CHAPTER 5

Robustness

Windows 95 improves on the robustness of Windowds@ provide great support
for running MS-DOS-based, Winl6-based, and Win3&etapplications, and to
provide a high level of system protection from atrapplications.

Windows 3.1 provided a number of mechanisms to at@more robust and stable
environment over Windows 3.0, including the follogi

« Better resource clean-upWhen an MS-DOS-based or Windows—based application
crashed, users could continue running in a wayahatved them to save their work.

¢ Local reboot. Users could shut down an application that hung.

e Parameter validation for API calls. The system could catch many common
application errors and fail the API call, rathearntellow bad data to be passed to an
API.

Just as the improvements in Windows 3.1 providaetbee robust and stable environment
than Windows 3.0, the improvements in Windows 93vjate an even better environment.

System -Wide Robustness Improvements

System-wide improvements resulting in a more robpstating system environment than
Windows 3.1 include:

e Better local reboot

e Virtual device driver thread clean-up when a precasds
¢ Per-thread state tracking

e Virtual device driver parameter validation

Better Local Reboot

The capability whereby users can end an applicatiofM that hangs is calledlacal
reboot. With Windows 3.1, users could perform a localo@ttby pressing the three-key
CTRL+ALT+DEL combination. Users could pretty easily end erxévis with a local reboot
request, but a local reboot request for a Windowased application often didn’t end the
errant Windows—based process or brought the esygtem down.

Windows 95 greatly improves the local reboot suppgiproviding a means to end an
MS-DOS-based application running in a VM, a Winl#sdxd application, or a Win32—

2 Microsoft Windows 95 Reviewer’s Guide

based application without bringing down the ergiystem. Moreover, the process of
cleaning up the system after a local reboot is mmse complete than for Windows 3.1.
(This process is described later in this chapter.)

In Windows 3.1, when a user requests a local reltbetsystem may identify the active
application as the application that has the fodukelocal reboot request, or it may
report back that there is no application in a hangpactive state. In Windows 95, the
system displays the Close Program dialog box, widiehtifies the tasks that are running
and the state that the system perceives each dreeitg as shown in Figure 37. This level
of detail affords the user much more flexibilitydagontrol over the local reboot than with
Windows 3.1.

Cloze Program 2| x|

Docurnent - WordPad
untitied - Paint
EXPLORER

SCM

WARMING: Pressing CTRL+ALT+DEL again will restart pour
computer, Tou will lose unsaved information in all programs
that are running.

End Task I Shut Downl Cancel |

Figure 37. The Close Program dialog box

Applications are identified as “not responding” witbey haven’t checked the message
gueue for a period of time. Although some applaraidon’t check the message queue
while performing computationally intensive operaspwell-behaved applications check
the message queue frequently. In Windows 95, ¥éimdows 3.1, Winl6-based
applications must check the message queue to v&imgontrol to other running tasks.

Try It!

Perform a Local Reboot

1. With a couple of applications running, preSRL+ALT+DEL. You are presented with
a list of active applications. Applications tha¢ &iung are identified ddot

responding.
2. Terminate one of the tasks by clickiegd Task.

Virtual Device Driver Thread Clean-Up

Local reboot support is also aided by improved \tkizad clean-up when a given
process ends. With Windows 3.1, the system ofteitdod recover either if it was
running real-mode code, such as BIOS routines, \ainesipplication ended abnormally,
or if the user requested a local reboot to encemsgly-hung application. For example,
if an operation (such as a network operation itrmezde, a disk 1/0, or an asynchronous
application request) ended abnormally becauseathanapplication-based error,
Windows 3.1 sometimes couldn’t clean up properlfrée allocated resources and
sometimes couldn't even return control to the user.

Chapter 5 Robustness 3

Windows 95 improves system clean-up by providinchegystem VxD with the ability to
track the resources it allocates on a per-threas bBecause most computer system
functionality and support is handled in Windowsi85VxDs rather than by real-mode
code or BIOS routines, Windows 95 can recover fewrors or situations that, under
Windows 3.1, would require that the computer beoodéd.

When Windows 95 ends a given thread (because #reenged the application, a local
reboot was requested, or the application endedrataily), each VXD receives
notification that the thread is ended. This nadifion allows the VxD to safely cancel any
operations it is waiting to finish and frees angaerces that the VxD previously allocated
for the thread or application. Because the systaok$ each VM, Winl16—based
application, and Win32 thread as a separate peathinstance, the system can clean up
properly at each of these levels, without affectimgintegrity of the system.

Per-Thread State Tracking

To aid in system clean-up, resource tracking inddims 95 is much better than in
Windows 3.1. In addition to tracking resources @eeathread basis by system VxDs,
resources such as memory blocks, memory handigshigs objects, and other system
items are allocated and also tracked by system aoenyis on a per-thread basis.

Tracking these resources on a per-thread basissatle system to clean up safely when a
given thread ends, either normally—at the user'si@sts—or abnormally. Resources are
identified and tracked by both a thread ID andrtfegor Windows version number that is
stored in the .EXE header of the application.

For a discussion of how the thread ID and the Wivglgersion number are used to
facilitate clean-up of the system and recoveryllotated resources for Winl6-based and
Win32-based applications, see the robustness sedtio Win16—based and Win32—
based applications later in this chapter.

Virtual Device Driver Parameter Validation

Virtual device drivers are an integral part of Wendows 95 operating system and have a
more important role than in Windows 3.1, becauseynmgperating system components
are implemented as VxDs. To help provide a morglestand reliable operating system,
Windows 95 provides support for parameter validatibvirtual device drivers, which

was not available for Windows 3.1. The debug versibWindows 95 system files
provided as part of the Windows 95 SDK and Wind®&9DK can be used by VxD
developers to debug their VxDs during the coursgevklopment, ensuring that their
VxDs are stable and robust.

In addition to improving system-wide robustnessnildiws 95 provides improved
robustness for running MS-DOS—-based, Winl16-baset\\in32—based applications,
which also ensures that Windows 95 is a more staidereliable environment than
Windows 3.1.

Robustness for MS-DOS—-Based Applications

Because of improved support, users can run MS-D@&¢bapplications under
Windows 95 that they could not run under Windowls Several improvements that
provide great robustness for running MS-DOS-bagpgtications are described in the
next two sections.

4 Microsoft Windows 95 Reviewer’s Guide

Virtual Machines Protection Improvements

Each MS-DOS-based application runs in a separateaNd/is configured by default to
execute preemptively and run in the background vemeather application is active. Each
VM is protected from other tasks running in thetegs so an errant Winl6—based or
Win32-based application can’t crash a running MSsBRased application, and vice
versa.

Under Windows 3.1, each VM inherited the attribiaad environment configuration

from the global System VM. Each VM was protectemhrfrother VMs, preventing errant
MS-DOS-based applications from accessing memooyerwriting system code and thus
possibly bringing the system down. However, the \tNésnot completely prevent an MS-
DOS-based application from overwriting MS-DOS syst®mde, because MS-DOS—
based applications had full access to all memargtlons in the first megabyte of
addressable memory space (the real-mode memorg)rang

Windows 95 provides a higher level of memory prtitecfor running MS-DOS—-based
applications by preventing the applications froremwiting the MS-DOS system area in
real mode. If users want the highest level of sypqteotection, they can configure their
MS-DOS-based applications to run with general mgrpastection enabled. (This mode
is not enabled by default because of the overheguined to validate memory access
requests.) In addition, parameter validation of2tih operations on pointers is performed,
thereby increasing the robustness of the system.

Better Clean-Up When a Virtual Machine Ends

When a VM ends in Windows 3.1, some resources, aaddPMI memory, are not
released properly. When a VM ends in Windows 95—eeittormally because the user
exited the application or VM or requested a loedlaot, or abnormally because the
application hung—the system frees all resourcesatial to the VM. These resources
include not only those allocated and maintainethieysystem VxDs, but also those
allocated for the VM by the Virtual Machine Managecluding any DPMI and XMS
memory that the VM requested.

Robustness for Winl6—-Based Applications

Windows 95 provides improved support for runninglM—based applications. It also
provides robust support for Winl6—based applicatiptus compatibility with existing
Windows—based applications, while keeping memoguirements low. The next two
sections describe improvements for Win16—basedagtjans running under
Windows 95.

Per-Thread State Tracking

With Windows 3.1, when a Windows—based applicaéinded, the resources that had
been used by the application were not releasetidgytstem. Some Windows—based
applications took this behavior into account arghdifree certain resources, so that their
allocated resources could be accessed by otheeimeny Windows—based applications
or by system components such as DLLs.

Chapter 5 Robustness 5

Changing the way the system behaves when a Wins@&dkapplication ends—for
example, immediately freeing up all the resourdiexated to the application—might
have resulted in the breaking of existing applarai To facilitate resource tracking under
Windows 95, each Winl6-based application runsseparate thread in the Win16
address space. When a Winl6—based application ¥fiddpows 95 doesn’t immediately
release the resources allocated to the applichtibholds them until the last Win16—
based application has ended. (Windows 95 deterrtiiras0 more Winl16—based
applications are running by associating the Windegrsion number of the application
with the thread ID for the running process.) Whea last Win16—based application has
ended and it is safe to free all resources alldcaté&Vin16—based applications,
Windows 95 begins releasing the resources.

Parameter Validation for Winl16 APIs

Windows 3.0 was perceived by some users as undiablise Unrecoverable
Application Errors (UAEs) were common when workirigh Windows—based
applications. Most of this instability was in fagtused by Windows—based applications
that passed invalid parameters to Windows API fonst The APIs in turn attempted to
process this bad data and usually attempted tesaeceinvalid area of memory. For
example, when an application inadvertently passgtdial pointer to a Windows API
function and the function tried to access memothateference, a UAE or “general
protection fault” would be generated.

Windows 95 provides parameter validations for alh¥6—based APIs and checks
incoming data to API functions to ensure that thgds valid. For example, functions that
reference memory are checked for NULL pointers, fandtions that operate on data
within a range of values are checked to ensurettieadata is within the proper range. If
invalid data is found, an appropriate error numpeeturned to the application, and it is
then up to the application to catch the error chmliand handle it accordingly.

The Windows 95 SDK provides debug system componertiglp software developers
debug their applications. The debug componentsigecxtensive error reporting for
parameter validation to assist developers in tragkbmmon problems related to invalid
parameters during the course of development.

Robustness for Win32—-Based Applications

Although better robustness for running MS-DOS-basatiWin16—based applications is
provided by Windows 95 than by Windows 3.1, evesatgr support for robustness is
available for running Win32—-based applications. 32irbased applications also benefit
from preemptive multitasking, a linear (rather tisagmented) address space, and support
for a feature-rich API set.

Robustness support for Win32—based applicatiorlades the following:

e A private address space for each running Win32-bapglication, segregating and
protecting one application from others that areniig concurrently

¢ Win32 APIs that support parameter validation aral/jole a stable and reliable
environment

e Resource tracking by thread and the immediaterfgeef resources when the thread
ends

6 Microsoft Windows 95 Reviewer’s Guide

e Separate message queues for each running Win32-appkcation, ensuring that a
hung Win32-based application does not suspenditiire system

A Private Address Space for
Each Win32—-Based Application

Each Win32-based application runs in its own pevaddress space so that its resources
are protected at the system level from other agfitins running in the system. This
strategy also prevents other applications fromveagntly overwriting the memory area
of a given Win32-based application and preventsWia32—based application from
inadvertently overwriting the memory area of ano#ygplication or of the system as a
whole.

Parameter Validation for Win32 APIs

As with Winl6-based applications, Windows 95 pregiggarameter validation for Win32
APIs used by Win32-based applications. The Wind@wSDK helps software
developers debug errors resulting from attempsgs invalid parameters to Windows
APIs. For additional information about parametdidagion for Win16 APIs, see the
discussion of robustness for Winl6-based applicatwesented earlier in this chapter.

Per-Thread Resource Tracking

Windows 95 tracks the resources allocated to Wiba8ed applications by thread.
Unlike resources allocated to Win16—based apptoatiresources allocated to Win32—
based applications are automatically released ahbread ends processing. This
immediate freeing of system resources ensureshtbatsources are available for use by
other running tasks.

Resources are cleaned up properly when threads eitld execution on their own—for
example, if the application developer inadvertefdlied to free allocated resources—or
when the user requests a local reboot that endern Win32—based application thread or
process. Unlike Winl6—-based applications desigaedrt under Windows 3.1, Win32—
based applications free up their allocated resslimmediately when a separate thread or
the application itself ends.

Separate Message Queues for
Win32—-Based Applications

The Windows environment performs tasks based oretteipt of messages sent by
system components. Each message is generateddraaacaction, oevent, that occurs

on the system. For example, when a user pressega@kthe keyboard and releases it or
moves the mouse, a message is generated by teensyst passed to the active
application to inform it of the event that occurrgdindows—based applications call
specific Windows API functions to extract event sagges from message queues and
perform operations on the messages—for exampleptandancoming character typed on
the keyboard, or move the mouse cursor to anotaeen the screen.

Under Windows 3.1, a single message queue washysend entire system. Winl6—based
applications cooperatively examined the queue atrdeed messages addressed to them.
This single-queue scheme posed some problemsxbome, if a Winl6—based

Chapter 5 Robustness 7

application hung and prevented other applicatioms fchecking the message queue, the
message queue would become full and accepted nonesgages. Other Winl16—based
applications were then suspended until control meisquished to them and they were
able to check for event messages.

Windows 95 solves the problems inherent with tihglsi message queue in Windows 3.1
by providing separate message queues for eachngiiviin32—based application (each
thread in a Win32—based application may have its m@ssage queue.) As shown in
Figure 38, the system takes messages from the inpsgage queue and passes them to
the appropriate Win32—based application or to thelW Subsystem if the message is
destined for a Winl6-based application. If a Win&%ed application hangs and no
longer accepts and processes its incoming messathes,running Winlé and Win32—
based applications are not affected.

Mouse Interrupts
E Interrupt

Handler

»Messages — $» Raw input
thread

Keyboard Interrupts

Message Queue

. Message Message Message
Win16 Queue Queue Queue
Subsystem
win16 . . .
App Win32 Win32 Win32
Application Application Application

Winl6é
App

Figure 38. Win32—based applications use separate rsage queues for increased
robustness

If a Win32—-based application ends or the user r&fgwelocal reboot for a Win32-based
application, having separate message queues inpthegobustness of the operating
system by making it easier to clean up and freesyistem resources used by the
application. It also provides greater reliabilitydarecoverability if an application hangs.

Local Reboot Effectiveness

Because of robustness improvements for Win32—bagplications, including the use of
a private address spaces, separate message cuiessource tracking by thread, users
should be able request a local reboot to end alaibd#itbehaved Win32-based
applications without affecting the integrity of tidindows system or other running
applications.

When Windows 95 ends a Win32-based applicatiomesisurces are immediately
deallocated and cleaned up by the system. Becausg?Wbased applications run in their
individually allocated environments, this methoeév&en more robust than the method for

8 Microsoft Windows 95 Reviewer’s Guide

reallocation of Win16—based application resourEes.more details of the robustness of
Winl6-based applications, see the appropriatecgeetrlier in this chapter.

Structured Exception Handling

An exception is an event that occurs during the executionrfogram and requires the
execution of software outside the normal flow ofittol. Hardware exceptions can result
from the execution of certain instruction sequensash as division by zero or an attempt
to access an invalid memory address. A softwargn®ean also explicitly initiate an
exception.

The Win32 API supports a mechanism cabrdctured exception handling for handling
hardware-generated and software-generated excepBtmuctured exception handling
gives programmers complete control over the hagdiirexceptions. The Win32 API

also supports termination handling, which enabteg@ammers to ensure that whenever a
guarded body of code is executed, a specific btdtkrmination code is also executed.
The termination code is execute regardless of hevilbw of control leaves the guarded
body. For example, a termination handler can gueeathat clean-up tasks are performed
even if an exception or some other error occur$evthe guarded body of code is being
executed. Structured exception and termination lired an integral part of the Win32
system, and it enables a very robust implementatigystem software.

Windows 95 provides structured exception and teation handling for Win32—based
applications. By using this functionality, applicats can identify and rectify error
conditions that might occur outside their realntofitrol, providing a more robust
computing environment.

