Universal Serial Bus (US|

Device Class Definition
for Human Interface
Devices (HID)

Firmware Specification—Released: June-96

Version 1.0

Please send comments via electronic mail to:
usbdevice@fsp008.fm.intel.com

©1996, USB Implementers’ Forum —All rights reserved.






Contents

I o (=) - T - PR Vi
1.1 Intellectual Property DIiSCIaiMer..........ccvvvviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee, vii
2 0o o1 1] 01U (o] =P EUPRSPPPURSR vii
1.3 Scope Of thisS REVISION..........cooeiiei i viii
1.4 REVISION HISTOMY ....cciitiiiiiiiiii ettt viii
1.5 DOCUMENE CONVENTIONS ..ot iitiitieeee ettt ettt e e e e e e aeneees iX

V2280 11 o To L8 ox 17 o I PR 1
N RS Yoo oL 1
2.2 PUIMPOSE....coiiiiiiiiiiiii ittt 2
2.3 Related DOCUMENTS ......ciiiiiiiiiiiiie ettt 3

3. MaNAGEMENT OVEIVIEW ....cciuriiieiiiiii ettt et ee ettt ettt e et e e sbb e e e s sanbeeas 4

4. FUNCtional CaraCteriStICS .......ceiiiirriiiiiee ettt 7
4.1 THE HID ClASS....ccciiiiiiiiiiiie ettt et e e e st e e e e s s st areeeae e e s snnnrees 7
.2 SUDCIBSS....coiiiiiitee e 8
G [ 01 1= 5 = Lo =1 SRR P 9
4.4 Device LIMITAtIONS ........ueeiiieaiiiiieie ettt 10

4.4.1 Low-Speed Device LIMItations ..........ccoovuviieiiiiiieiniieee e 10
4.4.2 High-Speed Device LIimitations...............cooee oo e eeeeceee e 10

5. 0Operational MOGEL.........oouuiiiiiiiie e 11
5.1 Device DeSsCriptor StrUCIUIe..........cooeeee i 11
5.2 REPOI DESCHPLOS ....veeieiiiiee ittt e ettt ettt ettt e et e st e s nibeeeeen 13
5.3 Generic em FOIMAL .........oooiuiiiiiiieei e 13
5.4 EIM PAISEI ...t 14
TR U STV = TS SURPPPRTPRPI 16
5.6 REPOMS ..o 16
D7 SHINGS oo ———— 17
5.8 Format of Multibyte Numeric Values .........ccccccvvviiiiieiiee e 18
5.9 OFENTALION ...ttt e e e e s nbb e e e ea e e e 19

B. DIBSCIIPLONS ...ttt ettt ettt ettt et e e st e e s rab e e nabe e e e naneeas 20
6.1 Standard DeSCHPLOrS.....cccce e 20
6.2 Class-SPecCific DESCIIPLONS .......coiiiiriiieiiiiee ettt 20

6.2.1 HID DESCIIPLON ...vvvvvviieiieeeeieeeieeeieeeeee e e e eer e e re s e e e e e e e e s aaaaaaasaaaaaaaaaaaaaaaaaes 20
6.2.2 REPOIt DESCIIPION....cciiiiiiie ittt 22
6.2.2.1 Items TYPES aNd TaAQS ....ccceeeennnnnnnrinniennrrnnrenneeneerreereerereeenneeeees 25

B.2.2.2 SO HEBIMIS. .. e eeeeeee et e et e e et e e e e eenaeees 25



iv

Contents

6.2.2.3 LONG ItEMS ..ceiiiiiieeiceee e 26
6.2.2.4 MaAIN ITEIMS....eiiiiiie et e s e e e e e e e aes 27
6.2.2.5 Input, Output, and Feature tems.............oooeeeeeeeeeeeecceeccce 28
6.2.2.6 Collection, End Collection fems .........ccccceeeviiiiviiriee i 32
6.2.2.7 Global IHEMS ... 33
6.2.2.8 LOCAI TEMS ...ttt 37
6.2.3 Physical DESCHPLOIS ...ccvvviieeiiieeeeee e 40
7. REQUESLES ....ouiiiiiiiiiiiiiiiiier e e et e e e e e e et e e et e e r e e et e et e e et r e e et e e e s 45
7.1 Standard REQUESTS ... ..ccoiieieeeicc e raee e 45
7.1.1 Get_DeSCrptor REQUEST........coiuiiieiiiie ettt 46
7.1.2 Set_DesCrptor REQUESL ........covvviiiiiiiiiiieeeeeeeeeeeee e, 46
7.2 Class-SPeCific REQUESES ........ciiiiiiiieiiiiiee et 47
7.2.1 Get_RepPOIt REQUEST.......cciiieeiiiiiir et eeeeeaaeas 48
7.2.2 Set_RePOIM REOUESE .......ovviiiiiiiiiiiiiiiieeeinee e 48
7.2.3 Get_IdIe REQUEST .......uuueiiiieiiiiiiiieiiiiiiie et e e e e e eeeeeeeeeeeeees 49
7.2.4 Set_1dle REQUESE ........coiiiiiiiiiiiiee et 49
7.2.5 Get_Protocol REQUEST.........ccoeie e 51
7.2.6 Set_ProtoCol REQUEST...........uiii it 51
ST LT oo = e (oo | 52
8.1 REPOIM TYPES ..ttt 52
8.2 Report Format for Standard temS.........cccovvvviviiiiiiiii, 52
8.3 Report Format for Array IteMS........c.uveiiiiiiieiii e 53
8.4 Report CONSIIAINIS ....cccee e 54
8.5 REPOIM EXAMPIE ...ciiiiiiiiiiitiie ettt 54
APPENIX A: USAGE TAGS ..vvvvrrrrrrririnnneerreeeeereererrreerrrerrreertrttteretteaattaaateaaaaeaaaaaaaeaeen 57
AL USAQE PAgES ....ccooiiiiiieiieee 57
A.2 Generic Desktop Page (OX0L1) .......ccooeeeiiiiiiiie e 57
A.3 Keyboard/Keypad Page (OXO07) .....cccorureeeiiiiiieiiiie et 58
A.4 LED Page (OX08) ....eveeeieeiiieiiieeiieeieeeeeeeeee e et e e et eeeaaaaaataaaaaaaaaaaaaaaaaaaaaaaaaaaaaes 66
A.5 BULtON PAge (0X09) ....cceiiiiiieiiiiiie ittt 67
Appendix B: Boot Interface DesCriPtOrs.........cooeeiieeiieeeccieseccneeneeeees 68
B.1 Protocol 1 (Keyboard).........ccoouuiiiiiiiiiieiiiie et 68
B.2 ProtoCol 2 (MOUSE)......cccviiiiiieieee et 69
Appendix C: Keyboard Implementation.............coocuveieeiiierieniieeee e 71
Appendix D: Example Report DEeSCHPIOIS. .........uuuururrierriiiriiiirrreerierrireereeenreeeeeee. 73
D.1 Example JOYSHCK DESCHPLOL. ......cciiuiiieeiiiieee ittt 73
Appendix E: Example USB Descriptors for HID Class Devices.................eeee.... 74
E.1 DEVICE DESCIIPION ....utiiie ittt ettt ettt 74

E.2 Configuration DESCIIPLOr .......cvviiiiiiieeieeeeeeeeeeeeeeeee et a e e e 75



Contents %

E.3 Interface Descriptor (Keyboard).........cccccvvvviiiiiiiiiiiii, 75
E.4 Endpoint Descriptor (Keyboard) ..........ccovuiiiiiiiiieiiiiiee e 76
E.5 HID Descriptor (Keyboard)...........cooooeeeii i 77
E.6 Report Descriptor (Keyboard) ... 78
E.7 Interface Descriptor (MOUSE)........cccvviieee i 79
E.8 Endpoint DeSCriptor (MOUSE) .......covuiiiiiiiiiees ittt et 79
E.9 HID DescCriptor (MOUSE)........ccoeeeiee et 79
E.10 Report Descriptor (MOUSE).........cieiiiiiieiiiiiie ettt 80
I 1 T o I LT Yol (o SR 80
Appendix F: BNF Grammar for the USB HID DeSCriptor...........cccovveriiveeerinneen. 82
Appendix G: Keyboard Implementation ..............ccueeuueeeeeeeiiiiiieeiiccieeeeeeeeeee e eeea e 84
GLL PUIMPOSE... .o 84
G.2 ManNageMENt OVEIVIEW ......cccvvviiiiiiiiiiiiiiiieeee et e et e e e e e e e e e e e e e e e e e e e e e 84
G.3 Bootable Keyboard ReqUIrEMENtS ...........cooriieiiiiiiieeiiiiee e 85
G.4 Keyboard: Non-USB Aware System Design Requirements...................... 86
G.5 Keyboard: Using the Keyboard Boot Protocol...........cccccceevvivieereeeininnnnee, 86

Appendix H: Glossary DefiNitioNS .............uuuuuiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeereeeeeeeeeeeeeees 89






Vii

1. Preface

1.1 Intellectual Property Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR
SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE
THIS SPECIFICATION FOR INTERNAL USE ONLY. NO OTHER LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY OTHER
INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED
HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY,
INCLUDING LIABILITY FOR INFRINGEMENT OF PROPRIETARY
RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS
SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT
WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL
NOT INFRINGE SUCH RIGHTS.

All product names are trademarks, registered trademarks, or service méuis of t
respective owners.

1.2 Contributors

While many people contributed to this document, only one contributor is listed
from each organization.

Company Contact

Alps Mike Bergman
Cybernet Tom Peurach

DEC Tom Schmidt

Forte Steve McGowan
Key Tronics Corporation Jody Crowe
LCS/Telegraphics Robert Dezmelyk
Logitech Remy Zimmermann
Microsoft Corporation Mike Van Flandern
Sun Microsystems Mike Davis

ThrustMaster Joe Rayhawk



viii Device Class Definition for Human Interface D evices (HID)

1.3 Scope of this Revision

This version 1.0 release is intended to encapsulate all review comments and
concepts to complete the Human Interface Delti® | device class.

1.4 Revision History

Version Release date Description
0.9d 2/1/96 Draft for industry review (USB_HI9D.DQXC
0.9e 3/15/96 Revised tag values and device requidtied

constant, long items, designators and descriptor
examples (USB_HI9E.DOC).

0.99a 4/22/96 Revised requests and unit tag. Ad@geeéndices for
BNF example, usage codes and keyboard
implementation details (USB_H99a.DOC).

1.0 6/14/96 Finalized terminology, updated examples
incorporated final review comments
(USB_H10.DOC).



Preface ix

1.5 Document Conventions

This specification uses the following typographic conventions

Example of convention

Description

Get_Report, Report

Data, Non-Data

BValue

bValue bcdNamewOther

[bValug

{this (0) | that (1)}

Col | ecti on
End Col | ection

Words in bold with initial letter capitalized
indicate elements with special meaning
such as requests, descriptors, descriptor
sets, classes, or subclasses.

Proper-cased words are used to distinguish
types or categories of things. For example
Data and Non-Data type Main items.

Italicized letters or words indicate
placeholders for information you supply.

Placeholder prefixes such a8, ‘bcd’, and
‘w’ are used to denote placeholder type
example:

b bits or bytes; dependent on context
bcd binary-coded decimal

bm  bitmap

d descriptor
i index

w  word

Items inside square brackets are optional.

Ellipses in syntax, code, or samples
indicate ‘and so on...” where additional
optional items may be included (defined
the developer).

Braces and a vertical baricate a choice
between two or more items or associated
values.

This font is used for code, pseudo-code,
and samples.






2. Introduction

Universal Serial Bus (USB) is a communications architecture that gpesanal
computer (PC) the ability to interconnect a variety of devices using a simple four
wire cable. The USB is actually a two-wire serial communication link thatatuns
either 1.5 or 12 megabits per second (mbs). USB protocols can configure devices
at startup or when they are plugged in at run time. These devices are broken into
various device classes. Each device class defines the common behavior and
protocols for devices that serve similar functions. Some examples of USB device
classes are shown in the following table.

Device Class Example Device

Display Monitor

Communication Modem

Audio Speakers

Mass storage Hard drive

Human interface Data glove
See Also

For more information on terms and terminology, see Appendix H: Glossary
Definitions. The rest of this document assumes you have read and
understood the terminology defined in the glossary.

2.1 Scope

This document describes the Human Interface Dettl ) class for use with
Universal Serial Bus (USB). Concepts from the USB Specification are used but
not explained in this document.

See Also

The USB Specification is recommended pre-reading for understanding the
content of this document. For related document locations, see Section 2.3:
Related Documents.



Device Class Definition for Human Interface Devi  ces (HID)

TheHID class consists primarily of devices that are used by humans to control the
operation of computer systems. Typical exampldsIbf class devices include:

« Keyboards and pointing devices—for example, standard mouse devices,
trackballs, and joysticks.

« Front-panel controls—for example: knobs, switches, buttons, and sliders.

« Controls that might be found on devices such as telephones, VCR remote
controls, games or simulation devices—for example: data gloves, throttles,
steering wheels, and rudder pedals.

« Devices that may not require human interaction but provide data in a similar
format toHID class devices—for example, bar-code readers, thermometers, or
voltmeters.

Many typicalHID class devices include indicators, specialized displays, audio
feedback, and force or tactile feedback. ThereforeHtBeclass definition
includes support for various types of output directed to the end user.

Note Force feedback devices requiring real time interaction are covered in a
separate document titled “USB Physical Interface Device (PID) Class

See Also

For more conceptual information, see the USB Specification, Chapter 9,
“USB Device Framework..” For related document locations, see Section
2.3: Related Documents.

2.2 Purpose

This document is intended to supplement the USB Specification and pktidde
manufacturers with information necessary to build USB-compatible devices. It
also specifies how thdID class driver should extract data from USB devices.
The primary and underlying goals of tH&D class definition are to:

« Be as compact as possible to save device data space.

« Allow easy extensions.

« Allow the software application to skip unknown information.

« Be extensible and robust.

« Support nesting and collections.

« Be self-describing to allow generic software applications.



Introduction 3

2.3 Related Documents

This document references the following related documents. The most current
information is maintained in the following locations on the World Wide Web.

Name

Universal Serial Bus (USE
Specification, Version 1.0

USB Class Specification
for Legacy Software

HID Usage Tags

USB Physical Interface
Device (PID) Specification

USB Audio Device Class

Location Comment

http://www.teleport.com/~usb/ In particular, see

specinfo.htm Chapter 9, “USB Devic
Framework.”

http://www.teleport.com/~usb/

http://www.teleport.com/~usb/

http://www.teleport.com/~usb/
devclass.htm

http://www.teleport.com/~Usb
devclass.htm



Device Class Definition for Human Interface Devi  ces (HID)

3. Management Overview

Information about a USB device is stored in segments of its ROM (read-only
memory). These segments are called descriptors. An interface descriptor can
identify a device as belonging to one of a finite number of classesdlChelass

is the primary focus of this document.

A USB/HID class device uses a correspondithd class driver to retrieve and
route all data.

The routing and retrieval of data is accomplished by examining the descriptors of
the device and the data it provides.

Composed of Device descriptors and/or Data ?I:\IIS;

TheHID class device descriptor identifies which other descriptors are present and
indicates their sizes. For examdReport andString. Descriptors.

Device
(USB/HID)

HID descriptor
Type Present Size

Report vy n
String y n

Report String
descriptor descriptor




Management Overview 5

A Report descriptor describes each piece of data that the device generates and
what the data is actually measuring.

Report descriptor

Item(s)
(tag, type, size, data)

P —T

For example, &eport descriptor defines items that describe a position or button
state. Item information is used to:

« Determine where to route input—for example, send input to mouse or joystick
APL.

« Allow software to assign functionality to input—for example, use joystick
input to position a tank.

By examining an items (collectively called tReport descriptor) theHID class
driver is able to determine the size and composition of data reports frétiCthe
class device.

String descriptors allow the device to associate a text string with a particular
control—for example, “trigger.”

String descriptor

H Text Strings




Device Class Definition for Human Interface Devi  ces (HID)

All of these things can be combined to illustrate the descriptor structure.

Device
descriptor

l

Configuration
descriptor

l

Interface
descriptor

String
descriptor

l |

Endpoint
descriptor

The rest of this specification documents implementation details, caveats, and

l

HID
descriptor

l

l

Report
descriptor

Physical
descriptor

restrictions for developinglID class devices and drivers.




Functional Characteristics 7

4. Functional Characteristics

This Section describes the functional characteristics dfitbe

« Class
o Subclass
« Interfaces

4.1 The HID Class

USB devices are segmented into device classes that:

« Have similar data transport requirements.
« Share a single class driver.

For exampleAudio class devices require isochronous data pigH3. class
devices have different (and much simpler) transport requirements. The transport
requirements foHID class devices are identified in this document.

Note USB devices with data requirements outside the range of defined classes
must provide their own class specifications and drivers as defined by the USB
Specification. For related document locations, see Section 2.3: Related
Documents.

A USB device may be a single class type or it may be composed of multiple
classes. For example, a telephone hand set might use featurebli® fhaudio,
andTelephonyclasses. This is possible because the class is specified in the
Interface descriptor and not tHeevicedescriptor. This is discussed further in
Section 5.1: Device Descriptor Structure.

See Also

The Audio Class Specification defines audio device transport requirements
in greater detail. For related document locations, see Section 2.3: Related
Documents.



Device Class Definition for Human Interface Devi  ces (HID)

4.2 Subclass

During the early development of th#D specification, subclasses were intended

to be used to identify the specific protocols of different type4IDf class

devices. While this mirrors the model currently in use by the industry (all device
use protocols defined by similar popular devices), it quickly became apparent that
this approach was too restrictive. That is, devices would need to fit into narrowly
defined subclasses and would not be able to provide any functionality beyond that
supported by the subclass.

TheHID committee agreed on the improbability that subclass protocols for all
possible (and yet to be conceived) devices could be defined. In addition, many
known devices seemed to straddle multiple classifications—for example,
keyboards with locators, or locators that provided keystrokes. Consequently, the
HID class does not use subclasses to define most protocols. Indt#Bdciass
device identifies its data protocol and the type of data provided withRepiert
descriptor.

TheReport descriptor is loaded and parsed by#iB class driver as soon as the
device is detected. Protocols for existing and new devices are created by mixing
data types within thReport descriptor.

Note Because the parser for tReport descriptor represents a significant

amount of code, a simpler method is needed to identify the device protocol for
devices requiring BIOS support (boot devicéD class devices use the

Subclasspart to indicate devices that support a predefined protocol for either

mouse devices or keyboards (that is, the device can be used as a boot device). The
boot protocol can be extended to include additional data not recognized by the
BIOS, or the device may support a second preferred protocol for usetythe

class driver.

See Also

BootReport descriptors are listed in Appendix B: Boot Interface
Descriptors. FOHID subclass and protocol codes, see Appendix E:
Example USB Descriptors fétlD Class Devices.



Functional Characteristics 9

4.3 Interfaces

A HID class device communicates with tHE) class driver using either the
Control (default) pipe or thinterrupt pipe.

Control pipe
(default)

HID HID
Class Device Interrupt pipe Class Driver

A
y

TheControl pipe is used for:

« Receiving and responding to requests for USB control and class data.

« Transmitting data when polled by thD class driver (using th@et_Report
request).

« Receiving data from the host.

Thelnterrupt pipe is used for:

« Transmitting asynchronous (unrequested) data.

Note Endpoint 0 is aControl pipe always present in USB devices. Therefore,
only thelnterrupt pipe is described for tHaterface descriptor using an
Endpoint descriptor. In fact, severhdterface descriptors may shakndpoint O.

Pipe Description Required
Control (Endpoint 0) USB control, class requestespdind Y
polled data (Message data).
Interrupt Data in, that is, data from device (Stmea Y
data).
See Also

For details about th€ontrol pipe, see the USB Specification. For related
document locations, see Section 2.3: Related Documents.



10 Device Class Definition for Human Interface Dev  ices (HID)

4.4 Device Limitations

This specification applies to both high-speed and low-spidclass devices.
Each type of device possesses various limitations.

4.4.1 Low-Speed Device Limitations
Low-speed devices have the following limitations:

Transaction size is a maximum of 8 bytes per frame (1 millisecond).

Only one low-speed transaction is permitted per frame (this limits the number
of low-speed devices permitted on the bus).

Hubs cannot be low-speed.
Polling rate is defined at a maximum of every 8 milliseconds.

The size of a request should be minimized as much as possible (with an upper
limit of 8 bytes for common transfers) because low-sgigaatrol pipes are
limited to one (8 byte) transaction every eight frames.

4.4.2 High-Speed Device Limitations

High-speed devices have the following limitations:

Transaction size is a maximum of 64 bytes per frame (1 millisecond).
Polling rate is defined at a maximum of every 1 millisecond.



Operational Model 11

5. Operational Model

This section outlines the basic operational modeltéiCa class device. Flowchart
elements represent tables of information with the firmware.

5.1 Device Descriptor Structure

At the topmost level, a descriptor includes two tables of information referred to as
the Device descriptor and the String descriptor. A standard USB Device descriptor
specifies the Product ID and other information about the device. For example,
Device descriptor fields primarily include:

- Class

« SubClass

- Vendor

« Product

- Version



12 Device Class Definition for Human Interface Dev  ices (HID)

Device
descriptor
l A USB device may have one or more configurations.
Each is defined by the Configuration descriptor. A HID
Configuration class device typically has only one configuration; thus it
descriptor would have only one Configuration descriptor.

!

Interface
descriptor

Endpoint HID
descriptor descriptor

The Class field of this descriptor defines the
/ device as a HID class device.

- '

Report Physical
descriptor descriptor

For HID class devices, the:

« Class type is not defined at tBevicedescriptor level. The class type for a
HID class device is defined by the Interface descriptor.

« Subclass field is used to identify boot devices.

Note Device Class and Device SubClass should not be used to identify a device
as belonging to the HID class. Instead use the Interface Class and Interface
SubClass fields in the Interface descriptor.

See Also

The HID class driver identifies the exact type of device and features by
examining additional class-specific descriptors. For more information, see
Section 6.2: Class-Specific Descriptors.



Operational Model 13

5.2 Report Descriptors

Preceding descriptors are illustrated by flowchart items that reprebks ¢d
information. Each table of information can be thought of as a block of data.
Instead of a block of dat®eport descriptors are composed of pieces of
information. Each piece of information is calledlgm.

An ltem is a single piece of information
within a Report descriptor.

5.3 Generic Item Format

An item is piece of information about the device. All items have a one-byte prefix
that contains the item tag, item type, and item size.

Bits 2322212019181716 15141312111098 7654 32 10
Parts [data] I [data] I bTag i bType : bSize

Bytes 2 1 0

An item may include optional item data. The size of the data portion of an item is
determined by its fundamental type. There are two basic types of items: short
items and long items. If the item is a short item, its optional data size may be 0, 1,
2, or 4 bytes. If the item is a long item, litSizevalue is always 2. The following
example illustrates possible values within the 1-byte prefix for a long item.

Bits 258 ...24 2322212019181716 15141312111098 7654 32 10

Parts [data] I bLongltemTag I bDataSize I 1111: 11 1 10

Bytes 3-258 2 1 0



14

Device Class Definition for Human Interface Dev  ices (HID)

5.4 Item Parser

TheHID class driver contains a parser used to analyze items foundRe tiost
descriptor. The parser extracts information from the descriptor in a liné&orfas

The parser collects the state of each known item as it walks through the descriptor,
and stores them in an item state table. The item state table contains thé state

individual items.

From the parser’s point of viewHID class device looks like the following

figure.
Collection
[
Collection Report
| v
i A i
Main ltem
Report Report
Report Size
i $ Report Count
Main Item Main Item |
Report Size Report Size Y v
Usage Usage
Report Count Report Count
Logical Minimum Logical Minimum
Logical Maximum Logical Maximum
4 \ 4 \d
Usage
Usage Usage Usage




Operational Model 15

When some items are encountered, the contents of the item state table are moved.
These items include dlain, Push, andPop items.

When aMain item is found, a new report structure is allocated and initialized
with the current item state table. Albcal items are then removed from the
item state table, budlobal items remain. In this wayslobal items set the
default value for subsequent néfain items. A device with several similar
controls—for example, six axes—would need to defineGlodal items only
once prior to the firsMain item.

Note Main items are associated with a collection by the order in which they
are declared. A new collection starts when the parser rea€twkeation

item. The item parser associates with a collectioMalh items defined
between th&ollection item and the nex&nd Collection item.

When aPushitem is encountered, the item state table is copied and placed on
a stack for later retrieval.

When aPop item is found, the item state table is replaced with the top table
from the stack. For example:

Unit (Meter), Unit Exponent (-3), Push, Unit Exponent (0)

When the parser reachePashitem, it places the items defining units of
millimeters (meters) on the stack. The next item changes the item state table
to units of meters (meté)s

The parser is required to parse through the wReleort descriptor to find all
Main items. This is necessary in order to analyze reports sent by the device.

Note Unrecognized items are passed over by the parser. This allows
extensibility of items for futuréllD versions.

See Also
For details, see Section 8: Report Protocol.



16 Device Class Definition for Human Interface Dev  ices (HID)

5.5 Usages

Usages are part of tlikeport descriptor and supply an application developer with
information about what a control is actually measuring. In addititlsagetag
indicates the vendor’s suggested use for a specific control or group of controls.
While Report descriptors describe the format of the data—for example, three 8-
bit fields—aUsagetag defines what should be done with the data—for example,
X, ¥, and z input. This feature allows a vendor to ensure that the user sees
consistent function assignments to controls across applications.

A Report descriptor can have multiplésagetags. There is a one-to-one
correspondence between usages and controls, one usage control defined in the
descriptor. An array indicates that each field &fegort descriptor represents
several physical controls. Each control may have attributes such as a usage
assigned to it. For example, an array of four buttons could have a lwsgge

tag for each button.

See Also
For an example, see Appendix E. 10: Report Descriptor (Mouse).

5.6 Reports

Using USB terminology, a device may send or receive a transaction every USB
frame (1 millisecond). A transaction may be made up of multiple packets (token,
data, handshake) but is limited in size to 8 bytes for low-speed devices and 64
bytes for high-speed devices. A transfer is one or more transactions creating a set
of data that is meaningful to the device—for examiplput , Output, and

Feature reports. In this document, a transfer is synonymous with a report.

input 55|55

outputaasssss|sssaaaa Reports

Feature::llliiliiiiil:




Operational Model 17

Most devices generate reports, or transfers, by returning a structure in which each
data field is sequentially represented. However, some devices may haypéemulti
report structures on a single endpoint, each representing only a few data fields. For
example, a keyboard with an integrated pointing device could independently

report “key press” data and “pointing” data over the same endpapbrt ID

items are used to indicate which data fields are represented in each report
structure. AReport ID item tag assigns a 1-byte identification prefix to each

report transfer. If n&keport ID item tags are present in tReport descriptor, it

can be assumed that only dnput, Output, andFeature report structure exists

and together they represent all of the device’s data.

Note Only Input reports are sent via theterrupt pipe.Feature andOutput
reports must be initiated by the host via @entrol pipe.

If a device has multiple report structures, all data transfers start Withyte

identifier prefix that indicates which report structure applies to the traf$fex

allows the class driver to distinguish incoming pointer data from keyboard data by
examining the transfer prefix.

5.7 Strings

A collection or data field can have a particular label (string index) associdted w
it. Strings are optional.

TheUsagetag of an item is not necessarily the same as a string associated with
the Main item. However, strings may be useful when a vendor-defined usage is
required. TheString descriptor contains a list of text strings for the device.

See Also

For details, see Appendix E: Example USB Descriptorsifbr Class
Devices.



18 Device Class Definition for Human Interface Dev  ices (HID)

5.8 Format of Multibyte Numeric Values

Multibyte numeric values are represented in little-endian format, with dise le
significant byte at the lowest address. Except where noted otherwise, all integer
values are signed values represented in 2's complement format. Floating point
values are not allowed.

The least significant bit in a value is stored in bit 0, the next more significant in bit
1 and so on up to the size of the value. The following example illustrates bit
representation of a long integer value.

3130292827262524 2322212019181716 1514131211108 8 76543210

— 76543210 76543210 76543210 76543210
By'te3 I_'_ILJITILJ I
Default Value 0 | | |
Button 3 - Byte 2:Y Byte 1: X Byte 0: Report ID
Button 2
Button 1-
Byte Bits
0 0-7
1 8-15
2 16-23
3 24-31



Operational Model 19

5.9 Orientation

HID class devices are encouraged, where possible, to use a right-handed
coordinate system. If a user is facing a device, report values should increase as
controls are moved from left to right (X), from far to near () and from high to
low (Z).

X+

Z+
Y+

Controls reporting binary data should use the convention 0 = off, or False and 1 =
on or True. Examples of such controls are keys, buttons, power switches, and
device proximity sensors.



20 Device Class Definition for Human Interface Dev  ices (HID)

Description

Parts

6. Descriptors
6.1 Standard Descriptors

TheHID class device class uses the following standard USB descriptors:

« Device

« Configuration
. Interface

« Endpoint

« String

See Also

For details about these descriptors as defined fiDaclass device, see
Appendix E: Example USB Descriptors falD Class Devices. For

general information about standard USB descriptors, see Chapter 9 of the
USB Specification, “USB Device Framework.”

6.2 Class-Specific Descriptors

Each device class includes one or more class-specific descriptors. These
descriptors differ from standard USB descriptor$ll® class device uses the
following class-specific descriptors:

« HID

o Report

« Physical

6.2.1 HID Descriptor

TheHID descriptor identifies the length and type of subordinate descriptors for a
device.

Part Offset/Size (Bytes) Description

bLength 0/1 Numeric expression that is the total sizehef t
HID descriptor.

bType 1/1 Constant name specifying type of HID descripto

bcdHID 2/2 Numeric expression identifying the HID Class

Specification release.



Descriptors 21

Part Offset/Size (Bytes)

Description

bCountry 4/1

bAvailable 5/1
bType 6/1

wlLength 712
[bTyp4... 9/1

[bLength.. 10/2

Numeric expression identifying country code of
thelocalized hardware.

Numeric expression specifying the number of ¢
descriptors (always at least one i.e. Report
descriptor.)

Constant name identifying type of class descrij
See Section 7.1.2: Set_Descriptor Request for a
table of class descriptor constants.

Numeric expression that is the total size ef th
Reportdescriptor.

Constant name specifying type of optional
descriptor.

Numeric expression that is the total sizehef t
optional descriptor.

Remarks « If an optional descriptor is specified, a corresponding length entry must also be
specified.
« Multiple optional descriptors and associated lengths may be specified up to
offset (3*)+6 and (3h)+7 respectively.
« The valuebAvailableidentifies the number of additional class specific
descriptors present. This number must be at least one (Bemoat
descriptor will always follow. The remainder of tH&) descriptor has the
length and type of each additional class descriptor.
« The valuebCountryidentifies which country the hardwardagalized for.
Most hardware is ndbcalized and thus this value would be zero (0).
However, keyboards may use the field to indicate the language of the key caps.
Devices are not required to place a value other than zero in this field, but some
operating environments may require this information. The following table
specifies the valid country codes.
Code (dec) Country Code (dec) Country
00 Not Supported 18 Netherlands/Dutch
01 Arabic 19 Norwegian
02 Belgian 20 Persian (Farsi)
03 Canadian-Bilingual 21 Poland
04 Canadian-French 22 Portuguese
05 Czech Republic 23 Russia
06 Danish 24 Slovakia
07 Finnish 25 Spanish
08 French 26 Swedish
09 German 27 Swiss/French



22 Device Class Definition for Human Interface Dev  ices (HID)

Code (dec) Country Code (dec) Country

10 Greek 28 Swiss/German
11 Hebrew 29 Switzerland
12 Hungary 30 Taiwan

13 International (ISO) 31 Turkish

14 Italian 32 UK

15 Japan (Katakana) 33 us

16 Korean 34 Yugoslavia

17 Latin American 35-255 Reserved

6.2.2 Report Descriptor

TheReport descriptor is unlike other descriptors in that it is not simply a table of
values. The length and content dReport descriptor vary depending on the
number of data fields required for the device’s report or reportsR€pert

descriptor is made up of items that provide information about the device. The first
part of an item contains three fields: item type, item tag, and item size. Together
these fields identify the kind of information the item provides.

There are three item typddain, Global, andLocal. There are fivéMain item
tags currently defined:

« Input item tag: Refers to the data from one or more similar controls on a
device. For example, variable data such as reading the position of a single axis
or a group of levers or array data such as one or more push buttons or switches.

« Output item tag: Refers to the data to one or more similar controls on a device
such as setting the position of a single axis or a group of levers (variable data).
Or, it can represent data to one or more LEDs (array data).

« Featureitem tag: Describes device input and output not intended for
consumption by the end user —for example, a software feature or Control
Panel toggle.

« Collection item tag: A meaningful grouping trfiput, Output, andFeature
items—for example, mouse, keyboard, joystick, and pointer.

« End Collection item tag: A terminating item used to specify the end of a
collection of items.

TheReport descriptor provides a description of the data provided by each control

in a device. EacMain item tag (nput, Output, or Feature) identifies the size of

the data returned by a particular control, and identifies whether the data is absolute
or relative, and other pertinent information. Precediogal andGlobal items

define the minimum and maximum data values, and so foriteport descriptor

is the complete set of all items for a device. By lookingRé&port descriptor



Descriptors 23

alone, an application knows how to handle incoming data, as well as what the data
could be used for.

One or more fields of data from controls are defined Mam item and further
described by the precedi@obal andLocal items.Local items only describe the
data fields defined by the neMain item.Global items become the default
attributes for all subsequent data fields in that descriptor. For example, consider
the following.

ReportSize=3 |ReportCount=2| Input |Report Size=8| Input

Output

The item parser interprets tReport descriptor items above and creates the
following reports.

Input
| |
2 input report fields, \ 2 input report fields,
3 bits each. 8 bits each.

' .
. v "
1l '

\ 2 output report fields,

8 bits each.




24 Device Class Definition for Human Interface Dev  ices (HID)

A Report descriptor may contain seveblhin items. AReport descriptor must
include each of the following items to describe a control's data (all other items ar
optional):

« Input (Output or Feature)

o Usage

« Usage Page

« Logical Minimum

« Logical Maximum

« Report Size

» Report Count

The following is a coding sample of items being used to define a 3-button mouse.
In this caseMain items are preceded l@obal items likeUsage Report Count
or Report Size(each line is a new item).

Usage Page (Generic Desktop), ; Use the Generic Desktop Usage Page
Usage (Mouse),

Col | ection (Application), ; Start Mbouse col l ection

Usage (Pointer),

Col | ecti on (Linked), ;Start Pointer collection

Usage Page (Buttons)
Usage M ni mum (1),
Usage Maxi mum (3),
Logi cal M ni mum (0),

Logi cal Maxi mum (1), ;Fields return values fromO to 1
Report Count (3),
Report Size (1), ;Create three 1 bit fields (button 1, 2, & 3)

I nput (Data, Variable, Absolute), ;Add fields to the input report.
Report Count (1),

Report Size (5), ;Create 5 bit constant field
I nput (Constant), ;Add field to the input report
Usage Page (Generic Desktop),
Usage (X),
Usage (V),
Logi cal M ni mum (-127),
Logi cal Maxi mum (127), ;Fields return values from-127 to 127
Report Size (8),
Report Count (2), ;Create two 8 bit fields (X & Y position)
I nput (Data, Variable, Relative), ;Add fields to the input report
End Col | ecti on, ; Ol ose Pointer collection

End Col | ection ; Cl ose Mouse collection



Descriptors 25

See Also

For more information, see Appendix F: BNF Grammar for the USB HID
Descriptor.

6.2.2.1 Items Types and Tags

All items contain a 1-byte prefix which denotes the basic type of the item. The
HID class defines two basic types of items:

« Short items: 1-5 bytes total length; used for the most commonly occurring
items. A short item typically contains 1 or O bytes of optional data.

» Long items: 3—258 bytes in length; used for items that require larger data
structures for parts.

Note This specification defines only items that use the short format.

The two item formats should not be confused with types of items siMbias
Global, andLocal.

See Also
For overview information, see Section 5.3: Generic Item Format.

6.2.2.2 Short Items

Description The short item format packs the item size, type, and tag into the first byte. The
first byte may be followed by 0, 1, 2, or 4 optional data bytes depending on the
size of the data.

Parts Bits 2322212019181716 15141312111098 7654 32 10
Parts [data] I [data] I bTag i bType : bSize
Bytes 2 1 0
Part Description
bSize Numeric expression specifying size of data:
0 =0 bytes
1=1 byte
2 =2 bytes

3 =4 bytes



26 Device Class Definition for Human Interface Dev  ices (HID)

Remarks

Description

Parts

bType Numeric expression identifying type of item where:
0 = Main
1 = Global
2 = Local
3 = Reserved
bTag Numeric expression specifying the function of tteen.

[datd] Optional data.

« A short item tag doesn’t have an explicit valuelf8izeassociated with it.
Instead, the value of the item data part determines the size of the item. That is,
if the item data can be represented in one byte, thesathgart can be
specified as 1 byte, although this is not required.

« If alarge data item is expected, it can still be abbreviated if all of itsanagr
bits are zero. For example, a 32-bit part in which bytes 1, 2, and 3 are all 0 can
be abbreviated as a single byte.

« There are three categories of short item ti&fgsn, Global, andLocal. The
item type bTyp¢g specifies the tag category and consequently the item’s
behavior.

6.2.2.3 Long items

Like the short item format, the long item format packs the item size, type, and tag
into the first byte. The long item format uses a special item tag value to indicate
that it is a long item. The long item size and long item tag are each 8-bit
guantities. The item data may contain up to 255 bytes of data.

Bits 258 ...24 2322212019181716 15141312111098 7654 32 10

Parts [data] I bLongltemTag I bDataSize I 1111 I 11 I 10

Bytes 3-258 2 1 0

Part Description

bSize Numeric expression specifying total size of itefmeve size is 10 (2
bytes); denotes item type as long.

bType Numeric expression identifying type of item where
3 = Reserved

bTag Numeric expression specifying the function of tteen; always 1111.

[bDataSiz¢ Size of long item data.

[bLongltemTay Long item tag.
[datd] Optional data items.



Descriptors 27

Important No long item tags are defined in this document. These tags are
reserved for future use. Tags XxFO—xFF are vendor defined.

6.2.2.4 Main ltems

Description Main items are used to either define or group certain types of data fields within a
Report descriptor. There are two typesMéin items: data and non-data. Data-
type Main items are used to create a field within a report and indhjule ,
Output, andFeature. Other items do not create fields and are subsequently
referred to as non-dakain items.

Parts One-Byte
Prefix (nn
represents
Main item tag size value) Valid Data
Input 100000n Bit 0 {Data (0) | Constant (1)}
Bit 1 {Array (0) | Variable (1)}
Bit 2 {Absolute (0) | Relative (1)}
Bit 3 {No Wrap (0) | Wrap (1)}
Bit 4 {Linear (0) | Non Linear (1)}
Bit 5 {Preferred State (0) | No Preferred (1)}
Bit 6 {Null state (0) | No Null position (1)}
Bit 7 Reserved (0)
Bit 8 {Bit Field (0) | Buffered Bytes (1)}
Bit 31-9 Reserved (0)
Output 100100 Bit 0 {Data (0) | Constant (1)}
Bit 1 {Array (0) | Variable (1)}
Bit 2 {Absolute (0) | Relative (1)}
Bit 3 {No Wrap (0) | Wrap (1)}
Bit 4 {Linear (0) | Non Linear (1)}
Bit 5 {Preferred State (0) | No Preferred (1)}
Bit 6 {Null state (0) | No Null position (1)}
Bit 7 {Non Volatile (0) | Volatile (1)}
Bit 8 {Bit Field (0) | Buffered Bytes (1)}
Bit 31-9 Reserved (0)
Feature 101100in Bit O {Data (0) | Constant (1)}
Bit 1 {Array (0) | Variable (1)}
Bit 2 {Absolute (0) | Relative (1)}
Bit 3 {No Wrap (0) | Wrap (1)}
Bit 4 {Linear (0) | Non Linear (1)}
Bit 5 {Preferred State (0) | No Preferred (1)}
Bit 6 {Null state (0) | No Null position (1)}
Bit 7 {Non Volatile (0) | Volatile (1)}
Bit 8 {Bit Field (0) | Buffered Bytes (1)}

Bit 31-9 Reserved (0)



28 Device Class Definition for Human Interface Dev  ices (HID)

Remarks

Descri ption

Parts

One-Byte
Prefix (nn
represents
Main item tag size value) Valid Data
Collection 10100Gn 0x00 Linked (group of axes)
0x01 Application (mouse, keyboard)
0x02 Datalink (interrelated data)

0x03-0x7F Reserved
0x80-0xFF Vendor-defined

End Collection  110000n Not applicable. Closes an item collection.

Reserved 11010Gn Not applicable. Reserved for future items.

to
11110G6n

The default data value for aflain items is zero (0).

An Input item could have a data size of zero (0) bytes. In this case the value of
each data bit for the item can be assumed to be zero. This is functionally
identical to using a item tag that specifies a 4-byte data item followed by four
zero bytes.

6.2.2.5 Input, Output, and Feature Items
Input, Output, andFeature items are used to create data fields within a report.

An Input item describes information about the data provided by one or more
physical controls. An application can use this information to interpret the data
provided by the device. All data fields defined in a single item share an
identical data format.

TheOutput item is used to define an output data field in a report. This item is
similar to anlnput item except it describes data sent to the device—for
example, LED states.

Feature items describe device configuration information that can be sent to the
device.

Bit Part Value Description
0 Data | 0]1 Indicates whether the item is data or a e@ost
Constant value. Reports can be padded with constants to

byte-align fields. Data indicates the item is
defining report fields that contain device data.
Constant indicates the item is adding a field ¢
simply to pad the report.



Descriptors 29

Bit

Part

Value

Description

1

2

Array |
Variable

Absolute |
Relative

01

01

Indicates whether the item creates variable oy:
data fields in reports. In variable fields, eacdi
represents data from a physical control. The
number of bits reserved for each field is
determined by preceding Report Size/Report
Count items. For example, a bank of eight on/off
switches could be reported in 1 byte declared by a
variable Input item where each bit represents one
switch, on (1) or off (0) (Report Size = 1, Report
Count = 8). Alternatively, a variable Input item
could add 1 report byte used to represent the state
of four three-position buttons, where the state of
each button is represented by two bits (Refar

= 2, Report Count = 4). Or 1 byte from a variable
Input item could represent the x position of a
joystick (Report Size = 8, Report Count = 1).

An array provides an alternate means for
describing the data returned from a group of
buttons. Arrays are more efficient, if less flexibl
than variable items. Rather than returning a single
bit for each button in the group, an array retam
index in each field that corresponds to the pressed
button (like keyboard scan codes). An array field
will return a 0 value when no controls in the array
are pressed. Buttons or keys in an array that are
simultaneously pressed need to be reported in
multiple fields. Therefore, the number of fields in
an array input item (Report Count) dictates the
maximum number of simultaneous controls that
can be reported. A keyboard could report up to
three simultaneous keys using an array with three
8-bit fields (Report Size = 8, Report Count = 3).
Logical Minimum specifies the lowest index value
returned by the array and Logical Maximum
specifies the largest. The number of elements in
the array can be deduced by examining the
difference between Logical Minimum and Logical
Maximum (number of elements = Logical
Maximum - Logical Minimum).

Indicates whether the data is absolute (based
fixed origin) or relative (indicating the change in
value from the last report). Mouse devices usually
provide relative data, while tablets usually previd
absolute data.



30 Device Class Definition for Human Interface Dev  ices (HID)

Bit Part Value

Description

3 NoWrap| O0]1
Wrap

4 Linear | 0|1
Nonlinear

5 Preferred 0|1
State | No
Preferred

6 Null State| 0|1
No Null
Position

7 Non- 0|1
volatile|
Volatile

Reserved 0

Indicates whether the data “rolls over” when
reaching either the extreme high or low value. For
example, a dial that can spin freely 360 degrees
might output values from 0 to 10. If Wrap is
indicated, the next value reported after passieg th
10 position in the increasing direction would be 0.

Indicates whether the raw data from the device
been processed in some way, and no longer
represents a linear relationship between what is
measured and the data that is reported.
Acceleration curves and joystick dead zones are
examples of this kind of data. Sensitivity settings
would affect the Units item, but the data would
still be linear.

Indicates whether the control has a prefestat
to which it will return when the user is not
physically interacting with the control. Push
buttons (as opposed to toggle buttons) and self-
centering joysticks are examples.

Indicates whether the control has a stagehich

it is not sending meaningful data. One possible
of the null state is for controthat require the ust
to physically interact with the control in order fo
it to report useful data. For example, some
joysticks have a multidirectional switch (a hat
switch). When a hat switch is not being pressed it
is in a null state. When in a null state, the ocointr
will report a value outside of the specified Logica
Minimum and Logical Maximum (the most
negative value, such as -128 for an 8-bit value).

Indicates whether the Feature or Output control's
value should be changed by the host or not.
Volatile output can change with or without host
interaction. To avoid synchronization problems,
volatile controls should be relative whenever
possible. If volatile output is absolute, when
issuing a Set Report (Output), request set thee
of any control you don't want to change to a value
outside of the specified Logical Minimum and
Logical Maximum (the most negative value, such
as -128 for an 8-bit value). Invalid output to a
control is ignored by the device.

Data bit 7 is undefined for input items and is
reserved for future use.



Descriptors 31

Remarks

Bit Part Value Description
8 Bit Field | 0|1 Indicates that the control emits a fixed-sizeam
Buffered of bytes. The contents of the data field are
Bytes determined by the application. The contents of the
buffer are not interpreted as a single numeric
quantity. Report data defined by a Buffered Bytes
item must be aligned on an 8-bit boundary. The
data from a bar code reader is an example.
9- Reserved 0 Reserved for future use.
31

If the Main item is a constant then none of the subsequent attributes apply. If
thelnput item is an array, only the Data/Constant, Variable/Array and
Absolute/Relative attributes apply.

The number of data fields in an item can be determined by examining the
Report SizeandReport Count values. For example an item withRaport
Sizeof 8 bits and &eport Count of 3 has three 8-bit data fields.

Input items define input reports accessible viaGmatrol pipe with the
Get_Report (Input) or Set_Report (Input) requests.

Input type reports are also sent at the polling rate vidntieerupt pipe.

TheData | Constant, Variable | Array , Absolute | Relative, Nonlinear,
Wrap, andNull State data for arDutput item are identical to those data for
aninput item.

Output items makeDutput reports accessible via t@ontrol pipe with the
Get_Report (Output) andSet_Report (Output) commands.

While similar in functionQutput andFeature items differ in the following

ways:

« Featureitems define configuration options for the device and are usually
set by a control panel application. Because they affect the behavior of a
device (for example, button repeat rate, reset origin, and so feedgre
items are not usually visible to software applications. ConveGeltyput
items represent device output to the user (for example, LEDs, audio, tactile
feedback, and so forth). Software applications are likely to set device
Output items.

« Featureitems may be attributes of other items. For example, an Origin
Reset Feature may apply to one or more positipat items. LikeOutput
items,Feature items make up Feature Reports accessible vi@dmérol
pipe with theGet_Report (Feature)andSet_Report (Feature)requests.



32 Device Class Definition for Human Interface Dev  ices (HID)

6.2.2.6 Collection, End Collection Items

Description A Collection item identifies a relationship between two or more dataug,
Output, or Feature.) For example, a mouse could be described as a collection of
two to four data (x, y, button 1, button 2). While @alection item opens a
collection of data, th&nd Collection item closes a collection.

Parts Type of
collection Value  Description

Linked 0x00 A group of data describing data about a singledilfjike a poin
in space). A 3D device might have x, y and z positlata in a
single linked collection. Alternatively, a deviceutd have two
pointers with each x, y pair grouped in a sepdiaked
collection. A joystick might report x and y axegadahe buttons
on the stick inside a linked collection, while faus on the base
could be reported oute the collection. A voltmeter might gra
voltage, resistance, and amperage from a set beprimto a
linked collection.

Application 0x01 A group of Main items that might be familiardpplications. It
could also be used to identify item groups serdiffgrent
pumposes in a single device. Common examples arelmkey o
mouse. A keyboard with an integrated pointing dewiould be
defined as two different application collectionst®reports are
usually (but not necessarily) associated with apgibn
collections (one report ID per application).

Datalink 0x02 A group of data that are interrelated to each othar example,
data size item may precede a byte buffer item @&nasisociated
with it. Or a 6D pointing device may report its gioal
orientation with a quaternion matrix representatishere each
individual quantity has no direct physical correlat

Reserved 0x03 - Reserved for future use.
OX7F
0x80 - Vendor-defined.
OxFF
Remarks « All Main items between th€ollection item and thé&end Collection item are

included in the collection. Collections may contain other nested collections.

« Collection items do not generate data. However, liksalh items, aJsage
item tag may be associated with any collection (such as a mouse or throttle).
Collection items may be nested, and they are always optional.



Descriptors 33

Description

Parts

6.2.2.7 Global Items

Global items describe rather than define data from a control. ANhaiw item
assumes the characteristics of the item state t@hdeal items can change the
state table. As a resu®lobal item tags apply to all subsequently defined items
unless overridden by anoth@tobal item.

One-Byte
Prefix (nn
represents

Global item tag size value) Description

Usage Page 000001n Specifies the current Usage Page. Since the
more than 256 usages, the Usage Page
detemines which set of usages are relevant.
Usage Tag points to a particular usage on a
given Usage Page.

Logical Minimum 000101n Extent value in logical units. This is the
minimum value that a variable or array item will
report. For example, a mouse reporting x
position values from 0 to 128 would have a
Logical Minimum of 0 and a Logical Maximum
of 128.

Logical Maximum 001001n Extent value in logical units. This is the
maximum value that a variable or array item
report.

Physical Minimum 001101n Minimum value for the physical extent of a
variable item. This represents the Logical
Minimum with units applied to it.

Physical Maximum 010001n Maximum value for the physical extent of a
variable item.

Unit Exponent 010101n Value of the unit exponent in base 10. See the
table later in this section for more information.

Unit 01100Mn Unit values.

Report Size 01110%n Unsigned integer specifying the size of the

report fields in bits. This allows the parser to
build an item map for the report handler to use.
For more information, see Section 8: Report
Protocol.



34 Device Class Definition for Human Interface Dev  ices (HID)
One-Byte
Prefix (nn
represents
Global item tag size value) Description
Report ID 100004n Specifies the Report ID. If a Report ID tag is
used anywhere in Report descriptor, all data
reports for the device are preceded by a single
byte ID field. All items succeeding the first
Report ID tag but preceding a second Report ID
tag are included in a report prefixed by a 1-byte
ID. All items succeeding the second but
preceding a third Report ID tag are included
second report prefixed by a second ID, and so
on.
This Report ID value indicates the prefix added
to a particular report. For example, a Report
descriptor could define a 3-byte report with a
Report ID of 01. This device would generate a
4-byte data report in which the first byte is 01.
The device may also generate other reports,
with a unique ID. This allows the host to
distinguish different types of reports arriving
over a single interrupt pipe. Report ID zero is
reserved and should not be used.
Report Count 100101n Number of data fields for the item; determines
how many fields are included in the report for
this particular item (and consequently how m
bits are added to the report).
Push 10100hn Places a copy of the item state table on the stack
Pop 10110hn Replaces the item state table with the top
structure from the stack.
Reserved 110001n Range reserved for future use.
to
11110hn
See Also
For a list ofUsage Pageags, see Appendix A: Usage Tags.
Remarks « While Logical Minimum andLogical Maximum (extents) bound the values

returned by a devic&hysical Minimum andPhysical Maximum give
meaning to those bounds. For example, a thermometer might have logical
extents of 0 and 999 but physical extents of 32 and 212 degrees.



Descriptors 35

The resolution can be calculated with the following formula:

Resol ution = (Logi cal Maxi num - Logical M nimn)/
((Physical Maxi mum - Physical Mninun) *
( 10 Unit Exponent ) )

For example, a 400-dpi mouse might have the items shown in the following

table.

Item Value
Logical Minimum -127
Logical Maximum 127
Physical Minimum -3175
Physical Maximum 3175
Unit Exponent -4
Unit Inches

Therefore, the formula for calculating resolution must be:

Resol ution = (127-(-127)) / ((3175-(-3175)) * 10°%) = 400 counts per inch

« TheUnit item qualifies values as described in the following table.

Nibble System 0x0 0x1 0x2 0x3 0x4
Exponent 0 1 2 3 4

0 System None Sl Linear S| Rotation English English
Linear Rotation

1 Length None Centimeter Radians Inch Degrees

2 Mass None Gram Gram Slug Slug

3 Time None Seconds Seconds Seconds Seconds

4 Temperature None Kelvin Kelvin Fahrenheit Fahegnh

5 Current None Ampere Ampere Ampere Ampere

6 Luminous intensity None Candela Candela Candela and€la

7 Reserved None None None None None

Note ForSystempart, codes 0x5 to OXxE aReserved code 0x7 is vendor-
defined.




36 Device Class Definition for Human Interface Dev  ices (HID)

Codes and exponents not shown in the preceding table:

Code Exponent
0x5 5
0x6 6
0x7 7
0x8 -8
0x9 -7
OxA -6
0xB -5
0xC -4
0xD -3
OxE 2
OxF -1

Most complex units can be derived from the basic units of length, mass, time,
temperature, current and luminous intensity. For example energy (joules) can

be represented as:

joule =[mass(granms)] [l ength(centimeters)?][time(seconds) ?]

TheUnit exponent would be 7 because a joule is composed of kilograms (1 kg
equals 103 grams) and meters. For example, consider the following.

Nibble Part Value
3 Time -2

2 Mass

1 Length

0 System 1

The parts of some common units are shown in the following table.

Unit Nibbles

6(1) 5 (i) 4 @) 3 () 2 (m) 1) 0 (sys) Code
Distance 0 0 0 0 0 1 1 x0011
Mass 0 0 0 0 1 0 1 x0101
Time 0 0 0 1 0 0 1 x1001
Velocity 0 0 0 -1 0 1 1 xFO11
Momentum 0 0 0 -1 1 1 1 xF111
Acceleration 0 0 0 -2 0 1 1 xEO011
Force 0 0 0 -2 1 1 1 xE111
Energy 0 0 0 -2 1 2 1 xE121



Descriptors 37

Unit Nibbles
6(1) 5 (i) 4 () 3 (1) 2 (m) 1(1) 0 (sys) Code
Angular 0 0 0 -2 0 1 2 xEQ12
Acceleration
Voltage 0 -1 0 -3 1 2 1 x00F0D121

« Inthe case of an arraReport Count determines the maximum number of
controls that may be included in the report and consequently the number of
keys or buttons that may simultaneously be pressed as well as the size of each
element. For example, an array supporting up to three simultaneous key
presses, where each field is 1 byte, would look like this:

Report Size (8),
Report Count (3),

In the case of a variable item, tReport Count specifies how many controls
are included in the report. For example, eight buttons could look like this:

Report Size (1),
Report Count (8),

6.2.2.8 Local Items

Description Local item tags define characteristics of controls. These items do not cartpov
the nextMain item. If aMain item defines more than one control, it may be
preceded by several similaocal item tags. For example, dmput item may
have severdlUsagetags associated with it, one for each control.

Parts One-Byte
Prefix (nn
represents
Tag size value) Description
Usage 000010n Usage index for an item usage; represents a
suggested usage for the item or collection. In the
case where an item represents multiple controls, a
Usage tag may suggest a usage for every variable
or element in an array.
Usage Minimum  00011Gin Defines the starting usage associated with an
or bitmap.
Usage Maximum 00101Gn Defines the ending usage associated with an array
or bitmap.
Designator Index 00111Gin Determines the body part used for a control. Index

points to a designator in the Physical descriptor.



38 Device Class Definition for Human Interface Dev  ices (HID)

One-Byte
Prefix (nn
represents

Tag size value) Description

Designator 01001Gn Defines the index of the starting designator

Minimum associated with an array or bitmap.

Designator 010110 Defines the index of the ending designator

Maximum associated with an array or bitmap.

String Index 01111 String index for a String descriptor; allows argj
to be associated with a particular item or control.

String Minimum 10001Gin Specifies the first string index when assigning a
group of sequential strings to controls in an array
or bitmap.

String Maximum  10011Gn Specifies the last string index when assigning a
group of sequential strings to controls in an array
or bitmap.

Set Delimiter 10101Gin Defines the beginning or end of a set of local
items (0 = open set, 1 = close set).

Reserved 101011hnto Reserved.

11111G6in
Remarks « While Local items do not carry over to the nétain item, they may apply to

more than one control within a single item. For example, ihpat item

defining five controls is preceded by thidsagetags, the three usages would
be assigned sequentially to the first three controls, and the third usage would
also be assigned to the fourth and fifth controls. If an item has no controls
(Report Count = 0), thkocal item tags apply to thielain item (usually a
collection item).

« To assign unique usages to every control in a siigle item, simply specify
eachUsagetag sequentially (or uggsage Minimumor Usage Maximun).

Note It is important thatJsagebe used properly. While very specific usages
exist (landing gear, bicycle wheel, and so on) those usages are intended to
identify devices that have very specific applications. A joystick with generi
buttons should never assign an application-specific usage to any button.
Instead, it should assign a generic usage such as “Button.” However, an
exercise bicycle or the cockpit of a flight simulator may want to narrowly
define the function of each of its data sources.




Descriptors 39

It is also important to remember thagageitems convey information about

the intended use for the data and may not correspond to what is actually being
measured. For example, a joystick would havX @amdY Usageassociated

with its axis data (and nttsagesRx andRy.)

See Also
For a list of Usage parts, see Appendix A: Usage Tags.

Because button bitmaps and arrays can represent multiple buttons or switches
with a single item, it may be useful to assign multiple usage$/faira item.

Usage Minimum specifies the usage to be associated with the first
unassociated control in the array or bitmadpage Maximumspecifies the end

of the range of usage values to be associated with item elements. The
following example illustrates how this could be used for a 105-key keyboard.

Tag Result

Report Count (1) One field will be added to thearep

Report size (8) The size of the newly added fisld i
byte (8 bits).

Logical Minimum (0) Defines 0 as the lowest possit#turn
value.

Logical Maximum (101) Defines 101 as the highest possible re
value and sets the range from 0 to 87.

Usage Page (0x07) Selects keyboard usage page.

Usage Minimum (0x00) Assigns first of 101-key usage

Usage Maximum (0x65) Assigns last of 101-key usages

Input: (Data, Array, Absolute) Creates and addsbgté array to the

input report.

A control may have more than one usage, string or physical descriptor
associated with it. One or more alternative sets of local items may be
associated with a control by simply bracketing each setSgttDelimiter

items. Alternative sets are always optional and may not be recognized by the
operating system.



40 Device Class Definition for Human Interface Dev  ices (HID)

6.2.3 Physical Descriptors

A Physicaldescriptor is a data structure that provides information about the
specific part or parts of the human body that are activating a control or controls.
For example, a physical descriptor might indicate that the right hand thumb is used
to activate button 5. An application can use this information to assign functionality
to the controls of a device.

Note Physicaldescriptors are entirely optional. They add complexity and offer
very little in return for most devices. However, some devices, partictifenbe

with a large number of identical controls (for example, buttons) will find that
Physical descriptors help different applications assign functionality to these
controls in a more consistent manner. Skip the following section if you do not plan
on supporting®hysical descriptors.

Similar string descriptors are grouped into setgsical Indextags contained in
the Report descriptor map items (or controls) to a sped#fitysical descriptor
contained in &hysicaldescriptor set (hereafter referred to generically as a
descriptor set).

Each descriptor set consists of a short header followed by one oPmgieal
descriptors. The header defines Bias (whether the descriptor set is targeted at a
right or left-handed user) and tReeferenceof the set. For a particul&ias, a
vendor can define alterna®hysicaldescriptors (for example, a right-handed user
may be able to hold a device in more than one way, therefore remapping the
fingers that touch the individual items).

EachPhysicaldescriptor consists of the following three fields:

« Designator. identifies the actual body part that effects an item—for example,
the hand.

« Qualifier : further defines the designator—for example, right or left hand.
« Effort: value quantifying the effort the user must employ to effect the item.

If multiple items identify the samesignator/Qualifier combination, thé&ffort
value can be used to resolve the assignment of functiorisffémn value of O

would be used to define the button a finger rests on when the hand is in the “at
rest” position, that is, virtually no effort is required by the user to activate the
button.Effort values increment as the finger has to stretch to reach a control.

The only time two or more controls will have identical

Designator/Qualifier/Effort combinations is because they are physically
connected together. A long skinny key cap with ‘+' at one end and ‘-’ at the other
is a good example of this. If it is implemented electrically as two discrete push
buttons, it is possible to have both pressed at the same time even though they are
both under the same key cap. If the vendor decided that for this product, pressing



Descriptors 41

the ‘+" and ‘-’ buttons simultaneously was valid then they would be described as
two discrete push-buttons with identiédtysical descriptors. However, if the key

cap was labeled “Volume” and pressing both buttons at the same time had no
meaning, then a vendor would probably choose to describe the buttons as a single
item with three valid states: off, more volume (+), and less volume (-). Inatbés ¢

only onePhysical descriptor would be needed.

Consider a joystick that has two buttons (A and B) on the left side of the base and
a trigger button on the front of the stick that is logically OR’d with Button A. The
joystick base is most often held in the left hand while the stick is manipulated with
the right. So, the firdbesignatortag would designate Button A as:

I ndex Finger, Right, Effort 0O

Similarly, button B would be designated as:

Thunb, Left, Effort 0

If the joystick was placed on a table top and the left hand was used to control both
buttons on the base then anotRbaysical descriptor could identify an alternate
mapping for Button A of:

M ddl e Finger, Left, Effort O

Button B would be designated as:

I ndex Finger, Left, Effort O

Important Designatortags are optional and may be provided for all, some, or
none of a device’s items or elements.

Physical Descriptor Ois a special descriptor that defines the numb&hgsical
descriptors (the set header).

Part Offset/Size (Bytes) Description

bNumber 0/1 Numeric expression specifying the number of
Physicaldescriptors. Do not include Physical
Descriptor 0 itself in this number.

bLength 1/2 Numeric expression identifying the length oftea
Physical descriptor.

Upon receiving &et_Descriptor request from the hostHID class device will
return thePhysicaldescriptor specified in the requestaluelow byte. A
Physicaldescriptor consists of a header followed by one or more physical
descriptors. APhysicaldescriptor is accessed by using figysical Indexthat is
defined in theReport descriptor.



42 Device Class Definition for Human Interface Dev  ices (HID)

Remarks

TheHID class device uses the following format forRtsysical descriptor.

Part Offset/Size (Bytes) Description
bPhysicallnfo  0/1 Bits specifying physical information:
7.5 Bias

4..0 Preference
0 = Most preferred

dPhysical 1/2 Physical descriptor data, index 1.
DPhysical 3/2 Physical descriptor data, index 2.
dPhysical (n*2)-1/2 Physical descriptor data, index

TheBiasfield indicates which hand tligesignator set is characterizing. This
may not apply to some devices.

Bias Value Description

Not applicable
Right hand
Left hand
Both hands
Either hand
Reserved
Reserved

~N o o~ WN P O

Reserved

Note A device that only fits in the right hand will not retd?hysical
descriptors with a left-handdlas.

ThePreferencefield indicates whether thehysicaldescriptor contains
preferred or alternative designator information. A vendor will define the
Preferencevalue of O for the most preferred or most typical set of physical
information. HighePreferencevalues indicate less preferrBtysical
descriptors.

A Physicaldescriptor has the following parts.

Part Offset/Size (Bytes) Description

bDesignator  0/1 Designator value; indicates which part of the
body affects the item

bFlags 1/1 Bits specifying flags:
7..5 Qualifier
4.0 Effort

Designator Value Description

00 None



Descriptors

43

Designator Value Description
01 Hand

02 Eyeball

03 Eyebrow
04 Eyelid

05 Ear

06 Nose

07 Mouth

08 Upper lip
09 Lower lip
0A Jaw

0B Neck

oC Upper arm
0D Elbow

OE Forearm
OF Wrist

10 Palm

11 Thumb

12 Index finger
13 Middle finger
14 Ring finger
15 Little finger
16 Head

17 Shoulder
18 Hip

19 Waist

1A Thigh

1B Knee

1C Calf

1D Ankle

1E Foot

1F Heel

20 Ball of foot
21 Big toe

22 Second toe
23 Third toe



44

Device Class Definition for Human Interface Dev  ices (HID)

Designator Value Description
24 Fourth toe
25 Little toe

26 Brow

27 Cheek
28-FF Reserved

« TheQualifier field indicates which hand (or half of the body) the desigriator
defining. This may not apply to for some devices.

Qualifier Value Description

Not applicable
Right

Left

Both

Either

Center
Reserved

~N o o~ W N B O

Reserved

« TheEffort field indicates how easy it is for a user to access the control. A
value of 0 identifies that the user can affect the control quickly and easily. As
the value increases, it becomes more difficult or takes longer for the user to
affect the control.



Requests 45

/. Requests
7.1 Standard Requests

TheHID class uses the standard requ&st Descriptor as described in the USB
Specification. When &et_Desriptor(Configuration) request is issued, it returns
the Configuration descriptor, diiterface descriptors, alEndpoint descriptors,
and theHID descriptor for each interface. It shall not returnSiving descriptor,
HID Report descriptor or any of the optiondlD class descriptors. ThélD
descriptor shall be interleaved with ttmerface andEndpoint descriptors. That
is, the order shall be:

Configuration descriptor (other Interface, Endpoint, and Vendor Specific
descriptors if required)
Interface descriptor (with Subclass and Protocol specifying bootable
keyboar d)
Endpoi nt descriptor (H D Interrupt Endpoint)
HI D descriptor (associated with this Endpoint)
(other Interface, Endpoint, and Vendor Specific descriptors if
required).

Note Get_Descriptor can be used to retrieve standard, class, and vendor
specific descriptors, depending on the setting of the descTippar field.

See Also

For details, see Chapter 9 of the USB Specification, “USB Device Class
Framework.”



46 Device Class Definition for Human Interface Dev  ices (HID)

Description

Parts

Remarks

Description

Parts

7.1.1 Get_Descriptor Request

TheGet_Descriptor request returns a descriptor for the device.

Part From Device From Endpoint

bmRequestType 10000000 10000010

bRequest GET_DESCRIPTOR (0x06) GET_DESCRIPTOR (0x06)

wValue Descriptor Type and Descriptor Type and
descriptor Index descriptor Index

windex 0 (zero) or Language ID Endpoint

wLength Descriptor Length Descriptor Length

Data Descriptor Descriptor

« ThewValuefield specifies the descriptdiype in the high byte and the
descriptor index in the low byte.

« The low byte is the descriptbrdex used to specify the set fBhysical
descriptors and is reset to zero for otHéD class descriptors.

« Designator Set Oreturns a special descriptor identifying the number of sets
and their sizes. If a standard descriptor is being requested themthexfield
specifies the Language ID for string descriptors or is reset to zero for other
descriptors. If &ID class descriptor is being requested themitmelexfield
indicates source endpoint.

« A Get_Descriptorrequest with th&hysical Indexequal to 1 will request the
first Physical descriptor. A device could possibly have alternate uses for its
items. These can be enumerated by issuing subsegatridescriptor
requests while incrementing tRéysical Index The number oPhysical
descriptors is defined in a header is identified as:

Physi cal 0

A device will return the lagPhysicaldescriptor to requests greater than the
last number defined in tHélD descriptor.

7.1.2 Set_Descriptor Request

TheSet_Descriptorrequest lets the host change descriptors in the devices.
Optional.

Part To Device To Endpoint

bmRequestType 00000000 00000010

bRequest SET_DESCRIPTOR (0x07) SET_DESCRIPTOR (0x07)

wValue Descriptor Type (high) and  Descriptor Type and
Descriptor Index (low) Descriptor Index

windex 0 (zero) or Language ID Endpoint



Requests 47

Remarks

Description

Parts

Part To Device To Endpoint
wLength Descriptor Length Descriptor Length
Data Descriptor Descriptor

The following table defines the Descriptor Type (the high bitvgalug.

Part Description
Descriptor Type Bits specifying characteristics of descriptor Type
7 Reserved (should always be 0)
6.5 Type
0 = Standard
1 =Class
2 = Vendor

4..0 Descriptor
See the standard class or vendor Descriptor Tyids. t

The following defines valid types @flassdescriptors.

Value Class Descriptor Types
0x01 HID

0x02 Report

0x03 Physical descriptor
0x04 - 0x19 Reserved

Ox1A - Ox1F Vendor-defined

7.2 Class-Specific Requests

Class-specific requests allow the host to inquire about the capabilities @noff stat
a device and to set the state of output and feature items. These transactions are

done over th®efault pipe and therefore follow the formatDéfault pipe
requests as defined in the USB Specification.

Part Offset/Size (Bytes) Description

bmRequestType 0/1 Bits specifying characteristics of request.
Valid values are 10100010 or 00100010
only based on the following description.

7 Data transfer direction
0 = Host to device
1 = Device to host

6.5 Type
1 =Class

4..0 Recipient
2 = Endpoint



48 Device Class Definition for Human Interface Dev  ices (HID)

Part Offset/Size (Bytes) Description

bRequest 1/1 A specific request.

wValue 2/2 Numeric expression specifying word-size
field (varies according to request.)

windex 4/2 Index or offset specifying word-size field

(varies according to request.)

wLength 6/2 Numeric expressions specifying number of
bytes to transfer in the data phase.

Remarks The following table defines valid valuestiRequest
Value Description
0x01 GET_REPORT
0x02 GET_IDLE
0x03 GET_PROTOCOP
0x04-0x08 Reserved
0x09 SET_REPORT
Ox0A SET_IDLE
0x0B SET_PROTOCOE

1 This request is mandatory and must be supportedl bigvices.

2 This request is required only for boot devices.

7.2.1 Get_Report Request

Description The Get_Reportrequest allows the host to receive a report viaCiwetrol pipe.
Parts Part Description

bmRequestType 10100010

bRequest GET_REPORT

wValue Report Type and Report ID

windex Endpoint

wLength Report Length

Data Report

7.2.2 Set_Report Request

Description The Set_Reportrequest allows the host to send a report to the device, possibly
setting the state of input, output, or feature controls.
Parts Part Description

bmRequestType 00100010
bRequest SET_REPORT




Requests 49

Remarks

Description

Parts

Description

Part Description

wValue Report Type and Report ID
windex Endpoint

wLength Report Length

Data Report

» A device might choose to ignore infdgt_Reportrequests as meaningless.
Alternatively these reports could be used to reset the origin of a control (that is,
current position should report zero). The effect of sent reports will also depend
on whether the recipient controls are absolute or relative.

« This request is useful at initialization time for absolute items and for
determining the state of feature items. This request is not intended to be used
for polling the device state on a regular basis.

« Thelnterrupt pipe should be used for recurribigut reports. Thénput
report reply has the same format as the reports finéerrupt pipe.

« SetReport ID to 0 (zero) ifReport IDs are not used.

Value Report Type
01 Input

02 Output

03 Feature
04-FF Reserved

7.2.3 Get_ldle Request

TheGet_ldle request reads the current idle rate for a partidofart report (see:
Set_ldlerequest).

Part Description
bmRequestType 10100010

bRequest GET_IDLE

wValue 0 (zero) and Report ID
windex Endpoint

wlLength 1 (one)

Data Idle rate

7.2.4 Set_ldle Request

TheSet_ldlerequest silences a particular report onlitterrupt pipe until a new
event occurs or the specified amount of time passes.



50 Device Class Definition for Human Interface Dev  ices (HID)

Parts Part Description
bmRequestType 00100010
bRequest SET_IDLE
wValue Duration and Report ID
windex Endpoint
wLength 0 (zero)
Data Not applicable
Remarks This request is used to limit the reporting frequency of an interrupt endpoint.

Specifically, this request causes the endpoint to NAK any polls on an interrupt
endpoint while its current report remains unchanged. In the absence of a change,
polling will continue to be NAK'd for a given time-based duration. This request
has the following parts.

Part Description

Duration When the upper byte wiValueis 0 (zero), the duration is indefinite.
The endpoint will inhibit reporting forever, onlgporting when a
change is detected in the report data.

When the upper byte @fValueis non-zero, then a fixed duration is
used. The duratiowill be linearly related to the value of the uppegte,
with the LSB being weighted as 4 milliseconds. Tgnavides a range
values from 0.004 to 1.020 seconds, with a 4 reitisnd resolution. If
the duration is less than the device polling réten reports are
generated at the polling rate.

If the given time duration elapses with no chamgeeport data, then a
single report will be generated by the endpoint mambrt inhibition will
begin anew using the previous duration.

Report ID When the lower byte ofValueis non-zero, then the idle rate only
applies to the Report ID specified by the valu¢heflower byte. For
example a device with two input reports could sfyem idle rate of 20
milliseconds for Report ID 1 and 500 milliseconds Report ID 2.

Accuracy This time duration shall have an accudcy/-(10% + 2 milliseconds)

Latency A new request will be executed as if it were issimechediately after th
last report, if the new request is received attléasilliseconds before
the end of the currently executing period. If tleevirequest is received
within 4 milliseconds of the end of the currentipdy then the new
request will have no effect until after the report.

If the current period has gone past the newly piloed time duration,
then a report will be generated immediately.

If the interrupt endpoint is servicing multiple reports thenShat Idlerequest
affects only the rate duplicate reports are generated for the sp&afdenit ID.
For example, a device with two input reports could specify an idle rate of 20
milliseconds for report ID 1 and 500 milliseconds for report ID 2.



Requests 51

Description

Parts

Remarks

Description

Parts

Remarks

The recommended default idle rate (rate when the device is initialized) is 500
milliseconds for keyboards (delay before first repeat rate) and infinity feti¢eg
and mice.

7.2.5 Get_Protocol Request

The Get_Protocolrequest reads which protocol is currently active (either the boot
protocol or the report protocol.)

Part Description
bmRequestType 10100010
bRequest GET_PROTOCOL
wValue 0 (zero)
windex Endpoint
wLength 1 (one)
Data 0 = Boot

1=Item

This request is supported by devices inBoet subclass. The/Valuefield
dictates which protocol should be used.

7.2.6 Set_Protocol Request

TheSet_Protocolswitches between the boot protocol and the report protocol (or
vice versa).

Part Description
bmRequestType 00100010
bRequest SET_PROTOCOL
wValue 0 = Boot

1=Item
windex Endpoint
wlLength 0 (zero)
Data Not Applicable

This request is supported by devices in the boot subclassvWdleefield
dictates which protocol should be used.

When initialized, all devices default to report protocol. However the host should
not make any assumptions about the device’s state and should set the desired
protocol whenever initializing a device.



52 Device Class Definition for Human Interface Dev  ices (HID)

8. Report Protocol
8.1 Report Types

Reports contain data from one or more items. Data transfers are sent from the
device to the host through thaerrupt pipe in the form of reports. Reports may
also be requested (polled) and sent througiCtm@rol pipe. A report contains

the state of all the item#nput, Output or Feature) belonging to a particular
Report ID. The software application is responsible for extracting the individual
items from the report based on Report descriptor.

All of the items’ values are packed on bit boundaries in the report (no byte or
nibble alignment). However, items reporting Null or constant values must be used
to byte-align values, or tHeeport Sizemay be made larger than needed for some
fields simply to extend them to a byte boundary.

The bit length of an item’s data is obtained throughRbport descriptor Report
Size* Report Count). ltem data is ordered just as items are ordered in the

Report descriptor. If &Report ID tag was used in tHeeport descriptor, all

reports include a single byte ID prefix. If tReport ID tag was not used, all

values are returned in a single report and a prefix ID is not included in that report.

8.2 Report Format for Standard Items

The report format is composed of an 8-bit report identifier followed by the data
belonging to this report.

15141312111098:‘ 76543210

I I
Byte 1 to n: Report Byte 0: Report ID

Report ID
TheReport ID field is 8 bits in length. If n&keport ID tags are used in the
Report descriptor, there is only one report and Report ID field is omitted.

Report Data
The data fields are variable-length fields that report the state of an item.



Report Protocol 53

8.3 Report Format for Array Iltems

Each button in an array reports an assigned number called an array index. This can
be translated into a keycode by looking up the array elerbsaize Pagend

Usage When any button transitions between open and closed, the entire list of
indices for buttons currently closed in the array is transmitted to the host.

Since only one array element can be reported in each array field, modifier keys
should be reported as bitmap data (a group of 1-bit variable fields). For example,
keys such asTRL, SHIFT, ALT, and GUI keys make up the 8 bit modifier byte in a
standard keyboard report. Although these usage codes are defined in the Usage
Table as EO-E7, the usage is not sent as array data. The modifier byte is defined
as follows.

@
L

Key

LEFT CTRL
LEFT SHIFT
LEFT ALT
LEFT GUI
RIGHT CTRL
RIGHT SHIFT
RIGHT ALT
RIGHT GUI

~N O O~ W N P O

The following example shows the reports generated by a user typing
ALT+CTRL+DEL, using a bitmap for the modifiers and a single array for all other
keys.

Transition Modifier Byte Array Byte
LEFT ALT down 00000100 00
RIGHT CTRLdown 00010100 00
DEL down 00010100 4C
DEL up 00010100 00
RIGHT CTRLUP 00000100 00
LEFT ALT Up 00000000 00
See Also

For a list of standard keyboard key codes, see Appendix A: Usage Tags.



54 Device Class Definition for Human Interface Dev  ices (HID)

If there are multiple reports for this device, all reports would be preceded by the
Report ID.

n...181716 I15141312111098I 76543210

I | |
Byte 2 to n: Array Index Byte 1: Bitmap Byte 0: Report ID

If a set of keys or buttons cannot be mutually exclusive, they must be represented
either as a bitmap or as multiple arrays. For example, function keys on a 101-key
keyboard are sometimes used as modifier keys—for exampie|n this case, at
least two array fields should be reported in an array iRepdrt Count = 2).

8.4 Report Constraints

The following constraints apply to reports and to the report handler:

« An item field cannot span more than 4 bytes in a report. For example, a 32-bit
item must start on a byte boundary to satisfy this condition.

« More than one report can be present in one USB transfer. For example, an
8-byte USB transfer could contain twagput reports.

« A report might span one or more USB transactions. For example, an
application that has 10-byte reports will span at least two USB transactions in a
low-speed device.

« Avreportis always byte-aligned. If required, reports are padded with bits (0)
until the next byte boundary is reached.

8.5 Report Example

The followingReport descriptor defines an item with &rput report.

Usage Page (Generic Desktop),
Usage (Mouse),

Col | ection (Application),
Usage (Pointer),
Col | ecti on (Linked),

Report I D (0A), ; Make changes to report OA

Usage (X), Usage (V),

Logi cal M ni mum (-127), ; Report data val ues range from-127
Logi cal Maxi mum (127), ;to 127

Report Size (8), Report Count (2),

I nput (Data, Variable, Relative), ;Add 2 bytes of position data (X & Y) to report OA
Logi cal M ni mum (0), ; Report data val ues range from-127

Logi cal Maxi mum (1), ;to 127

Report Count (1), Report Size (3),

Usage Page (Page# for Buttons),

Usage M ni mum (1),



Report Protocol 55

Usage Maxi mum (3),
I nput (Data, Variable, Absolute), ;Add 2 bits (Button 1, 2 & 3) to report OA
Report Size (5),
I nput (Constant), ;Add 5 bits padding to byte align the report OA
End Col | ection
End Col | ection

Thelnput report structure for the above device would look as follows.

3130292827262524 2322212019181716 15141312111098 76543210

Byte3— | 76543210 76543210 I 76543210 76543210
I_'_II.JI.I.IITI

Button 3 -
Button 2
Button 1

Default Value 0 | |
Byte 2:Y Byte 1: X Byte 0: Report ID

The following table uses a keyboard with an integrated pointing device to
demonstrate how to use two reports for a device with just one interface.

Iltem Usages Report ID
Col | ection (Application) Keyboard
Input (Variable, Absolute) Modifier keys 00
Qutput (Variable, Absolute) LEDs 00
Input (Array, Absol ute) Main keys 00
End Col l ection
Col I ection (Application) Mouse
Col | ection (Linked) Pointer
I nput (Variable, Relative) X, Y 01
I nput (Variable, Absolute) Button 01

End Coll ection
End Coll ection

Note Only Input, Output, andFeatureitems (notCollection items) present
data in a report. This example demonstrates multiple reports, however this

interface would not be acceptable for a boot device (use separate interfaces for

keyboards and mouse devices).







Appendix A: Usage Tags 57

Appendix A: Usage Tags

See the supplementdlD Usage document for complete listddageTags,
including key codes for keyboards.

A.1 Usage Pages

The following is a list of currently definddsage Pages

Item ID Item Name

00 Undefined

01 Generic desktop controls
02 Reserved

03 Reserved

04 Reserved

05 Reserved

06 Reserved

07 Keyboard/keypad keys
08 LEDs

09 Buttons

OA-FE Reserved

FF Vendor defined

A.2 Generic Desktop Page (0x01)

Item ID Item Name
00 Undefined
01 Pointer

02 Mouse

03 Pen

04 Joystick
05 Gamepad
06 Keyboard
07 Keypad
08-2F Reserved
30 X

31 Y

32 z



58 Device Class Definition for Human Interface Dev  ices (HID)

Item ID Item Name
33 Rx

34 Ry

35 Rz

36 Slider

37 Dial

38 Reserved
39 Hat switch
3A Stylus

3B Pen pressure
3C-FF Reserved

A.3 Keyboard/Keypad Page (0x07)

This Section is th&JsagePagefor key codes to be used in implementing a USB
keyboard. A bootable keyboard (84-, 101- or 104-key) should at a minimum
support all associated usage codes as indicated in the “Bootable” column below.

Note A general note olsagesand languages: Due to the variation of keyboards
from language to language, it is not feasible to specify exact key mappings for
every language. Where this list is not specific for a key function in a language, the
closest equivalent key position should be used, so that a keyboard may be
modified for a different language by simply printing different keycaps. One
example is the Y key on a North American keyboard. In Germany this is typically
Z. Rather than changing the keyboard firmware to put the Z Usage into that place
in the descriptor list, the vendor should use the Y Usage on both the North
American and German keyboards. This continues to be the existing practice in the
industry, in order to minimize the number of changes to the electronics to
accommodate other languages.

Usage Usage Ref: Typical

Index  Index AT-101 PC-

(Dec) (Hex) Usage Position AT Mac Unix Bootable
0 00 Reserved (no event indicated) N/A v v Vv 84/101/104
1 01 Keyboard ErrorRollOver N/A v v v 84/101/104
2 02 Keyboard POSTFAll N/A v v v 84/101/104
3 03 Keyboard ErrorUndefined N/A v v v 84/101/104
4 04 Keyboard a and4A 31 v v v 84/101/104
5 05 Keyboard b and B 50 v v v 84/101/104
6 06 Keyboard ¢ and4C 48 v v v 84/101/104



Appendix A: Usage Tags 59

Usage Usage Ref: Typical

Index  Index AT-101 PC-

(Dec) (Hex) Usage Position AT Mac Unix Bootable
7 07 Keyboard d and D 33 v v v 84/101/104
8 08 Keyboard e and E 19 v v v 84/101/104
9 09 Keyboard f and F 34 v v v 84/101/104
10 0A Keyboard g and G 35 v v v 84/101/104
11 0B Keyboard h and H 36 v v v 84/101/104
12 0C Keyboard i and | 24 v v v 84/101/104
13 0D Keyboard j and J 37 v v v 84/101/104
14 OE Keyboard k and K 38 v v v 84/101/104
15 OF Keyboard | and L 39 v v v 84/101/104
16 10 Keyboard m and M 52 v v v 84/101/104
17 11 Keyboard n and N 51 v v v 84/101/104
18 12 Keyboard o and40 25 v v v 84/101/104
19 13 Keyboard p andP 26 v v v 84/101/104
20 14 Keyboard g and4Q 17 v v v 84/101/104
21 15 Keyboard r and R 20 v v v 84/101/104
22 16 Keyboard s anctS 32 v v v 84/101/104
23 17 Keyboard tand T 21 v v v 84/101/104
24 18 Keyboard u and U 23 v v v 84/101/104
25 19 Keyboard v and V 49 v v v 84/101/104
26 1A Keyboard w and W 18 v v v 84/101/104
27 1B Keyboard x and 4 47 v v v 84/101/104
28 1c Keyboard y and4y 22 v v v 84/101/104
29 1D Keyboard z and4z 46 v v v 84/101/104
30 1E Keyboard 1 and ! 2 v v v 84/101/104
31 1F Keyboard 2 and @ 3 v v v 84/101/104
32 20 Keyboard 3 andt# 4 v v v 84/101/104
33 21 Keyboard 4 anct$ 5 v v v 84/101/104
34 22 Keyboard 5 and %6 6 v v v 84/101/104
35 23 Keyboard 6 and” 7 v v v 84/101/104
36 24 Keyboard 7 and4& 8 v v v 84/101/104
37 25 Keyboard 8 and+* 9 v v v 84/101/104
38 26 Keyboard 9 and ( 10 v v v 84/101/104
39 27 Keyboard 0 and ) 11 v v v 84/101/104
40 28 Keyboard Returrei(TER)S 43 v v v 84/101/104



60 Device Class Definition for Human Interface Dev  ices (HID)
Usage Usage Ref: Typical
Index  Index AT-101 PC-
(Dec) (Hex) Usage Position AT Mac Unix Bootable
41 29 Keyboard&scArE 110 v v v 84/101/104
42 2A KeyboardELETE 15 v v v 84/101/104
(Backspacdp
43 2B Keyboard Tab 16 v v v 84/101/104
44 2C Keyboard Spacebar 61 v v v 84/101/104
45 2D Keyboard - and (underscare) 12 v v v 84/101/104
46 2E Keyboard and+4 13 v v v 84/101/104
47 2F Keyboard [ and¥{ 27 v v v 84/101/104
48 30 Keyboard ] and#} 28 v v Vv 84/101/104
49 31 Keyboard \ and | 29 v v v 84/101/104
50 32 Keyboard Non-U.S. # and ~ 42 v v v 84/101/104
51 33 Keyboard ; and : 40 v v v 84/101/104
52 34 Keyboard * and4* 41 v v v 84/101/104
53 35 Keyboard Grave Accent and 1 v v v 84/101/104
Tilde4
54 36 Keyboard, and4< 53 v v v 84/101/104
55 37 Keyboard . and#> 54 v v v 84/101/104
56 38 Keyboard / anct? 55 v v v 84/101/104
57 39 Keyboard CapsLotk 30 v v v 84/101/104
58 3A Keyboard F1 112 v v v 84/101/104
59 3B Keyboard F2 113 v v v 84/101/104
60 3C Keyboard F3 114 v v v 84/101/104
61 3D Keyboard F4 115 v v v 84/101/104
62 3E Keyboard F5 116 v v v 84/101/104
63 3F Keyboard F6 117 v v v 84/101/104
64 40 Keyboard F7 118 v v v 84/101/104
65 41 Keyboard F8 119 v v v 84/101/104
66 42 Keyboard F9 120 v v v 84/101/104
67 43 Keyboard F10 121 v v v 84/101/104
68 44 Keyboard F11 122 v v v 101/104
69 45 Keyboard F12 123 v v v 101/104
70 46 Keyboard PrintScrekn 124 v v v 101/104
71 47 Keyboard ScrollLogk 125 v v v 84/101/104
72 48 Keyboard Pause 126 v v v 101/104



Appendix A: Usage Tags 61
Usage Usage Ref: Typical
Index  Index AT-101 PC-
(Dec) (Hex) Usage Position AT Mac Unix Bootable
73 49 Keyboard Inseirt 75 v v v 101/104
74 4A Keyboard Honfe 80 v v v 101/104
75 4B Keyboard PageUWp 85 v v v 101/104
76 4C Keyboard Delete Forwdrth 76 v v v 101/104
77 4D Keyboard Enid 81 v v v 101/104
78 4E Keyboard PageDown 86 v v v 101/104
79 4F Keyboard RightArrotv 89 v v v 101/104
80 50 Keyboard LeftArrow 79 v v v 101/104
81 51 Keyboard DownArrow 84 v v v 101/104
82 52 Keyboard UpArrow 83 v v v 101/104
83 53 Keypad NumLock and Cléar 90 v v v 101/104
84 54 Keypad¥ 95 v v v 101/104
85 55  Keypad * 100 Vv Vv v 84/101/104
86 56 Keypad - 105 v v v 84/101/104
87 57  Keypad + 106 v v v 84/101/104
88 58 KeypadENTERS 108 v v v 101/104
89 59 Keypad 1 and End 93 v v v 84/101/104
90 5A Keypad 2 and Down Arrow 98 v v v 84/101/104
91 5B Keypad 3 and PageDn 103 v v v 84/101/104
92 5C Keypad 4 and Left Arrow 92 v v v 84/101/104
93 5D Keypad 5 97 v v v 84/101/104
94 5E Keypad 6 and Right Arrow 102 v v v 84/101/104
95 5F Keypad 7 and Home 91 v v v 84/101/104
96 60 Keypad 8 and Up Arrow 96 v v v 84/101/104
97 61 Keypad 9 and PageUp 101 v v v 84/101/104
98 62 Keypad 0 and Insert 99 v v v 84/101/104
99 63 Keypad . and Delete 104 v v v 84/101/104
100 64 Keyboard Non-U.S. \ arfd| 45 v v v 84/101/104
101 65 Keyboard Applicatidga 129 v v 104
102 66 Keyboard Power v v
103 67 Keypad = v
104 68 Keyboard F13 v
105 69 Keyboard F14 v
106 6A Keyboard F15 v



62 Device Class Definition for Human Interface Dev  ices (HID)
Usage Usage Ref: Typical
Index  Index AT-101 PC-
(Dec) (Hex) Usage Position AT Mac Unix Bootable
107 6B Keyboard F16
108 6C Keyboard F17
109 6D Keyboard F18
110 6E Keyboard F19
111 6F Keyboard F20
112 70 Keyboard F21
113 71 Keyboard F22
114 72 Keyboard F23
115 73 Keyboard F24
116 74 Keyboard Execute v
117 75 Keyboard Help v
118 76 Keyboard Menu v
119 77 Keyboard Select v
120 78 Keyboard Stop v
121 79 Keyboard Again v
122 TA Keyboard Undo v
123 7B Keyboard Cut v
124 7C Keyboard Copy v
125 7D Keyboard Paste v
126 7E Keyboard Find v
127 7F Keyboard Mute v
128 80 Keyboard Volume Up v
129 81 Keyboard Volume Down v
130 82 Keyboard Locking CapsLdék v
131 83 Keyboard Locking NumLogk v
132 84 Keyboard Locking v

ScrollLocki2

133 85 Keypad Comma
134 86 Keypad Equal Sign
135 87 Keyboard Kanji
136 88 Keyboard Kanji@
137 89 Keyboard Kanji3
138 8A Keyboard Kanjits
139 8B Keyboard Kanji®



Appendix A: Usage Tags 63
Usage Usage Ref: Typical
Index  Index AT-101 PC-
(Dec) (Hex) Usage Position AT Mac Unix Bootable
140 8C Keyboard Kanj®
141 8D Keyboard Kanji
142 8E Keyboard Kanj@
143 8F Keyboard Kanj&
144 90 Keyboard LANGAL
145 91 Keyboard LANG®
146 92 Keyboard LANG3
147 93 Keyboard LANGH#
148 94 Keyboard LANGS
149 95 Keyboard LANG®
150 96 Keyboard LANGY
151 97 Keyboard LANGB
152 98 Keyboard LANG®
153 99 Keyboard Alternate Erdse
154 9A Keyboard SysReg/Attentibn
155 9B Keyboard Cancel
156 9C Keyboard Clear
157 9D Keyboard Prior
158 9E Keyboard Return
159 9F Keyboard Separator
160 AO Keyboard Out
161 Al Keyboard Oper
162 A2 Keyboard Clear/Again
163 A3 Keyboard CrSel/Props
164 A4 Keyboard ExSel
165-223 A5-DF Reserved
224 EO Keyboard LeftControl 58 v v v 84/101/104
225 El Keyboard LeftShift 44 v v v 84/101/104
226 E2 Keyboard LeftAlt 60 v v v 84/101/104
227 E3 Keyboard Left GUW#:23 127 v v v 104
228 E4 Keyboard RightControl 64 v v v 101/104
229 E5 Keyboard RightShift 57 v v v 84/101/104
230 E6 Keyboard RightAlt 62 v v v 101/104
231 E7 Keyboard Right Gug:24 128 Vv v v 104



64 Device Class Definition for Human Interface Dev  ices (HID)

Usage Usage Ref: Typical
Index  Index AT-101 PC-
(Dec) (Hex) Usage Position AT Mac Unix Bootable

232-255 E8-FF Reserved

1 Usage of keys is not modified by the state of thatédl, Alt, Shift or NumLock keys. That is, a kdges not send extra
codes to compensate for the state of any ContitglShift or NumLock keys.

2 Typical language mappings: US: \| Belg: u’£ FrGa: Ban:™ Dutch: <> Fren:*u Ger: # Ital: u§ LatAn¥’] Nor:,* Span:
}C Swed: ,* Swiss: $£ UK: #~.

3 Typical language mappings: Belg:<\> FrCa:«°» DanButch:]|[ Fren:<> Ger:<|> Ital:<> LatAm:<> Nor:<Span:<>
Swed:<|> Swiss:<\> UK:\| Brazil: \|.

4 Typically remapped for other languages in the kgstem.

5 Keyboard Enter and Keypad Enter generate diffddsaige codes.

6 Typically near the Left-Shift key in AT-102 implemtations.

7 Example, Erase-Eaze™ key.

8 Reserved for language-specific functions, suchrestfEnd Processors and Input Method Editors.

9 Reserved for typical keyboard status or keyboarmtgr Sent as a member of the keyboard array. Igbiysical key.
10 Windows key for Windows 95, and “Compose.”

11 Implemented as a non-locking key; sent as memben afrray.

12 Implemented as a locking key; sent as a toggl®bufivailable for legacy support; however, mostays should use the
non-locking version of this key.

13 Backs up the cursor one position, deleting a cheras it goes.

14 Deletes one character without changing position.

21 Toggle Double-Byte/Single-Byte mode.

22 Undefined, available for other Front End LanguagecEssors.

23 Windowing environment key, examples are Microsd@fttWin key, Mac Left Apple key, Sun Left Meta key

24 Windowing environment key, examples are Micro8adIGHT WIN key, Macintos® RIGHT APPLEkey, Suf® RIGHT
META key.

Footnotes 15-20
Note AT-104 DOS/V-109 (suggested) PC98 (suggested)
15 No function |

N A A
16 No function j]&j]j'
035} INTE
VAN




Appendix A: Usage Tags

65

17

18

19

20

No function

No function

No function

No function

v

XFER

No function

NFER

(hv7)




66 Device Class Definition for Human Interface Dev  ices (HID)
A.4 LED Page (0x08)
Iltem ID Item Name ltemID Item Name
00 Undefined 1E Speaker
01 Num Lock 1F Head Set
02 Caps Lock 20 Hold
03 Scroll Lock 21 Microphone
04 Compose 22 Coverage
05 Kana 23 Night Mode
06 Power 24 Send Calls
07 Shift 25 Call Pickup
08 Do Not Disturb 26 Conference
09 Mute 27 Stand-by
0A Tone Enable 28 Camera On
0B High Cut Filter 29 Camera Off
oC Low Cut Filter 2A On-Line
0D Equalizer Enable 2B Off-Line
OE Sound Field On 2C Busy
OF Surround field On 2D Ready
10 Repeat 2E Paper-Out
11 Stereo 2F Paper-Jam
12 Sampling Rate Detect 30 Remote
13 Spinning 31 Forward
14 CAV 32 Reverse
15 CLv 33 Stop
16 Recording Format Detect 34 Rewind
17 Off-Hook 35 Fast Forward
18 Ring 36 Play
19 Message Waiting 37 Pause
1A Data Mode 38 Record
1B Battery Operation 39 Error
1C Battery OK 3A-FF Reserved
1D Battery Low



Appendix A: Usage Tags

67

A.5 Button Page (0x09)

Item ID Item Name

00 No button pressed

01 Button 1 (primary/trigger)
02 Button 2 (secondary)

03 Button 3 (tertiary)

04 Button 4

FF Button 255



68 Device Class Definition for Human Interface Dev  ices (HID)

Appendix B: Boot Interface
Descriptors

TheHID Subclass 1 defines two descriptors for boot devices. Devices may
append additional data to these boot reports, but the first 8 bytes of keyboard
reports and the first 3 bytes of mouse reports must conform to the format defined
by theBoot Report descriptor in order for the data to be correctly interpreted by
the BIOS. The report may not exceed 8 bytes in length. The BIOS will ignore any
extensions to reports. These descriptors describe reports that the BIOS expects to
see. However, since the BIOS does not actually rea@epert descriptors, these
descriptors do not have to be hard-coded into the device. Instead, descriptors that
describe the device reports in a USB-aware operating system should be included
(these may or may not be the same). WhertBe class driver is loaded, it will

issue a Change Protocol, changing from the boot protocol to the report protocol
after reading the boot interfacdeport descriptor.

B.1 Protocol 1 (Keyboard)

The following representsReport descriptor for a boot interface for a keyboard.

Usage Page (Generic Desktop), Usage (Keyboard),

Col l ection (Application),
Usage Page (Key Codes) ; Usage M ni mum (224)
Usage Maxi mum (231), Logical M ninmm (0),
Logi cal Maxi mum (1), Report Size (1), Report Count (8),

Input (Data, Variable, Absolute), ;Modi fier byte
Report Count (1), Report Size (8),
I nput (Constant), ; Reserved byte

Report Count (5), Report Size (1), Usage Page (LEDs),
Usage M ninmum (1), Usage Maxi mum (5),

Qut put (Data, Variable, Absolute), ; LED report
Report Count (1), Report Size (3),
Qut put (Constant), ; LED report paddi ng

Report Count (6), Report Size (8), Logical M ninmum(0),
Logi cal Maxi mun{255), Usage Page (Key Codes),
Usage M ninum (0), Usage Maxi num (255),
I nput (Data, Array),
End Col I ection

Byte Description

0 Modifier keys
1 Reserved

2 Keycode 1

3 Keycode 2



Appendix B: Boot Interface Descriptors 69

Byte Description
4 Keycode 3
5 Keycode 4
6 Keycode 5
7 Keycode 6

Note Byte 1 of this report is a constant. This byte is reserved for OEM use. The
BIOS should ignore this field if it is not used. Returning zeros in unused fields is
recommended.

The following table represents the modifier byte.

Bit Description

0 NUMLOCK

1 CAPSLOCK

2 SCROLL LOCK
3 COMPOSE

4 KANA

5t07 CONSTANT

Note The LEDs are absolute output items. This means that the state of each LED
must be included in output reports (0 = off, 1 = on). Relative items would permit
reports that affect only selected controls (0 = no change, 1= change).

B.2 Protocol 2 (Mouse)

The following illustration representsReport descriptor for a boot interface for a
mouse.

Usage Page (Generic Desktop), Usage (Muse),
Col l ection (Application),
Usage (Pointer),
Col I ection (Linked),
Usage Page (Buttons), Usage M ninmum (1),
Usage Maxi mum (3), Logical M ninmm (0),
Logi cal Maxi mum (1), Report Count (3), Report Size (1),
I nput (Data, Variable, Absolute),
Report Count (1), Report Size (5),
I nput (Constant),
Usage Page (Generic Desktop), Usage (X), Usage (Y),
Logi cal M ni mum (-127), Logical Maximum (127),
Report Size (8), Report Count (2),
I nput (Data, Variable, Relative),
End Col | ecti on,



70 Device Class Definition for Human Interface Dev

ices (HID)

End Col | ection

Byte Bits Description
0 0 Button 1

1 Button 2

2 Button 3

4t07 Device-specific
1 Oto7 X displacement
2 Oto7 Y displacement
3ton Oto7 Device specific



Appendix C: Keyboard Implementation 71

Appendix C: Keyboard
Implementation

The following are design requirements for USB keyboards:

Non-modifier keys must be reported in Input (Array, Absolute) items. Reports
must contain a list of keys currently pressed and not make/break codes (relative
data).

The keyboard must send data reports at the Idle rate or when receiving a
Get_Reportrequest, even when there are no new key events.

The keyboard must support tite request.

The keyboard must report a phantom state in all array fields when the number
of keys pressed exceeds the Report Count. The limit is six non-modifier keys
when using the keyboard descriptor in Appendix B. Additionally, a keyboard
may report the phantom condition when an invalid or unrecognizable
combination of keys is pressed.

The order of keycodes in array fields has no significance. Order determination
is done by the host software comparing the contents of the previous report to
the current report. If two or more keys are reported in one report, their order is
indeterminate. Keyboards may buffer events that would have otherwise
resulted in multiple event in a single report.

“Repeat Rate” and “Delay Before First Repeat” are implemented by the host
and not in the keyboard (this means the BIOS in legacy mode). The host may
use the device report rate and the number of reports to determine how long a
key is being held down. Alternatively, the host may use its own clock or the
idle request for the timing of these features.

Synchronization between LED states @aekLOCK, Num Lock, SCROLL LOCK,

Compost andKANA events is maintained by the host and NOT the keyboard. If
using the keyboard descriptor in Appendix B, LED states are set by sending a
5-bit absolute report to the keyboard videt_Report(Output) request.

For boot keyboards, the reported index for a given key must be the same value
as the key usage for that key. This is required because the BIOS will not read
theReport descriptor. It is recommended (but not required) that non-legacy
protocols also try to maintain a one-to-one correspondence between indices
andUsageTagswhere possible.



72 Device Class Definition for Human Interface Dev  ices (HID)

« Boot keyboards must support the boot protocol an&#teProtocolrequest.
Boot keyboards may support an alternative protocol (specified Repert
descriptor) for use in USB-aware operating environments.

Key Event Modifier Byte Array Array Array Comment

None 00000000B OOH OOH O00H

RALT down 01000000 00 00 00

None 01000000 00 00 00 Report current key

state even when 1
new key events.

A down 01000000 04 00 00

X down 01000000 04 1B 00

B down 01000000 04 05 1B Report order is
arbitrary and does
not reflect order o
events.

Q down 01000000 01 01 01 Phantom state.
Four Array keys
pressed. Modifiers
still reported.

Aup 01000000 05 14 1B

B andQ up 01000000 1B 00 00 Multiple events in
one report. Event
order is
indeterminate.

None 01000000 1B 00 00

RALT up 00000000 1B 00 00

X up 00000000 00 00 00

Note This example uses a 4-byte report so that the phantom condition can be
more easily demonstrated. Most keyboards should have 8 or more bytes in their
reports.




Appendix D: Example Report Descriptors 73

Usage Page (Page#),

Appendix D: Example Report
Descriptors

The following are example descriptors for common devices. These examples are
provided only to assist in understanding this specification and are not intended as
definitive solutions.

D.1 Example Joystick Descriptor

Usage (Joystick), Report Count (0),

Col l ection (Application),
Usage Page (Page#), Usage (Pointer),
Col |l ection (Linked),
Logi cal M ni num (-127), Logical Maximum (127), Report Size (8),

Report Count
I nput ( Dat a,

(2), Push, Usage (X), Usage (YY),
Vari abl e, Absolute),

Usage (Hat switch), Logical M ninmum (0), Logical Maxinmm (3), Physical M ninum 0),
Physi cal Maxi mum (270), Unit (Degrees), Report Count (1), Report Size (4),

I nput ( Dat a,

Vari abl e, Absolute, Null State),

Logi cal M ni num (0), Logical Maxinmum (1), Report Count (2), Report Size (1),
Usage Page (Page# for Buttons), Usage (Button), Unit (None),

I nput ( Dat a,
End Col | ecti on,
Usage (Button)

Vari abl e, Absol ute)

I nput (Data, Variable, Absolute),

Pop, Usage (Thr

ottle), Report Count (1),

I nput (Data, Variable, Absolute),

End Col |l ection

Byte Bits Description
0 Oto7 X position
1 Oto7 Y position
2 Oto3 Hat switch

4 Button 1

5 Button 2

6 Button 3

7 Button 4
3 Oto7 Throttle

Note While the hat switch item only requires 3 bits, it is allocated 4 bits in the
report. This conveniently byte-aligns the remainder of the report.




74 Device Class Definition for Human Interface Dev

ices (HID)

Appendix E: Example USB
Descriptors for HID Class Devices

This appendix contains a sample set of descriptors for an imaginary product.

Caution This sample is intended for use as an instructional tool. Do NOT copy
this information verbatim—even if building a similar device. It is important t
understand the function of every field in every descriptor and why each value was
chosen.

The sample device is a low-speed 105-key keyboard with an integrated pointing
device. This device could be built using just one interface. However, two are used
in this example so the device can support the boot protocol. As a result there are
two Interface, Endpoint, HID andReport descriptors for this device.

E.1 Device Descriptor

Part Offset/Size (Bytes) Description Sample Value
bLength 0/1 Numeric expression specifying the size of  0x12
descriptor.
bDescriptorType 1/1 Device descriptor type (assigned by USB). 0x01
bcdUSB 2/2 USB HID Specification Release 1.0. 0x100
bDeviceClass 4/1 Class code (assigned by USB). Note that theOx00
HID class is defined in the Interface
descriptor.
bDeviceSubClass 5/1 Subclass code (assigned by USB). These  0x00
codes are qualified by the value of the
bDeviceClasdield.
bDeviceProtocol 6/1 Protocol code. These codes are qualified by 0x00
the value of théDeviceSubclasseld.
bMaxPacketSize0 711 Maximum packet size for endpoint zero (onlyOx08
8, 16, 32, or 64 are valid).
idvVendor 8/2 Vendor ID (assigned by USB). For this OxFFFF
example we’ll use xFFFF.
idProduct 10/2 Product ID (assigned by manufacturer). 0x0001
bcdDevice 12/2 Device release number (assigned by 0x0100
manufacturer).
iManufacturer 14/1 Index of String descriptor describing 0x04
manufacturer.
iProduct 15/1 Index of string descriptor describing product. 0XOE



Appendix E: Example USB Descriptors for HID Class Devices 75

Part Offset/Size (Bytes) Description Sample Value

iSerialNumber 16/1 Index of String descriptor describing the 0x30
device’s serial number.

bNumConfigurations 17/1 Number of possible configurations. 0x01

E.2 Configuration Descriptor

Part Offset/Size (Bytes) Description Sample Value
bLength 0/1 Size of this descriptor in bytes. 0x09
bDescriptorType 1/1 Configuration (assigned by USB). 0x02
wTotalLength 2/2 Total length of data returned for this 0x00AC

configuration. Includes the combined length
of all returned descriptors (configuration,
interface, endpoint, and HID) returned for
configuration. This value includes the HID
descriptor but none of the other HID class
descriptors (report or designator).

bNuminterfaces 4/1 Number of interfaces supported by this 0x02
configuration.

bConfigurationValue 5/1 Value to use as an argument to Set 0x01
Configuration to select this configuration.

iConfiguration 6/1 Index of string descriptor describing this 0x00
configuration. In this case there is none.

bmAttributes 7/1 Configuration characteristics 10100000B

7 Bus Powered

6 Self Powered

5 Remote Wakeup

4..0 Reserved (reset to 0)

MaxPower 8/1 Maximum power consumption of USB dev  0x32
from bus in this specific configuration when
the device is fully operational. Expressed in 2
mA units—for example, 50 = 100 mA. The
number chosen for this example is arbitrary.

E.3 Interface Descriptor (Keyboard)

Part Offset/Size (Bytes) Description Sample Value
bLength 0/1 Size of this descriptor in bytes. 0x09
bDescriptorType 11 Interface descriptor type (assigned by USB).  040x
binterfaceNumber 2/1 Number of interface. Zero-based value 0x00

identifying the index in the array of
concurrent interfaces supported by this
configuration.



76 Device Class Definition for Human Interface Dev  ices (HID)

Part Offset/Size (Bytes)

Description Sample Value

bAlternateSetting 3/1

bNumEndpoints 4/1

binterfaceClass 5/1
binterfaceSubClass 6/1

bInterfaceProtocol 7/1

iInterface 8/1

Value used to select alternate setting for the 0x00
interface identified in the prior field.

Number of endpoints used by this interface 0x01
(excluding endpoint zero). If this value is
zero, this interface only uses endpoint zero.

Class code (HID code assigned by USB). 0x03
Subclass code. 0x01

0 No subclass
1 Boot Interface subclass

Protocol code. 0x01
0 None

1 Keyboard

2 Mouse

Index of string descriptor describing this 0x00
interface.

E.4 Endpoint Descriptor (Keyboard)

Part Offset/Size (Bytes) Description Sample Value
bLength 0/1 Size of this descriptor in bytes. 0x07
bDescriptorType 1/1 Endpoint descriptor type (assigned by USB).  50x0

bEndpointAddress 2/1

bmAttributes 3/1

The address of the endpoint on the USB 10000001B
device described by this descriptor. The
address is encoded as follows:

Bit 0..3 The endpoint number
Bit 4..6 Reserved, reset to zero
Bit 7 Direction, ignored for

Control endpoints:
0 OUT endpoint
1 IN endpoint

This field describes the endpoint’s attributes 00000011B
when it is configured using the

bConfigurationValue.
Bit0..1 Transfer type:
00 Control

01 Isochronous
10 Bulk

11 Interrupt

All other bits are reserved.



Appendix E: Example USB Descriptors for HID Class Devices 77

Part

Offset/Size (Bytes)

Description Sample Value

wMaxPacketSize

4/1

Maximum packet size this endpoint is cap: 0x08
of sending or receiving when this
configuration is selected.

For interrupt endpoints, this value is used to
reserve the bus time in the schedule, required
for the per frame data payloads. Smaller data
payloads may be sent, but will terminate the
transfer and thus require intervention to

restart.
binterval 6/1 Interval for polling endpoint for data Ox0A
transfers. Expressed in milliseconds.
E.5 HID Descriptor (Keyboard)
Part Offset/Size (Bytes) Description Sample Value
bLength 0/1 Size of this descriptor in bytes. 0x09
bDescriptorType 11 HID descriptor type (assigned by USB). 0x01
bcdHID 2/2 HID Class Specification release number in  0x100
binary-coded decimal—for example, 2.10 is
0x210).
bCountryCode 4/1 Hardware target country. 0x00
bNumDescriptors 5/1 Number of HID class descriptors to follow. 0x01
bDescriptorType 6/1 Repordescriptor type. 0x02
wltemLength 712 Total length of Repodescriptor. 0x3F



78 Device Class Definition for Human Interface Dev  ices (HID)

E.6 Report Descriptor (Keyboard)

Item Value (Hex)
Usage Page (Generic Desktop), 0501
Usage (Keyboard), 09 06
Collection (Application), Al 01
Usage Page (Key Codes); 05 07
Usage Minimum (224), 19 EO
Usage Maximum (231), 29 E7
Logical Minimum (0), 1500
Logical Maximum (1), 2501
Report Size (1), 7501
Report Count (8), 95 08
Input (Data, Variable, Absolute), ;Modifier byte 8102
Report Count (1), 9501
Report Size (8), 75 08
Input (Constant), ;Reserved byte 8101
Report Count (5), 95 05
Report Size (1), 7501
Usage Page (Page# for LEDs), 0508
Usage Minimum (1), 1901
Usage Maximum (5), 29 05
Output (Data, Variable, Absolute), ;LED report 91 02
Report Count (1), 9501
Report Size (3), 75 03
Output (Constant), ;LED report padding 9101
Report Count (6), 95 06
Report Size (8), 75 08
Logical Minimum (0), 1500
Logical Maximum(101), 25 65
Usage Page (Key Codes), 05 07
Usage Minimum (0), 19 00
Usage Maximum (101), 29 65
Input (Data, Array), ;Key arrays (6 bytes) 8100
End Collection Cco



Appendix E: Example USB Descriptors for HID Class

Devices 79

E.7 Interface Descriptor (Mouse)

Part Offset/Size (Bytes) Description Sample Value
bLength 0/1 Size of this descriptor in bytes. 0x09
bDescriptorType 11 Interface descriptor type (assigned by USB).  040x
binterfaceNumber 2/1 Number of interface. 0x01
bAlternateSetting 3/1 Value used to select alternate setting. 0x00
bNumEndpoints 4/1 Number of endpoints. 0x01
binterfaceClass 5/1 Class code (HID code assigned by USB). 0x03
binterfaceSubClass  6/1 1 = Boot Interface subclass. 0x01
binterfaceProtocol 7/1 2 = Mouse. 0x02
iInterface 8/1 Index of string descriptor. 0x00

E.8 Endpoint Descriptor (Mouse)
Part Offset/Size (Bytes) Description Sample Value
bLength 0/1 Size of this descriptor in bytes. 0x07
bDescriptorType 1/1 Endpoint descriptor type (assigned by USB).  50x0
bEndpointAddress 2/1 The address of the endpoint. 10000010B
bmAttributes 3/1 This field describes the endpoint’s attributes.00000011B
wMaxPacketSize 4/2 Maximum packet size. 0x08
binterval 6/1 Interval for polling endpoint for data O0x0A

transfers.

E.9 HID Descriptor (Mouse)
Part Offset/Size (Bytes) Description Sample Value
bLength 0/1 Size of this descriptor in bytes. 0x09
bDescriptorType 1/1 HID descriptor type (assigned by USB). 0x01
bcdHID 2/2 HID Class Specification release number. 0x100
bCountryCode 4/1 Hardware target country. 0x00
bNumbDescriptors 5/1 Number of HID class descriptors to follow. 0x01
bDescriptorType 6/1 Repordescriptor type. 0x02
wltemLength 712 Total length of Repodescriptor. 0x32



80 Device Class Definition for Human Interface Dev  ices (HID)

E.10 Report Descriptor (Mouse)

Item Value (Hex)
Usage Page (Generic Desktop), 0501
Usage (Mouse), 09 02
Collection (Application), Al 01
Usage (Pointer), 0901
Collection (Linked), Al 00
Usage Page (Buttons), 0509
Usage Minimum (01), 1901
Usage Maximun (03), 29 03
Logical Minimum (0), 1500
Logical Maximum (1), 2501
Report Count (3), 95 03
Report Size (1), 7501
Input (Data, Variable, Absolute), :3 button bits 8102
Report Count (1), 9501
Report Size (5), 75 05
Input (Constant), ;5 bit padding 8101
Usage Page (Generic Desktop), 0501
Usage (X), 09 30
Usage (Y), 09 31
Logical Minimum (-127), 1581
Logical Maximum (127), 25 7F
Report Size (8), 75 08
Report Count (2), 95 02
Input (Data, Variable, Relative), ;2 positiondyi(X & Y) 81 06
End Collection, CoO
End Collection Cco

E.11 String Descriptors

Part Offset/Size (Bytes) Description Sample Value
bLength 00/01 Length of String descriptor in bytes. 0x04
bDescriptorType 01/01 Descriptor Type = String 0x03
bString 02/02 Array of LangID codes (in this case thby?e = 0x0009
code for English).
bLength 04/01 Length of String descriptor. O0x0A
bDescriptorType 05/01 Descriptor Type = String 0x03
bString 06/08 Manufacturer ACME
bLength 14/01 Length of String descriptor. 0x22
bDescriptorType 15/01 Descriptor Type = String 0x03
bString 16/32 Product Locator Keyboard Locator
Keyboard
bLength 48/01 Length of String descriptor. OxOE



Appendix E: Example USB Descriptors for HID Class Devices 81

Part Offset/Size (Bytes) Description Sample Value
bDescriptorType 49/01 Descriptor Type = String 0x03
bString 50/12 Device Serial Number ABC123

Note In this example, offset is used for the string index because the offset is
always a small number (less than 256). Alternatively, each string could be given a
sequential string index (0, 1, 2, 3...). Both implementations are functionally
equivalent so long as the device responds appropriately to a string request.




82 Device Class Definition for Human Interface Dev  ices (HID)

Repor t Descri pt or

Item Li st
Main Item
Itens

Local I tem Li st

d obal Item

Local Item

Appendix F: BNF Grammar for the
USB HID Descriptor

This grammar compiles cleanly under the MS-DOS version of Berkeley YACC
(byacc.exe ver 1.9), and may be compiled with any YACC-compatible compiler.

-> |tenlist

-> |temrs Mainltem
| ltenlList Itenms Mainltem

-> Collection Itenlist End Collection
| I nput

| Qutput

| Feature

-> G oballtem

| Local ltem

| Set Delinmeter(Qpen) LocalltenLlist Set Delinmeter(d ose)

| Items doballtem

| Items Local Item

| Items Set Delineter(QOpen) Local Itenlist Set Delinmeter(d ose)

-> Local Item
| LocalltenList Localltem

-> Usage Page
| Logical M ninum
| Logical Maxinum
| Physical M ninum
| Physical Maxinum
| Unit

| Exponent

| Report Size

| Report Count

| Report ID

-> Usage

| Usage M ni mum

| Usage Maxi mum

| Designator |ndex

| Designator M ninmum



Appendix F: BNF Grammar for the USB HID Descriptor

83

Desi gnat or Maxi num
String | ndex
String M nimm
String Maxi mum



84 Device Class Definition for Human Interface Dev  ices (HID)

Appendix G: Keyboard
Implementation

The boot and legacy protocols for keyboards in USB allow a system which is not
USB-aware (such as PC BIOS or IEEE 1275 boot firmware) to support a USB
HID class keyboard without fully supporting all required elements of USB. The
Boot/Legacy Protocol does not limit keyboards to this behavior. Instead, it is
anticipated that keyboards will support both the boot and lggatgcols and the

full HID -compatible item-based protocols.

G.1 Purpose

This specification provides information to guide keyboard designers in making a
USB Boot/Legacy keyboard. It provides information for developers of the system
ROM so that they can use such a keyboard without fully parsinglihéreport
descriptor. The motivation is that while the fdlID class capability is

enormously rich and complex, it is not feasible to implement the reddifzd

class adjustable device driver in ROM. But, operator input may still be required
for either boot or legacy support.

G.2 Management Overview

TheHID Class specification provides for the implementation of self-describing
input devices. A device'slID descriptors, including thReport descriptor,
contain enough information for the operating system to understand the report
protocol the device uses to send events like key presses.

Most USB devices will run with the support of some USB-aware operating
system. The operating system can afford this level of complexity. In most system
the ROM-based boot system cannot.

However, the ROM-based boot system usually requires some keyboard support to
allow for system configuration, debugging, and other functions. Examples include
the BIOS in PC-AT systems, and IEEE 1275 boot firmware in workstations. PC-
AT systems running DOS have an additional problem, in that the BIOS must
provide full keyboard support for DOS legacy applications required for system
setup.

It is therefore necessary for the system to take keyboard input before the operating
system loads. It soon follows that mouse support may also be necessary. To make
this easier for the ROM developer, HED specification defines a keyboard boot
protocol and a mouse boot protocol. Since these protocols are predefined, the
system can take the 8-byte packets and decode them directly. The boot system
does not need to parse Report descriptors to understand the packet.



Appendix G: Keyboard Implementation 85

G.3 Bootable Keyboard Requirements

In order to be a USB Bootable Keyboard, a keyboard should meet the following
requirements:

« The bootable keyboard shall report keys in the format described in Appendix B
of theHID Class specification.

« The bootable keyboard shall support 8e_Idlerequest.

« The bootable keyboard shall send data reports when the interrupt pipe is
polled, even when there are no new key events SEheldle request shall
override this behavior as described intH® Class specification.

« The bootable keyboard shall report “Keyboard ErrorRollOver” in all array
fields when the number of non-modifier keys pressed exceeds the Report
Count. The limit is six non-modifier keys for a Bootable Keyboard.

« The bootable keyboard shall report “Keyboard ErrorRollOver” in all array
fields when combination of keys pressed cannot be accurately determined by
the device, such as ghost key or rollover errors.

« The bootable keyboard shall not maintaiPSLOCK, NUMLOCK, SCROLL
LOCK, COMPOSE or KANA LED states without explicBet_Report(Output)
requests from the system.

« The bootable keyboard shall support all usage codes of a standard 84-key
keyboard. (See: Appendix A.3)

« The bootable keyboard shall support 8e_Protocolrequest.

« The bootable keyboard shall, on reset, return to the non- boot protocol which is
described in itRReport descriptor. That is, thReport descriptor for a
bootable keyboard does not necessarily match the bootable protocol. The
Report descriptor for a bootable keyboard is the non- boot protocol descriptor.

« On receipt of &et_Descriptor request withwValueset to
CONFIGURATION, the keyboard shall return the Configuration descriptor,
all Interface descriptors, alEndpoint descriptors, and thelD descriptor. It
shall not return thélID Report descriptor. ThédID descriptor shall be
interleaved with thénterface andEndpoint descriptors; that is, the order
shall be:

Configuration descriptor (other Interface, Endpoint, and Vendor
Specific descriptors if required)
Interface descriptor (with Subclass and Protocol specifying
boot abl e keyboar d)
Endpoi nt descriptor (H D Interrupt Endpoint)
H D descriptor (associated with this Endpoint)
(other Interface, Endpoint, and Vendor Specific
descriptors if required)



86

Device Class Definition for Human Interface Dev  ices (HID)

G.4 Keyboard: Non-USB Aware System
Design Requirements

Following are the requirements for a BIOS, IEEE 1275 boot firmware, or other
non-USB aware system to use a USB boot protocol keyboard:

The system shall make no assumptions about the order of key presses from the
order of keys within a single report. The order of key codes in array fields has
no significance. Order determination is done by the host software comparing
the contents of the previous report to the current report. If two or more keys are
reported in one report, their order is indeterminate. Keyboards may buffer
events that would have otherwise resulted in multiple events in a single report.

The system shall implement typematic repeat rate and delay. The Boot
keyboard has no capability to implement typematic repeat rate and delay. The
system may use the device report rate and the number of reports to determine
how long a key is being held down. Alternatively, the system may use its own
clock or theSet_ldlerequest for the timing of these features.

The system shall Maintain synchronization between LED states the Caps,
Numlock, or Scroll Lock events. The system sets LED states by sending a 5-bit
absolute report to the keyboard vi&et_Report(specifyingOutput report)
request.

The system shall issueS&t_Protocolrequest to the keyboard after
Configuring the keyboard device.

The system shall disregard the value of the second byte in the 8-byte keyboard
data packet. This byte is available for system-specific extensions; however
there is no guarantee that any use of the second byte will be portable to a non-
specific system. It is therefore likely to be limited to use as a notebook
keyboard feature extension, where the notebook is built n to the system and not
able to be moved to a generic platform.

G.5 Keyboard: Using the Keyboard Boot
Protocol

This section explains some of the detail behind the requirements listed in
Appendix G.4.

To use the boot protocol, the system should do the following:

Select a Configuration which includes a binterfaceSubClass of 1, “Boot
Interface Subclass,” and a binterfaceProtocol of 1, “Keyboard”.

Do aSet_Protocolto ensure the device is in boot mode. By default, the device
comes up in non-boot mode (must readRleport descriptor to know the
protocol), so this step allows the system to put the device into the predefined
boot protocol mode.



Appendix G: Keyboard Implementation 87

On receipt of an 8-byte report on the Interrupt endpoint, the system must look
at the modifier key bits (Byte 0, bits 7-0) to determine if any ofther,

CTRL, ALT, or GUI keys has changed state since the last report. The system
must also look at the six keycode bytes to see if any of the non-modifier keys
has changed state since the last report.

If a non-modifier key has changed state, the system must translate the keycode
sent in theReport to a system-recognized key event.

This remapping can be accomplished through a look-up table. The keycode is
actually an index, but for the system developer the distinction does not matter.
The value sent in the bootable key report is identical to the value in the Usage
Index. For example, if the report contains the following then by looking up the
Usage Index in the Key Usage Table, the 04h iatkey, the 3Ah is the F1

key, and the 5Dh is the numeric keypad 5 key.

Byte Value

Byte O 00000000b
Byte 1 00000000b
Byte 2 04h

Byte 3 3Ah

Byte 4 5Dh

Byte 5 00h

Byte 6 00h

Byte 7 00h

Important It must be stressed that this is a carefully arranged exception to
the rule thatJsagesare not sent in EHID report. In the bootable case, the
keycode table has been written specifically so that/gegeis equal to the
Logical Index which is reported.

For example, assume a certain 10-key keypad does not use the boot protocol.
Therefore, it may not declare itself to be a bootable keyboard. It might supply

the followingReport descriptor, an example of a non-bootable 17-key numeric
keypad:

Usage Page (Generic Desktop),
Usage (Keyboard),

Report Count (0),

Col | ection (Application),
Usage Page(Key Codes),

Usage M ni mun{54h),

Usage Maxi mumn( 63h)

Logi cal M nimum (1),

Logi cal Maxi mum (17),

Report Size (8),



88 Device Class Definition for Human Interface Dev  ices (HID)

Report Count (3)
I nput (Data, Array),
End Col | ection

TheUsagescome from the same Key Code Usage Page, but because the
Logical Minimum, Logical Maximum, Usage Minimum and Usage Maximum
values are different, the bytes in the report no longer line up witligagesn
the Key Code Usage Page. To indicate that the keypad ‘5’ is down in this
example, the report from this device would be as follows.

Byte Value
0 0Bh
1 00h
2 00h

The OBh is the Index into the list bsagesdeclared by the above descriptor.
The list of declaretlsagesstarts with 53h, which is the Usage for “Keypad
Numlock and Clear”. The eleventh element in this list is “Keypad 5", so the
report includes an entry with OBh.

This two step de-referencing is necessary for a non-boot device. In the general
case, the Usages required may not start at 1, may not be a continuous list, and
may use two or morgsage Pages

However, the boot protocol was designed to be both compatible witliEhe
Report descriptor parts, and to eliminate the two-step de-referencing for this
special case. The operating system should readlteReport descriptor for

the device protocol. The ROM-based system may use the boot protocol after
issuing theSet_Protocolrequest.



Appendix H: Glossary Definitions 89

Appendix H: Glossary Definitions

This appendix defines terms used throughout this document. For additional terms
that pertain to the USB, see Chapter 2, “Terms and Abbreviations,” in the USB
Specification.

Array
A series of data fields each containing an index that corresponds to an activated
control. Banks of buttons or keys are reported in array items.

Button bitmap
A series of 1-bit fields, each representing the on/off state of a button. Buttons can
be reported in either an array or a button bitmap.

Class
A USB device is organized into classifications suchi&», audio, or other-based
on the device's features, supported requests, and data protocol.

Collection

A collection is a meaningful grouping bfput, Output, andFeature items—for
example, mouse, keyboard, joystick, and pointer. A polDdiection contains
items for x and y position data and button data. Colkection andEnd
Collection items are used to delineate collections.

Control
A sink or source of a data field—for example, an LED is a sink or destination for
data. A button is a source of data.

Control pipe
The default pipe used for bi-directional communication of data as well as for
device requests.

Data item
An item that adds fields to a report. For examjpiput, Output, andFeature
items are all data.

Data phase
Part of a device's response to a request.

Descriptor
Stored in segments within the ROM of a USB device, the device descriptor
identifies the class associated with the device—for exarHple, audio, or other.

Descriptor sets
A group of descriptors is called a descriptor set.. Descriptor sets irdlDde
Item, andString.



90 Device Class Definition for Human Interface Dev  ices (HID)

Device class
A method of organizing common functions and protocols for devices that serve
similar functions—for example, communication, audio, display, and so on.

Device descriptor
Packet of information that describes the device—for example, the vendor, product
ID, firmware version, and so on.

Endpoint descriptor
HID descriptor that identifies which other descriptors are present and identifies
their sizes.

Feature control

Feature controls affect the behavior of the device or report the state of the devic
Unlike input or output data, feature data is intended for use by device
configuration utilities and not applications. For example, the value for the repeat
rate of a particular key could be a feature conkitid feature controls are
unrelated to features discussed in Chapter 9 of the USB Specification.

Feature item
Adds data fields to a Feature report.

Field
A discrete section of data within a report.

Frame
The smallest unit of time on the Universal Serial Bus (USB); equal to 1
millisecond.

HID (Human Interface Device)

Acronym specifying either a specific class of devices or the type of device known
as Human Interface DevicedlD) or HID class devices—for example, a data
glove. In this documentHID class” is synonymous with a device of type: human
interface.

HID class
The classification of USB devices associated with human interface dédi€es

HID class device
A device of type: human interface and classified as such.

HID descriptor
Information about a USB device is stored in segments of its ROM (read-only
memory). These segments are called descriptors.

Host
A computer with a USB port, as opposed to a device plugged into it.



Appendix H: Glossary Definitions 91

Hub
A USB device containing one or more USB ports.

Input item
Adds one or more data fields to an input report. Input controls are a source of data
intended for applications—for example, x and y data.

Interface descriptor
The class field of this descriptor defines this deviceldiaclass device.

Interrupt pipe
The pipe used to transfer unrequested data from the device to the host.

Item

A component of AReport descriptor that represents a piece of information about
the device. The first part of an item, called the item tag, identifies the kind of
information an item provides. Also, referred to genericallRegort items.

Included are three categories of itetdistin,, Global, andLocal. Each type of
item is defined by its tag. Also referred toMain item tag,Global item tag, and
Local item tag.

Iltem parser
The part of théHID class driver that reads and interprets the items iRdport
descriptor.

Logical units
The value the device returns for Logical Minimum and Logical Maximum. See
Physical units.

LSB
Least Significant Byte

Message pipe
Another name for th€ontrol pipe.

NAK
The value returned when a request has been sent to the device and the device is
not prepared to respond.

Nibble
A half of a byte; 4 bits.

Non-USB aware

An operating system, program loader, or boot subsystem which does not support
USB per the core and device class specifications. Examples include PC-AT BIOS
and IEEE 1275 boot firmware.



92 Device Class Definition for Human Interface Dev  ices (HID)

Null
No value, or zero, depending upon context.

Output item
Adds one or more data fields to an output report. Output controls are a destination
for data from applications—for example, LEDs.

Packets
A USB unit of information: Multiple packets make up a transaction, multiple
transactions make up a transfer report.

Part
Document convention used to define bit attributes.

Physical Descriptor

Determines which body part is used for a control or collection. Bhghical
descriptor consists of the following three fiel@g&signator, Qualifier and
Effort .

Physical units
The logical value with a unit parameter applied to it. See Logical units.

Pipes

Pipes are different ways of transmitting data between a driver and a devie. The
are different types of pipes depending on the type of encoding or requesting that
you want to do. For example, all devices h@amtrol pipe by default. The

Control pipe is used for message-type data. A device may have one or more
Interrupt pipes. Aninterrupt pipe is used for stream-type data. Other types of
pipes includeBulk andlsochronous These two types of pipes are not used by
HID class devices and are therefore not defined for use within this specification.

Report

A data structure returned by the device to the host (or vice versa). Some devices
may have multiple report structures, each representing only a few items. For
example, a keyboard with an integrated pointing device could report key data
independently of pointing data on the same endpoint.

Report descriptor
Specifies fields of data transferred between a device and a driver.

Set
A group of descriptors—for example, a descriptor set.

Stream pipe
Isochronous pipe used to transmit data.

String descriptor
A table of text used by one or more descriptors.



Appendix H: Glossary Definitions 93

Tag
Part of aReport descriptor that supplies information about the item, such as its
usage.

Terminating items

An item within a descriptor. For examplush, Pop, andltem are terminating
items. When the item parser within tH€D class driver locates a terminating
item, the contents of the item state table are moved.

Transaction

A device may send or receive a transaction every USB framdlidecond). A
transaction may be made up of multiple packets (token, data, handshake) but is
limited in size to 8 bytes for low-speed devices and 64 bytes for high-speed
devices.

Transfer

One or more transactions creating a set of data that is meaningful to the device—
for example)nput, Output, andFeature reports. In this document, a transfer is
synonymous with a report.

Usage
What items are actually measuring as well as the vendor’s suggested use for
specific items.

USB Boot Device

Device is USBHID “Boot/Legacy” compliant and Reports its ability to use the
boot protocol, or report format, defined in tHD class specification for input
devices such as keyboards or mouse devices.

Variable
A data field containing a ranged value for a specific control. Any control reporting
more than on/off needs to use a variable item.

Vendor
Device manufacturer.



94 Index

Index

A Descriptorgcontinued)
defined 96
Actions, terminating items 16 device 5, 79
Arrays endpoint 81
defined 96 examples
modifier bytes 58 for common devices 77
Report Count behavior 39 for HID class devices 78
report format for items 58 for joystick 77
HID 21, 82, 98
interface (keyboard) 81
B Mouse 84
Bias 43, 46 PhySiC&l 43-44
Bitmap data 58 Report 6, 14, 23, 83
BNF grammar for USB HID descriptor 88 standard 21
Body parts, physical descriptor parts 46 String 6
Boot interface descriptors 72 structure 12
Boot protocol 90, 93 Design requirements, USB keyboards 75
Boot subclass 56 Designator Qualifier 43
Button bitmaps defined 96 Designator sets, Bias field 46
Button pages 71 Designator tags 44

Device class defined 97
Device descriptors 5, 79, 97
C Devices

' classes (table) 1
Class de“"_e_d 96 common, example descriptors 77
Class-specific requests 51

> . descriptorsSeeDescriptors
CoIIect!on _deflned 96 force feedback 2
Collection items

_ HID, examples 2

described 34 limitations 11

parser behavior 16 orientation 20

tags 2_4 ' reports 17, 18

Configuration descriptors 80 USB devicesSeeUSB devices

Contribut?ng companies v Disclaimer, intellectual property v
Control pipes 10, 96 Documentation
Controls defined 96 conventions Vii

Conventions, document vii

purpose 2
Country codes 22 related documents 4

scope 1
Data fields in reports 29 E
Data items defined 96 End Collection items 24, 34
Data phase defined 96 Endpoint descriptors 10, 81, 97
Default pipes 51 Examples

Descriptor sets 5, 97, 100
Descriptors
boot interface 72
class-specific 21
configuration, sample 80

descriptors for common devices 77

descriptors for joysticks 77

items used to define 3-button mouse 25

Report descriptor 59

USB descriptors for HID class devices
78



Index 95

F

Feature controls defined 97
Feature items
(table) 33
defined 97
tags 23
usage 29
Field defined 97
Floating point values 19
Force feedback devices 2
Format
generic item 14
report
array items 58
for standard items 57
Frame defined 97
Function keys as modifier keys 59

G

Generic desktop pages (table) 61
Generic item format 14
Get_Descriptor requests 50
Get_Idle requests 53
Get_Protocol requests 55
Get_Report requests 52

Global items (table) 35

Glossary 96

H

Hatswitch items 78

HID (Human Interface Device)
1.0 release vi
class See HID class
defined 97
descriptors 21, 98
revision history vi

HID class
defined 97
definition, goals 2
descriptorsSeeDescriptors
device defined 98
device descriptors 5, 78
devices SeeDevices
examples of devices 2
functional characteristics 8
interfaces 10
item types 26
scope of documentation 1
subclasses 9
USB devices 8

HID class devices, operational model 12
High-speed device limitations 11

Host defined 98

Hub defined 98

Human Interface Devic&eeHID

Input items
defined 98
(table) 29
tags 23
Integer values 19
Intellectual property disclaimer v
Interface
(keyboard) descriptors 81
descriptors defined 98
Interfaces for HID class devices 10
Interrupt pipes 10, 98
Item parser
use described 15
defined 98
Item tags, Main 23
Items
array, report format 58
Collection 16, 34
data, defined 96
defined 98
End Collection 34
Feature 29, 33
Global 35
Hatswitch 78
HID class types 26
Input 29
Local 39
long 27
Main (table) 28
Output 29
Pop 16
Push 16
required for Report descriptors 25
Set Delimiter 42
short 26
standard report format 57
Unit 37
unrecognized, parser’s treatment of 16
variable 39

J

Joysticks, example of descriptors for 77



96 Index

K Non-USB aware defined 99
Null defined 99
Key codes, USB keyboards 63 Numeric values, multibyte 19
Keyboard implementation
boot protocol 93 O
bootable keyboard requirements 91 Operational model for HID class devices 12
generally 90 _ Orientation of HID class devices 20
management overview 90 Output items
non-USB aware system design 92 defined 99
purpose of specification 90 tags 23
Keyboard/keypad pages 62 (table) 29
Keyboards
boot, alternative protocol 76
key codes 63 P

Report descriptor protocol 72

usages and languages 63 Packets defined 99

USB design requirements 75 Pagt?j“on 71
generic desktop 61
L keyboard/keypad 62
_ ] LED 70

Languages, mapping to different 63 Usage (table) 61
LED _ Parser

output items 73 defined 98

pages 70 described 15

states 29 treatment of unrecognized items 16
Legacy protocol 90 Part defined 99

License, software v Parts for common units (table) 38
Local items (table) 39 Physical descriptors 43, 46, 99
Logical units defined 98 Physical units defined 99

Long items 27 PID class 2
Low-speed device limitations 11 Pipes
LSB defined 98 Control 10’ 96
Default 51
M defined 99
Interrupt 10, 98
Main item tags 23 message, defined 99
Main items 28 stream, defined 100
Message pipe defined 99 Pop items 16
Modifier byte (table) 58 Push items 16
Modifier keys 58
Mouse
3-button, items used to define 25 R
descriptors 84 Report descriptors
endpoint descriptors 84 defined 100
HID descriptors 85 described 6, 17
Report descriptor protocol 73 difference from other descriptors 23
Report descriptors 86 example 59
Multibyte numeric values 19 keyboard 72
mouse 73, 86
N parsing 16
required items 25
NAK defined 99 use described 14

Nibble defined 99 Report ID items 18



Index 97

Reports Tags(continued)
contraints 59 items See alsdtems
data fields within 29 Main item 23
defined 100 Tags (continued)
Reports (continued) Output item 23
described 17 usage 17
format for array items 58 Terminating items
format for standard items 57 actions 16
types 57 defined 100
Requests Transactions defined 100
class-specific 51 Transfers
Get_Descriptor 50 defined 100
Get_lIdle 53 described 17
Get_Protocol 55 Types of reports 57
Get_Report 52 Typographic conventions vii
Set_Descriptor 50
Set_Idle 54
Set_Protocol 55 U
Set_Report 53 Unit items (table) 37
standard 49 Units, parts for common (table) 38
Universal Serial BusSeeUSB
S Usage defined 100
Usage pages (table) 61
Set Delimiter items 42 Usage tags
Set_Descriptor requests 50 and Local items 39
Set_Idle requests 54 and report descriptors 17
Set_Procotol requests 55 and strings 18
Set_Report requests 53 USB
Sets defined 100 described 1
Short items 26 device classes (table) 1
Software license v USB devices, HID class 8
Specification purpose 90 USB keyboards, key codes 63
Stream pipes defined 100 USB requests, standard 49
String descriptors USB-boot device defined 101
defined 100
described 6
usage 18 V
String descriptors (table) 86 Values, multibyte numeric 19
Strings and usage tags 18 Variable items 39
Subclasses, HID specification 9 Variables defined 101
Vendor defined 101
T Version, scope of 1.0 vi
Tags
Collection item 24 W
defined 100 World Wide Web, related documentation 4

Designator 44
End Collection 24
Feature item 23 Y

Input item 23
YACC 88



