGRecommendDIBFormat to fill in the entriespiieaderbefore calling
WinGCreateBitmap, remembering to modify the height and width td gour needs.

Larger WinGBitmaps take longer to blt to the screfdro, if the screen DC is
clipped, for example by an overlapping window orabselected clip region, the WinGDC
will take longer to blt to the screen.

Using an identity palette that exactly matcheswhieGBitmap’s color table will
greatly increase performance.

Example

Appendix A: PRELIMINARY WinG Documentation 29

The following code fragment shows how an applicatiould create a WinGDC with an
optimal 100x100 WinGBitmap selected for drawinggrttdelete it when it is no longer
needed. Note that the WinGBitmap will initially reagarbage in its color table—be sure
to call WinGSetDIBColorTable before using the WinGD

The PALANIM sample (in the SAMPLES\PALANIM subdirecy of the WinG
development kit) uses these routines, modified¢ate a 256x256 WinGDC, to allocate
and free its drawing buffer.

HBI TMAP ghBi t mapMonochr one = 0;
HDC Cr eat e100x100W nGDC(voi d)

HDC hW nGDC;
HBI TMAP hBi t mapNew,
struct {
Bl TMAPI NFOHEADER | nf oHeader ;
RGBQUAD Col or Tabl e[256] ;
} Info;
void far *pSurfaceBits;

/1 Set up an optinmal bitnmap
i f (WnCGRecomrendDi bFor mat ((Bl TMAPI NFO far *) & nfo) == FALSE)
return O;
/1 Set the width and height of the DIB but preserve the
/1 sign of biHeight in case top-down DI Bs are faster
I nf o. | nf oHeader . bi Hei ght *= 100;
I nfo. I nf oHeader . bi Wdth = 100;
/1l Create a WnGDC and Bitmap, then sel ect away
hW nGDC = W nGCr eat eDC() ;
i f (hWnGDC)

{
hBi t mapNew = W nGCr eat eBi t map(hW nGDC,
(BI TMAPI NFO far *)& nfo, &pSurfaceBits);
i f (hBi t mapNew)

ghBi t mapMonochronme = (HBI TMAP) Sel ect Obj ect (hW nGDC,
hBi t mapNew) ;
}

el se

Del et eDC(hW nGDC) ;

hW nGC = 0;
}
}
return hW nGDC;
}

voi d Destroyl00x100W nGDC(HDC hW nGDC)
HBI TMAP hBi t mapd d;
if (hWnGDC && ghBi t napMonochr one)
/1 Select the stock 1x1 nonochronme bitmap back in
hBi t mapd d = (HBI TMAP) Sel ect Obj ect (hW nGDC,
ghBi t mapMonochr one) ;

Del et ethj ect (hBi t mapd d) ;
Del et eDC(hW nGDC) ;

Appendix A: PRELIMINARY WinG Documentation 30

See Also

WinGCreateDC WinGRecommendDIBFormat CreateBitmapt@@ompatibleBitmap
BITMAPINFO BITMAPINFOHEADER WinGGetDIBPointer CreaDIBSection Code
Samples Off-screen Drawing With WinG Maximizing féemance With WinG

WinGCreateDC

Creates a WIinG device context with the stock 1xhaebrome bitmap selected.
HDC WinGCreateDC(void)

Return Value

Returns the handle to a new WinGDC if successftiie@vise WinGCreateDC returns
0.

Comments

Device contexts created usidgnGCreateDC must be deleted using the DeleteDC
function. All objects selected into the WinGDC aftewas created should be selected out
and replaced with the original objects before theick context is deleted.

When a WinGDC is created, WinG automatically salé¢ioé stock 1x1 monochrome
bitmap as its drawing surface. To begin drawingrenWinGDC, select a WinGBitmap
created by the WinGCreateBitmap function into the®DC.

Maximizing Performance

WinGCreateDC has a fairly high overhead and is usually usetteéate a single off-
screen DC. In general, programs will dMinGCreateDC once at startup then select new
WinGBitmaps on WM_SIZE messages to the double-bedfevindow. Applications can
use the WM_GETMINMAXINFO message to restrict treesdf their window if
necessary.

Compose frames into WinGDCs, then use WinGStretoaBIVinGBitBIt to copy
the WinGDC to the screen.

Example
See the WinGCreateBitmap API for sample code thesWinGCreateDC.
See Also

WinGCreateBitmap CreateDC DeleteDC WM_SIZE WM_GENMAXINFO
WinGStretchBIt WinGBiItBIt CreateDIBSection Off-seme Drawing With WinG
Maximizing Performance With WinG Code Samples

WinGCreateHalftoneBrush

hdc
Color
DitherType

Creates a dithered pattern brush based on the Waif@ne palette.
HBRUSH WinGCreateHalftoneBrush(HDi&Zlcc COLORREFColor, enum
WING_DITHER_TYPEDitherTypg

Parameters

Specifies the DC with which the brush should be patible.

Specifies the color to be approximated by the brush

Specifies the dither pattern for the brush. Canreeof:
WING_DISPERSED_4x4
WING_DISPERSED_8x8
WING_CLUSTERED_4x4

Return Value

Appendix A: PRELIMINARY WinG Documentation 31

Returns a handle to a GDI brush if successful. @tise, WinGCreateHalftoneBrush
returns O.

Comments

This API is intended for simulating true color o8 devices. It will create a patterned
brush using colors from the halftone palette relgasdof the color resolution of the target
device. Ifhdcrefers to a 24-bit devic®/inGCreateHalftoneBrush will not return a

solid brush of the given color, it will return aloged dither pattern using colors that
appear in the halftone palette. On true-color desjicreating a solid brush that exactly
matches the desired color is simpléinGCreateHalftoneBrush lets you use the

halftone patterns instead if you so desire.

A halftone brush approximates the reque&etbr using combinations of colors in
the halftone palette. Larger dither patterns gibetter approximation of the desired color
but require more area to show the approximatiorali@us subjective, so programmers
should experiment with different dither types tadfithe one that suits their needs.

If the target DC is a palette device and the WiaBtbne palette has not been
selected and realized into the target DC when ftolnal brush is used, the visual results
will be unpredictable. Use the WinGCreateHalftorleRa function to create a copy of the
halftone palette, then select and realize it befisiag a halftone brush on a palette
device.

The DISPERSED _nxn dither types create nxn pattiatsapproximat€olor with a
dispersed dot ordered dither.

The CLUSTERED_4x4 dither type creates a 4x4 patteahapproximate€olor
with a clustered dot ordered dither.

Always free GDI objects such as brushes by callleteteObject when the object is
no longer needed.

Maximizing Performance

Avoid redundant creation, selection, and deletibidentical brushes as much as possible.
If an application will be using the same brush egpdly, it should create the brush once
and save it for later use, deleting it when theliappion is complete.

Example

The CUBE sample application (in the SAMPLES\CUBEediory of the WinG
Development Kit) allows the user to select theefittype for creating shaded brushes and
provides a good experiment in using the differatited types.

See Also

WinGCreateHalftonePalette WING_DITHER_TYPE Creat@PatternBrush
CreateSolidBrush Halftoning With WinG Using GDI WkVinGDCs Code Samples

WinGCreateHalftonePalette
Creates an 8-bit palette used for halftoning images
HPALETTE WinGCreateHalftonePalette(void)
Return Value

Returns the handle of a logical palettel contaitivegcolors of the WinG halftone palette
palette if successful. Otherwis&/inGCreateHalftonePalettereturns 0.

Comments

The halftone palette should be selected into anyrid@which the application will use
WinG to halftone.

The WinG halftone palette is an identity palette logical palette indices and
physical device indices are the same.

Appendix A: PRELIMINARY WinG Documentation 32

The halftone palette inverts correctly, so bitwi&@Rs invert colors properly.
See the Using an Identity Palette article for @ussion of identity palettes.

Maximizing Performance

Call WinGCreateHalftonePalette once at the beginning of your application. Sedext
realize the palette on WM_QUERYNEWPALETTE, WM_PALEHECHANGED, and
WM_PAINT messages.

Example

The HALFTONE sample application (in the SAMPLES\CJBirectory of the WinG
Development Kit) uses the halftone palette to difebit images to 8-bits using an 8x8
ordered dither.

See Also

WinGCreateHalftoneBrush WinGStretchBlt WinGBitBle&izePalette
WM_QUERYNEWPALETTE WM_PALETTECHANGED Halftoning Wit WinG
Using an Identity Palette Code Samples

WinGGetDIBColorTable

Returns the color table of the WinGBitmap currestyected into a WinGDC.
UINT WinGGetDIBColorTable(HDGWIinGDG UINT Startindex UINT
NumberOfEntriesRGBQUAD far pColors)

Parameters
hwinGDC Identifies the WinG device context whose color ¢agthould be retrieved.
Startindex Indicates the first palette entry to be retrieved.
NumberOfEntries Indicates the number of palette entries to retrieve
pColors Points to a buffer which receives the requestedrdable entries.

Return Value
Returns the number of palette entries copied meagiven buffer or O if it failed.
Comments

ThepColorsbuffer must be at least large enough to iddanberOfEntrieRRGBQUAD
structures.

Note thatStartindexindicates an entry in a palette array, which i®4msed.
NumberOfEntriesndicates a count, which is one-baseduimberOfEntriess zero, no
color table entries will be retrieved.

WinGGetDIBColorTable will return 0 for WinGBitmaps with more than 8 bper
pixel.

See Also
WinGSetDIBColorTable WinGCreateBitmap

WinGGetDIBPointer

Retrieves information about a WinGBitmap and reflarpointer to its surface.
void far *WinGGetDIBPointer(HBITMAPhWInGBitmap BITMAPINFO far
*pHeade}

Parameters

hwinGBitmap Identifies the WinGBitmap whose surface shoulddigeved.

Appendix A: PRELIMINARY WinG Documentation 33

pHeader If not O, points to a buffer to receive the atttdmiand color table of the
WinGDC.

Return Value

Returns a pointer to the bits of a WinGBitmap draysurface if possible. Otherwise,
WinGGetDIBPointer returns 0.

Comments

If it is supplied,pHeadermust be large enough to hold a BITMAPINFOHEADERI an
enough RGBQUAD structures to hold the color tabilthe specified WinGBitmap.

If hWinGBitmap is not a WinGBitmap handle, this @ion will return 0 and
*pHeader will remain unchanged.

Maximizing Performance

WinGCreateBitmap uses or returns the informatidarreed byWinGGetDIBPointer as
part of the creation process. If possible, applbicet should store the data when the
WinGBitmap is created rather than callMgnGGetDIBPointer every time the
information is required.

The address of a WinGBitmap surface will remainghme for the life of the
WinGBitmap.

See Also
WinGCreateDC WinGCreateBitmap BITMAPINFO BITMAPINHEADER

WinGRecommendDIBFormat

Fills in the entries of a BITMAPINFO structure withlues that will give maximum
performance for memory-to-screen blts using WinG.
BOOL WinGRecommendDIBFormat(BITMAPINFO fapHeade}

Parameters

pHeader Points to a BITMAPINFO structure to receive theammended DIB format.
Return Value
Returns non-zero if successful. Otherwise, retaamns.
Comments

pHeadermust point to enough memory to hold a BITMAPINFOMEER.
WinGRecommendDIBFormat will not return a color table.

For any combination of hardware and software, thélldoe one DIB format that
WinG can copy fastest from memory to the scr&&mGRecommendDibFormat
returns this optimal format, most important theoremended pixel format.

In many cases, WinG will find that it can copy &b the screen faster if the DIB is
in top-down format rather than the usual bottonfarmat.
WinGRecommendDibFormat will set the biHeight entry of the
BITMAPINFOHEADER structure to -1 if this is the egtherwise biHeight will be set
to 1. See the DIB Orientation article for more immfiation about these special DIBs.

WinGRecommendDIBFormat always recommends an 8-bit-per-pixel format under
Windows 3.1. Other pixel formats are supportedfiindows 95 and Windows NT. Code
that uses this API should never assume that itredbmmend an 8-bit format, as this may
change depending on the run-time platform.

Example

Appendix A: PRELIMINARY WinG Documentation 34

See the WinGCreateBitmap API for sample code thasu
WinGRecommendDibFormat

See Also
WinGCreateBitmap BITMAPINFO BITMAPINFOHEADER CodeaBiples

WinGSetDIBColorTable

hwinGDC
Startindex

Modifies the color table of the currently selecthGBitmap in a WinGDC.
UINT WinGSetDIBColorTable(HDGQWInGDGC UINT Startindex UINT
NumberOfEntriesRGBQUAD far pColors)

Parameters

Identifies the WiIinG device context whose color ¢éasthould be modified.
Indicates the first palette entry to be changed.

NumberOfEntries Indicates the number of palette entries to change.

pColors

Points to a buffer which contains the new colotgafalues.
Return Value

Returns the number of palette entries modifiechendpecified device context or O if it
failed.

Comments

ThepColorsbuffer must hold at leastumberOfEntrieelRGBQUAD structures.

If you want to update the display immediately (@ample, in palette animation), use
AnimatePalette to modify the system palette and tial WinGSetDIBColorTable to
match it or the WinGDC will be remapped when ibied. See the Palette Animation
With WinG article for more information and samptede that does this.

Note thatStartindexindicates an entry in a palette array, which i®4wmsed.
NumberOfEntriesndicates a count, which is one-baseduimberOfEntriess zero, no
color table entries will be modified.

Maximizing Performance

It is not necessary to caNinGSetDIBColorTable every time you call AnimatePalette.
Only call this API if you are about to blt and tthestination palette has changed since the
last call toWinGSetDIBColorTable.

Example

See the section titled Palette Animation With WifoGsample code and discussion of
usingWinGSetDIBColorTable to perform palette animation.

The PALANIM sample, in the SAMPLES\PALANIM subditecy of the WinG
Development Kit, performs simple palette animatioid maintains an identity palette
throughout.

See Also
WinGGetDIBColorTable WinGCreateBitmap Palette Aniimia With WinG

WinGStretchBIt

Copies the source DC to the destination DC, regifinecessary to fill the destination
rectangle. Optimized for blting WinGDCs to scree@®

BOOL WinGStretchBIt(HDC hdcDest, int nXOriginDestt nYOriginDest, int
nWidthDest, int nHeightDest, HDC hdcSrc, int nX0migrc, int nYOriginSrc, int
nWidthSrc, int nHeightSrc)

Appendix A: PRELIMINARY WinG Documentation 35

hdcDest
nXOriginDest

nYOriginDest
nWidthDest
nHeightDest
hdcSrc
nXOriginSrc
nYOriginSrc

nWidthSrc
nHeightSrc

Parameters

Identifies the destination device context.

X coordinate of the upper-left corner of the desiion rectangle in MM_TEXT
client coordinates.

Y coordinate of the upper-left corner of the desiion rectangle in MM_TEXT
client coordinates.

Width of the destination rectangle..

Height of the destination rectangle..

Identifies the source device context.

X coordinate of the upper-left corner of the souegtangle in MM_TEXT
client coordinates.

Y coordinate of the upper-left corner of the souegtangle in MM_TEXT
client coordinates.

Width of the source rectangle.

Height of the source rectangle.

Return Value
Returns non-zero if successful, otherwise retuens.z

Comments

WinGStretchBIt requires both DCs to use MM_TEXT mapping modénattime of the
call or the results may be unpredictable. At otimes, any mapping mode may be used

in either DC.

WinGStretchBIt uses the STRETCH_DELETESCANS mode when expanding o

shrinking an image, so stretched images may apgbeenky.

Maximizing Performance

You will get the highest performance fraMinGStretchBlt if you use a WinGBitmap

created from header information supplied by atcelVinGRecommendDIBFormat.

WinGStretchBlt is optimized for copying WinGDCs to the screen.

Clipping can slowVinGStretchBIt down. In general, don't select clipping regions
into or blt outside the boundaries of the sourcdestination DCs and avoid blting to an

overlapped window if possible.

See Also

WinGBitBIt WinGCreateDC WinGCreateBitmap WinGRecosmDIBFormat
Maximizing Performance With WinG

WING_DITHER_TYPE

Dither types for halftone brushes.
WING_DITHER_TYPE

Values

DISPERSED_4x4
DISPERSED_8x8
CLUSTERED_4x4

See Also

WinGCreateHalftoneBrush WinGCreateHalftonePaletiéftbining With WinG CUBE

Appendix A: PRELIMINARY WinG Documentation

36

Debugging WinG Applications

WinG will report runtime errors and helpful debuggimessages (for example, whether
or not WinG has recognized an identity palettedtigh standard Windows methods (the
serial port or applications such as DBWIN.EXE)diuyso desire.

If you want WinG to send error messages to the gieltput, make sure the
following entry appears in your WIN.INI file. If gre is already a [WinG] section, just
add the Debug=1 line under that heading.

[WnG

Debug=1
If you specifically do not want debug messageieear, set this to:

[WnG

Debug=0
If neither debug level is specified in the [Win@&lcsion of your WIN.INI file, debugging
will be turned ON if you're using the Windows debkgynel and OFF if you're using the
Windows retail kernel. Setting the Debug level @ifly in your WIN.INI will always
override this default behavior.

Shipping a Product With WinG

If your application uses WinG, you will have to gape WinG runtime files into the
\SYSTEM subdirectory of the Windows directory if M@ has not been previously
installed on the target system. The following fié®uld be installed on the user’s system:

WING.DLL
WING32.DLL
DIBENG.DLL
WINGDIB.DRV
WINGPAL.WND

Microsoft will make the WinG libraries generallyailable to Windows developers for
free distribution with Windows applications.

The Windows Software Development Kit includes tle¢up Toolkit for Windows,
which allows you to create and run setup scriptsristalling Windows applications.
Documentation for the toolkit comes with the Windo8DK and is also available on the
Microsoft Developer Network CD.

The WinG Development Kit setup program installs\WieG runtime files using
Microsoft setup exactly as they should be instatlach target user’s system. Look at the
SETUP.MST script on the WinG installation disketiesee how this is done.

Code Samples

The WinG development kit contains a variety of cedmples to help you develop fast
applications quickly using WinG.

Snippets
The following code samples appear in this help file

e Setting up an off-screen buffer with WinG.

¢ Calculating the memory address of a scanline in@@Bitmap.

¢ Creating an Identity Palette.

¢ Clearing the System Palette.

¢ Maximizing palette availability using the SYSPAL_ISDATIC setting.
e Copying a logical palette to a WinGBitmap colorleab

* Matching an RGB color to a halftone palette entry.

Appendix A: PRELIMINARY WinG Documentation 37

Sample Applications

The WinG Development Kit also contains source dodeeveral sample applications,
installed in the \SAMPLES subdirectory. The follogiapplications are available:

DOGGIE allows the user to drag a sprite aroundstineen with the mouse,
demonstrating off-screen composition, dirty rectarapimation, and custom blt routines.
Includes source code for a sample 8-bit DIB tot8B blt with one transparent color.

CUBE displays a halftoned rotating cube in a windbat the user can manipulate
with the mouse. It demonstrates off-screen comioositiouble-buffering, and using the
halftone palette and halftone brushes with GDIreodinto a WinGDC.

TIMEWING tests and compares blt speeds of exigBig functions with the WinG
blt function. This sample will give you an ideatmfw WinG blts will compare to standard
GDI functions.

HALFTONE converts 24-bit RGB DIBs to 8-bit DIBs lojthering them to the WinG
Halftone Palette. The source code implements alatdrBx8 dither and color matching to
the halftone palette.

PALANIM performs simple palette animation with atentity palette using WinG.
This application uses all of the sample code appgan this help file.

Balloon Doggie Sample

The Balloon Doggie sample application, found in #8&MPLES\DOGGIE subdirectory
of the WinG development kit, demonstrates a sirdply rectangle animation system. It
creates a WinGDC and a WinGBitmap, which it usearesff-screen buffer, and uses
WinGBitBIt to update the screen.

Balloon Doggie includes source code for Transp&its (in TBLT.C and
FAST32.ASM), a fast DIB-to-DIB blt with transpargndransparentDIBits demonstrates
the use of custom drawing routines with WinG tovite functions not present or
unacceptably slow in GDI.

Note that DOGGIE.EXE requires MASM 5.1 to compile.

Spinning Cube Sample

The CUBE.EXE sample application, found in the SANBSMCUBE subdirectory of the
WinG development kit, demonstrates the use of blailfig to create the appearance of
more than 256 colors on an 8-bit palletized displayice. Using
WinGCreateHalftonePalette and WinGCreateHalftoneBrthe spinning cube
application halftones the faces of the cube toterlighting effects.

The Spinning Cube sample uses a standard doulferibgfarchitecture using a
WinGDC and a WinGBitmap. It creates a WinGDC whes application starts, then
creates and selects appropriate WinGBitmaps on WEE $essages to keep the off-
screen buffer the same size as the window’s ciieggibn.

When appropriate, the application uses the GDI dgoiyfunction to draw into the
off-screen buffer then calls WinGBitBIt to copy theffer to the screen.

The CUBE sample uses a simple floating-point veatat camera C++ class library
(in DUMB3D.HPP and DUMB3D.CPP) that can be used aarting point by those
interested in generating 3D graphics.

WinG Timing Sample

The timing sample, TIMEWING.EXE, found in the SAMBE\TIMEWING subdirectory
of the WinG development kit, times and comparedthepeeds of BitBIt, StretchDIBits,
and WinGBitBIt. The application provides a summgoy can use to compare the speeds

Appendix A: PRELIMINARY WinG Documentation 38

of these techniques on various video configuratamms a framework you can use for your
own timing tests.

On most platforms, WinGBitBIt will perform favorabin comparison to BitBIt and
will blow StretchDIBits away. SetDIBitsToDevice agdretchDIBits are essentially the
same AP, so this function is not timed.

Note that StretchDIBits and WinGBitBIt operate @vite-independent bitmaps
whereas BItBIt operates on device-specific bitmagsch require no translation and can
sometimes be stored in the local memory of thelgeapcard itself. For this reason,

BitBIt usually runs at speeds approaching video orgrbandwidth, which is the target
speed for WinGBitBlIt.

Also note that some drivers, such as the No 9GXEedt” on their BitBlts by
keeping the last blted image in card memory. Ifithage is blted again, the card uses the
cached image instead of the memory image. Thisesuit in misleading performance
benchmarks unless a different image is blted dt &ame.

WinG Halftoning Sample

HALFTONE.EXE, found in the SAMPLES\HALFTONE subditery of the WinG
development kit, dithers 24-bit DIBs to the WinGlittme Palette using an 8x8 ordered
dither.

The main function, DibHalftoneDIB in HALFTONE.C, ds the real work in the
dithering. The process of calculating an orderéldediis too complex to describe here,
but a description of the techniques involved cafoliad in “Computer Graphics:
Principles and Practice” by Foley, van Dam, Feiaed Hughes. See the Further Reading
article for more information on this book.

The awWinGHalftoneTranslation array found in HTTABRIE converts a 2.6-bit-per-
pixel computed halftone index into an entry in ifadftone palette. To calculate the
nearest match of an RGB color to the halftone gletALFTONE uses the following
formula:

Hal ftonelndex = (Red / 51) + (Green / 51) * 6 + (Blue / 51) * 36;
Hal ft oneCol or I ndex = aW nGHal ftoneTransl ati on [Hal ftonel ndex] ;

See also the documentation for the WinGCreateHaBoush function and the
Halftoning With WinG article.

WinG Palette Animation Sample

The PALANIM.EXE application, found in the SAMPLES\PANIM subdirectory of the
WinG development kit, performs simple palette artiomausing AnimatePalette and
WinGSetDIBColorTable as described in the Paletterfation With WinG article.
PALANIM gives the user the option of using the istablors in the palette to create a
254-color ramp or a 236-color ramp in an identiyete for fast blting.
The PALANIM sample uses the code samples foundigttelp file to perform all of
its WinG functions.

WinG Glossary

Bottom-Up DIB: A DIB in which the first scan line in memory cosponds to the
bottommost scanline when the DIB is displayed. Thite standard Windows DIB
format.

Color Table: The table of RGB color values referenced by anremidexed DIB.

Dirty Rectangle Animation: A double-buffering technique in which only the @sen
the screen which have changed are updated froneftarfiame.

Appendix A: PRELIMINARY WinG Documentation 39

Double Buffering: An animation technigue in which images are compasdirely off-
screen then copied in whole or in part to the digpl

Halftone Palette: An identity palette carefully filled with an arr@§ colors optimized for
dithering images to 8 bits per pixel.

Halftoning: A technique for simulating unavailable colors gsépecial patterns of
available colors. Also called dithering.

Identity Palette: A logical palette that is a 1:1 match to the syspalette.

Logical Palette: A palette object created by an application usirgg@reatePalette
function.

Palette: A table of RGB colors associated with a GDI Dev@tntext.

Palette Animation: An animation technique in which palette entries ghifted to create
the appearance of movement.

Static Colors: Reserved colors in the system palette that caerr® changed by an
application. Under normal circumstances, twentpiobre so reserved.

System Colors:The colors used by Windows to draw captions, niears, text, and other
Windows display elements.

System Palette’A copy of the hardware device palette maintaingthk Palette
Manager.

Top-Down DIB: A DIB in which the first scan line in memory cosponds to the
topmost scanline when the DIB is displayed.

WinGBitmap: A special HBITMAP with a DIB as its drawing suréacreated for use in
a WinGDC.

WinGDC: A device context with a DIB as its drawing surface

Further Reading

The following collection of books, articles, andrgde code may help clarify the use of
DIBs, provide insight into custom drawing routinesgenerally ease the transition from
device-dependent bitmaps to WinGDCs. All of theseawvailable on the Microsoft
Developer Network CD. Some are included with the@ldiws SDK.

Foley, vanDam, Feiner, and Hughes, Computer GrapRidnciples and Practice, Second
Edition, Addison-Wesley, 1991

Gery, Ron, “Using DIBs with Palettes,” Microsoft dienical Article, 3 March 1992
Gery, Ron, “DIBs and Their Use,” Microsoft Techrigaticle, 20 March 1992

Gery, Ron, “The Palette Manager: How and Why,” Mgwoft Technical Article, 23
March 1992

Petzold, Charles, “The Device-Independent BitmalBjP Programming Windows 3.1,
Microsoft Press, 1992, pp. 607-619

Rodent, Herman, “Animation In Windows,” Microsofe@hnical Article, 28 April 1993

“How To Use a DIB Stored as a Windows Resource ¢rivkoft PSS Article Q67883, 26
April 1993

“Multimedia Video Techniques,” Microsoft Technicaiticle, 20 March 1992

Windows 3.1 Software Development Kit samples: DIBDIBVIEW, CROPDIB,
WINCAP, SHOWDIB, FADE

Microsoft Technical Samples, TRIQ, draws triangledoxes directly into device-
independent bitmap memory.

Appendix A: PRELIMINARY WinG Documentation 40

